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Elements of Complex Analysis
The most important theorems and tools for applications

in physical field theory

Abstract

Some theorems of complex analysis, in particular Cauchy’s integral
theorem and the residue theorem, are most useful tools for physical
field theory. We derive and discuss these mathematical tools
without superfluous ballast, but still sufficiently detailed, so that
the physicist can not only apply these formulas correctly, but gets
as well a working knowledge of their contexts and proofs.
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2 Elements of Complex Analysis

1. Analytical Functions

Complex numbers may be written as the sum of their real parts x
and their imaginary parts iy:

z = x+ iy with x, y ∈ R, z ∈ C (1)

A complex-valued function f(z) may be written as the sum of it’s
real part u and it’s imaginary part iv:

f(x, y) = u(x, y) + iv(x, y) with u, v ∈ R, f ∈ C (2)

We now are looking for a general criterion which answers the
question whether f is differentiable at some certain point x+ iy.
Functions g, which are defined for real arguments, are differentiable
at a point x, if the left and right limits are finite and identical:

lim
ε→0

g(x+ ε)− g(x)
ε

= lim
ε→0

g(x)− g(x− ε)
ε

with ε > 0 (3)

In the plane of complex numbers, the point z = x + iy can be
approached from different directions. If the derivative at some
point z shall be defined uniquely, then it must not depend on the
direction in the complex plane chosen to perform the derivative.
As extreme cases, we consider the derivatives parallel to the real
axis, and parallel to the imaginary axis. We require that both shall
be equal1:

df
dx = df

diy (4)

1 We apply for the derivative the nomenclature and conventions, which are
commonly used in physics. These are different from the conventions com-
monly used in pure mathematics. For more details, see
http://www.astrophys-neunhof.de/mtlg/se77211.pdf

http://www.astrophys-neunhof.de/mtlg/se77211.pdf
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du
dx + div

dx = du
diy + div

diy (5)

du
dx + i

dv
dx = −idudy + dv

dy (6)

If (6) is split into it’s real and imaginary parts, then one gets the
Cauchy2-Riemann3 differential equations, which are the basis of
the following
Definition: A function f : G→ C, which is defined in a region
G ⊆ C of the complex plane, is called analytic in the region G,
if f(x, y) = u(x, y)+ iv(x, y) is a solution of the Cauchy-Riemann
differential equations

du
dx = dv

dy (7a)

and du
dy = −dv

dx (7b)

for all x + iy ∈ G. Thereby the differential quotients (7a) and
(7b) must be finite.
It is a necessary criterion for a function to be uniquely differentiable,
that it fulfills the Cauchy-Riemann differential equations. It seems
plausible, that this as well is a sufficient criterion, i. e. that the
differentials in any direction of the complex plane will be identical,
provided they are identical in the directions of the real and the
imaginary axes. We spare ourselves the rigorous proof.

The Cauchy-Riemann differential equations (7) impose severe re-
strictions on differentiable functions. Many seemingly “reasonable”
functions do not fulfill (7) and thus are not analytical, for example
f(x, y) = 2x+ i3y or f(x, y) = x− iy. To achieve a better under-

2 Augustin Louis Cauchy, Aug-21-1789 –May-23-1857
3 Georg Friedrich Bernhard Riemann, Sep-17-1826 – July-20-1866
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standing of (7), we consider f as a two-dimensional vector field,
and compute it’s divergence and it’s rotation. We start with the
divergence.

f ≡
(
u
iv

)
(8)

div f = du
dx + div

diy

= 2 · dudx = 2 · dvdy because of (7a) (9)

Thus both terms of the divergence must be identical. That’s an
extraordinary requirement, not known from other vector fields.
Let’s consider the rotation:

rot f = d
dxiv −

d
diyu

i rot f = −dv
dx −

du
dy

= 0 because of (7b) (10)

Thus the Cauchy-Riemann differential equation (7b) demands
the rotation of the field f to be zero. As an alternative to the
extraordinary restriction upon the divergence (9), the condition (7a)
could be formulated as the requirement of the vanishing rotation
of a field f̃ . The field f̃ is defined as f mirrored at the diagonal
axis D: a = ia, a ∈ R of the complex plane:

f̃ ≡
(
iv
u

)
(11)

rot f̃ = d
dxu−

d
diy iv

= 0 because of (7a) (12)
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Obviously the Cauchy-Riemann differential equations impose
stronger restrictions upon an analytical function f , than the re-
quirement of zero rotation of that field alone. Stated in other
words: There exists a closer connection inbetween the components
u and iv of f than inbetween the components of two-dimensional
real vector-fields.

Is it worth the effort for a physicist, to consider analytical
functions at all, if so many possible functions are excluded by the
Cauchy-Riemann differential equations? The answer is a clear yes,
because almost all complex functions encountered in physics either
are analytic, or have at most a finite number of singular points. To
derive maximum advantage from complex analysis, we will need to
occupy ourselves with the singularities of complex functions. But
prior to that we will state Cauchy’s integral theorem.

2. Cauchy’s Integral Theorem

Cauchy’s integral theorem:
If a function f(z) : G→ C is analytic in all points z of a region
G ⊆ C, then the integral along a closed path, which confines that
region, is zero: ∮

f(z)dz = 0 (13)

This theorem is an immediate consequence of Stokes’4 theorem.
According to Stokes’ theorem, the integral (13) of f along a closed
path is equal to the surface integral of the rotation of f , computed
over the surface enclosed by the path. We stated already in (10),
that one of the Cauchy-Riemann differential equations is equivalent

4 George Gabriel Stokes, Aug-13-1819 –Feb-01-1903
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to the requirement that the rotation shall be zero. The rotation
of f is zero, wherever f is analytical. Consequently (13) is zero
according to Stokes’ theorem.

Applying Cauchy’s integral theorem, one can read from figure 1:
b∫
a

path 1

f(z)dz +
a∫
b

path 2

f(z)dz =

=
a∫
b

path 1

f(z)dz +
b∫
a

path 3

f(z)dz =

=
a∫
b

path 2

f(z)dz +
b∫
a

path 3

f(z)dz = 0 (14)
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Fig. 1: different
integration paths

Two theorems are immediate consequences of (14):

Theorem:
If a function f(z) : G→ C is analytical in all points z of a region
G ⊆ C, then the path-integral from a point a ∈ G to a point
b ∈ G is independent of the integration path, provided the path
is completely within G:

b∫
a

path 1

f(z)dz =
b∫
a

path 2

f(z)dz (15)
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Theorem:
If a function f(z) : G→ C is analytic in all points z of a region
G ⊆ C, then the path-integral from a point a ∈ G to a point
b ∈ G is inversely equal to the path-integral from b to a. The
paths of the two integrals thereby may be identical or different,
provided they nowhere leave G:

b∫
a

f(z)dz = −
a∫
b

f(z)dz (16)

3. Singular Points

Cauchy’s integral theorem is valid only, if a function is analytic
everywhere in a region. But even in case that there are a finite
number of singular points within the region, complex analysis has
a powerful tool at it’s disposal, named residue theorem. First we
define the notion “singular point”:
Definition: Let a function f(z) : G → C be analytic
everywhere in a region G ⊆ C with the exception of a finite
number of points ak. The points ak ∈ G, at which f is not
analytic, are called singular points of f .

(17)

Three types of singular points can be discerned:
∗ f(z)→ +∞ or f(z)→ −∞, if z approaches a from an arbitrary
direction in the complex plane. This type of singularity is called
a “pole”.
∗ f(z) → f0 with f0 finite, if z approaches a from an arbitrary
direction in the complex plane, but f(a) 6= f0. This is a
“removable” singularity. It is removed due to replacement of
f(z) at the point a by f0.
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∗ If z approaches a from different directions of the complex plane,
then f(z) converges towards different (finite or infinite) values.
This type of singularity is called an “essential singularity”.

The type of singularity, which is by far the most important for
physical applications, is the pole. There are different orders of
poles. The definition of the order of a pole will be given in (21).

4. Laurent Series

The Laurent5-series expansion (18) is the essential prerequisite for
the residue theorem. We will not delve into it’s proof6.
Theorem: Let a function f : G→ C be analytic everywhere in a
region G ⊆ C of the complex plane with the (possible) exception
of a point a. At the point a, the function f may be singular (but
this is not necessary). Then f(z) can be expanded in a Laurent
series around the point a for all z 6= a, z ∈ G:

f(z) =
+∞∑

n=−∞
cn(z − a)n with cn ∈ C, n ∈ Z (18)

From the Laurent series expansion of a function around the point a,
conclusions are possible regarding the type of the singularity of f
at this point. The conclusions are stated in the following theorems,
which again are cited without proof.
Theorem: If all coefficients cn with n < 0 of the Laurent
series (18) are zero, then f(z) is analytic at the point a, or
it has there a removable singularity.

(19)

5 Pierre Alphonse Laurent, July-18-1813 – Sep-02-1854
6 Actually the Laurent series expansion is valid even under less restrictive
conditions than stated in the following theorem. But all physical applications
meet the restrictive conditions stated in (18).
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Theorem: If the coefficient cm with m < 0 of the Laurent
series (18) is different from zero, and if all coefficients cn
with n < m are zero, then f(z) has a pole at the point a.

(20)

Definition: In this case the pole is called a pole of order
m.

(21)

An example for a pole of order m is f(z) ≡ 1/(z − a)m , m >
0 , m ∈ Z .

Theorem: If infinitely many coefficients cn with n < 0 of
the Laurent series (18) are different from zero, then f(z)
has at the point a an essential singularity.

(22)

5. The Residue Theorem

We integrate (18) along a closed path counterclockwise around the
point a. The path shall be within the region G, where f is analytic.

∮
	

f(z)dz =
+∞∑

n=−∞
cn

∮
	

(z − a)ndz (23)

We choose the integration path to be a circle around a with radius
r ∈ R and angular variable ϕ ∈ R. Thus the equation and the
differential of the integration path become

z = a+ r · eiϕ (24a)
dz = r · i · eiϕdϕ . (24b)
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This is inserted into (23):

∮
	

f(z)dz =
+∞∑

n=−∞
cn

2π∫
ϕ=0

(a+ reiϕ − a)nri · eiϕdϕ (25a)

=
+∞∑

n=−∞
cn · irn+1

2π∫
ϕ=0

eiϕ(n+1)dϕ (25b)

= c−1 · 2πi (25c)

The clou of this computation is the integral (25b). Only with
n = −1 it’s value is 2π, for any other n it is zero. Because of
r−1+1 = 1, the surprisingly simple result is (25c). The factor c−1,
which is the only one which survives in the integration (25), is
appropriately called “residue”:
Definition: Let a function f(z) : G→ C be analytic everywhere
in a region G ⊆ C with the only exception of a point a. The
integral

Resf (a) ≡ 1
2πi

∮
	

f(z)dz , (26)

which is to be computed along an arbitrary closed path within
the region G counterclockwise around the singular point a, is
called residue of f at the point a.
In (25) we computed the residue along a circular integration
path. But definition (26) says that the path is “arbitrary”. This
can be explained by considering figure 2. In figure 2a, the cir-
cular integration path with the singular point a in it’s center
is sketched. In addition, an arbitrary integration path around
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integration paths
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Fig. 2b : The difference of
the integration paths

a is indicated. In figure 2b, the difference∮
	

fig. 2b

f(z)dz =
∮
	

arb. path,
fig. 2a

f(z)dz −
∮
	

circle,
fig. 2a

f(z)dz (27)

between the “arbitrary” outer path, and the circular path is shown.
The connections between the inner and outer paths are sketched as
two closely parallel paths for clarity, but actually these connection
shall be along exactly the same path, such that the contributions
of the ways in and out shall exactly compensate. The integral
fig. 2b is zero according to Cauchy’s integral theorem, as it does
not enclose a singular point. Consequently the value of the residue
is independent of the integration path around the singular point a,
and the wording “arbitrary path” in definition (26) is reasonable.

If f is not singular at a, then the residue is of course zero (as
stated by Cauchy’s integral theorem). But it is most useful, that
path integrals can be computed by means of (26) even if they
enclose a finite number of singular points. This is stated by the
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Residue Theorem: Let a function f : G→ C be analytic every-
where in a region G ⊆ C of the complex plane for all z ∈ G with
the exception of a finite number of points ak ∈ G. The integral
along a closed counterclockwise path in G, which encloses the k
singular points ak, is∮

	

f(z)dz = 2πi ·
∑
k

Resf (ak) . (28)

The proof is almost obvious with regard to the previous statements.
For k = 1 the theorem is trivial, as it then simply reduces to the
definition (26) of the residue. If the closed integration path encloses
several singular points, then for each singular point a circular path,
which encloses only this one singularity, can be computed. The
difference between the total integral of (28) and the k circular
single integrals is zero, according to figure 2.

6. How to compute Residues

We want to compute integrals of the type
∮
f(z)dz. Thus far we

only rephrased the problem, but we have not yet solved it. The
residue theorem says, that the path integral may be replaced by a
sum over residues. But how can a residue be computed? In case
that the singularities are poles — but not essential singularities
— this is surprisingly simple, by means of the Laurent expansion.
We first state a formula for the computation of residues, and will
proof it subsequently.
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Theorem: Let a function f : G→ C, which is defined in a region
G ⊆ C, have a pole of order m at the point a ∈ G. The residue
of f at the point a can be computed by the following formula:

Resf (a) = 1
(m− 1)!

dm−1

dzm−1

(
f(z) · (z − a)m

)∣∣∣
z=a

(29)

This formula makes the substantial simplification obvious, which
the residue theorem brings about. Instead of the need to compute
a path integral, which’s solution may be a very tough problem,
according to (29) one only needs to compute some derivatives; this
can always be achieved with little efforts. To prove the formula,
we insert for f(z) the Laurent expansion (18):

Resf (a) = 1
(m− 1)!

dm−1

dzm−1

( +∞∑
n=−∞

cn(z − a)n · (z − a)m
)∣∣∣
z=a

= 1
(m− 1)!

+∞∑
n=−∞

cn
dm−1

dzm−1 (z − a)m+n
∣∣∣
z=a

(30)

All terms, in which the exponent m+ n is smaller than the multi-
plicity m− 1 of the derivative, become zero in the derivative. Only
terms with

m− 1 ≤ m+ n

−1 ≤ n (31)

do not vanish in the derivative. After the (m − 1)th derivation,
the functional value at z = a shall be taken, as stipulated by the
mark |z=a. Thereby all terms disappear, which then still contain a
factor (z − a)p with p > 0. Only terms with

m− 1 ≥ m+ n

−1 ≥ n (32)
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are different from zero after the derivatives have been taken. In
total, only the term with n = −1 survives in (30), according to the
criteria (31) and (32):

Resf (a) = 1
(m− 1)! c−1

dm−1

dzm−1 (z − a)m−1
∣∣∣
z=a

= 1
(m− 1)! c−1 (m− 1)! · 1

= c−1 (33)

According to (25) and (26), this accords with the definition of the
residue. Thus theorem (29) is proved.

Note: In this prove we assumed, that m is finite. Therefore (29)
holds — as stated explicitly in the theorem’s premises — only for
poles, but not for essential singularities.

7. An Example

In physical field theory, often integrals of the form

G(x− y) =
+∞∫
−∞

d4k

(2π)4
i exp{−ik(x− y)}

~c
(
k0 + ωk

c

)(
k0 − ωk

c

) (34)

with ωk

c
≡ +

√
k2 +M2 c

2

~2 ; k ≡ (k0, k1, k2, k3) ≡ (k0,k)

are encountered. (This example is the Greens-function of a Klein-
Gordan field with mass M .) At k0 = ∓ωk/c, the integrand has
two poles of first order. Therefore we add a small imaginary term
−iε to ωk/c:

ωk/c → ωk/c− iε with

ε ∈ R , ε > 0
ε

ωk/c
≤ ε

Mc/~
� 1 (35)
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Fig. 3: The two
integration paths

Thus the poles, which are in-
dicated in fig. 3 as red points,
are shifted from the real
axis into the complex plane.
Whether, and under which
conditions, this measure can
be justified, is a physical
question. In this circular we
occupy ourselves exclusively
with the mathematical as-
pect, i. e. with the computa-
tion of the modified integral.

The integral over k0 can be computed by means of the residue
theorem (28). For this purpose, it must be completed to an integral
along a closed path. In case x0 > y0, the integration path can be
closed — without change of the integral’s value — in the lower
complex half-plane (path 1 in fig. 3), because for large real part
of k0 the term (k0)2 in the denominator, and for large negative
imaginary part of k0 the exponential function in the numerator,
will bring about that the integral over the lower semicircle is zero.

Path 1 encloses the pole at k0 = +ωk/c−iε. Using the definition

f(k0) ≡ exp{−ik0(x0 − y0)}
~c
(
k0 + ωk

c
− iε

)(
k0 − ωk

c
+ iε

) , (36)
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one finds the Greensfunction

G(x− y) x
0>y0
= i

(2π)4

+∞∫
−∞

d3k exp{+ik(x− y)}
∮
�

dk0 f(k0)

(28)= i

(2π)4

+∞∫
−∞

d3k exp{+ik(x− y)}
(
− 2πi · Resf (ωk/c− iε)

)
.

There was a change of sign, because the integration path is fol-
lowed clockwise, while theorem (28) assumes a counterclockwise
integration path. The residue is computed by means of theorem
(29). In this example, the order of the pole is m = 1:

Resf (ωk/c− iε)
(29)= f(k0) · (k0 − ωk/c+ iε)

∣∣∣
k0=ωk/c−iε

(36)= exp{−ik0(x0 − y0)}
~c
(
k0 + ωk

c
− iε

) ∣∣∣∣
k0=ωk/c−iε

This results into

G(x− y) =
+∞∫
−∞

d3k

(2π)3
exp{−i(ωk/c− iε)(x0 − y0) + ik(x− y)}

~c(2ωk/c− 2iε) .

Now ε can be neglected versus ωk/c, and the Greensfunction

G(x− y) x
0>y0
=

+∞∫
−∞

d3k

(2π)3
exp{−iωk(x0 − y0)/c+ ik(x− y)}

2~ωk

(37a)

is found. In case x0 < y0, the integral is closed in the upper complex
half-plane (path 2 in Fig. 3). Now the pole at k0 = −ωk/c+ iε is
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enclosed by the integration path:

G(x− y) y
0>x0
= i

(2π)4

+∞∫
−∞

d3k exp{+ik(x− y)}
∮
�

dk0 f(k0)

(28)= i

(2π)4

+∞∫
−∞

d3k exp{+ik(x− y)} 2πi · Resf (−ωk/c+ iε)

Using

Resf (−ωk/c+ iε) (29)= f(k0) · (k0 + ωk/c− iε)
∣∣∣
k0=−ωk/c+iε

(36)= exp{−ik0(x0 − y0)}
~c
(
k0 − ωk

c
+ iε

) ∣∣∣∣
k0=−ωk/c+iε

one finds

G(x− y) y
0>x0
=

= −
+∞∫
−∞

d3k

(2π)3
exp{−i(−ωk/c+ iε)(x0 − y0) + ik(x− y)}

~c(−2ωk/c+ 2iε) .

As the integration is running symmetrically over all positive and
negative wavenumbers k, and because of ω-k = ωk, k and −k may
be exchanged. Skipping ε, one arrives at

G(x− y) =y
0>x0

+∞∫
−∞

d3k

(2π)3
exp{−iωk(y0 − x0)/c+ ik(y − x)}

2~ωk
.

(37b)

For x0 = y0, no Greensfunction is defined.
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