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Szilard’s Theorem and Landauer’s Principle
Are information entropy and

thermodynamic entropy correlated?

Gerold Gründler 1

Szilard’s theorem, published in 1929, and Landauer’s principle,
published in 1961, both postulate a relation between information
and thermodynamic entropy. In this article, both theorems are
described in very detail. Szilard’s theorem is disproved. And
Landauer’s principle, though experimentally neither disproved nor
confirmed, is shown to be more damaging than useful.
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1. Thermodynamic entropy

The first law of thermodynamics says, that it is impossible to con-
struct a “perpetuum mobile”, i. e. a continuously running machine
whose energy output per machine cycle is higher than it’s energy
input. For centuries, ingenious inventors like Leonardo da Vinci
(1452 – 1519) intensively tried to construct a perpetuum mobile,
but all attempts failed.
This rule, extracted from experience, can be formally stated as

the first law of thermodynamics:
dU = δQ+ dW (1)

Here U is the inner energy of the considered system, and Q and
W are the heat and the work, respectively, which are fed2 into the
system.

It’s characteristic for 19th century physics, to discern macroscopic
interactions and microscopic interactions. Macroscopic interactions
are mechanical work, and interactions with macroscopic electric,
magnetic, and gravitational fields. Microscopic interaction is the
exchange of heat.

Accordingly, the environment of the considered system is divided
into a thermal bath, with which the system exchanges microscopic
energy (i. e. the heat δQ), and the macroscopic environment, with
which the system exchanges macroscopic energy (i. e. the work
dW ).
The second law of thermodynamics, which — like the first law

— has been concluded from experience, is even more restrictive.
It says that it is impossible to construct a “perpetuum mobile

2 We apply the convention, that work or heat, which is fed from outside into the
system, gets a positive sign (W > 0, Q > 0), while work or heat, which the
system feeds towards the environment, gets a negative sign (W < 0, Q < 0).
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of second kind”. This is3 a continuously running machine which
extracts per cycle the energy Q in form of heat from one thermal
bath, and converts it into mechanical energy2 W = −Q . Instead
there must exist a second thermal bath with temperature T2 < T1,
and the machine which extracts the heat Q from the heat bath
at T1 can do only the mechanical work W = −Q · (T1 − T2)/T1 ,
and must feed2 the heat q = −QT2/T1 into the bath of lower
temperature.
This can be formally stated as

the second law of thermodynamics:∮
δQ

T

{
= 0 if the process is reversible
< 0 if the process is irreversible 2 (2)

In an irreversible cyclic process, the system dissipates more heat
to the bath than it absorbs from the bath.

Clausius [2,3] defined the entropy S due it’s infinitesimal change

dS = δQ

T

∣∣∣∣
rev

= entropy change of a system, which
reversibly exchanges2 heat Q with a
bath of temperature T

(3)

As there is no exchange of heat with the macroscopic environment,
it’s entropy never changes:

dSmacroscopic environment = 0 (4)

Using the notion of entropy, a more detailed formulation of the
second law is possible, which applies not only to cyclic processes,
but to arbitrary processes:
3 In the words of Kelvin [1]: “It is impossible, by means of inanimate material
agency, to derive mechanical effect from any portion of matter by cooling it
below the temperature of the coldest of the surrounding objects.”
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The second law of thermodynamics:

dSclosed
(4)= dS + dSbath

{
= 0 for reversible changes
> 0 for irreversible changes

(5a)

In words:

The entropy of a system can not decrease, unless that
decrease is compensated or over-compensated by an
increase of the entropy of the environment.

(5b)

Don’t be confused by the > and < signs in (2) and (5a), which
result from our sign-convention2.

Consequently, if the entropy of the system is reduced by ∆S < 0,
then the second law of thermodynamics implies that minimum the
heat2

−∆Q = −T∆S = +T∆Sbath > 0 (6)

must be fed from the system into the thermal environment, to
increase Sbath by minimum ∆Sbath = −∆S > 0 .

Boltzmann [4] and Gibbs [5] worked out the statistical interpreta-
tion of entropy. That interpretation was based on the hypothesis
that the considered system actually consists of N particles which
are to small to be observed directly. According to that hypothe-
sis, the temperature, pressure, and heat content of the system is
caused by the kinetic energy of the N particles. The microstate
of the system is it’s state in phase space, i. e. a point in the 6N -
dimensional space of the positions and momenta of the N particles.
It is impossible to determine the actual microstate of the system.
Instead from the observed macrostate of the system (i. e. it’s vol-
ume, pressure, temperature, chemical type, etc.) it can only be
concluded that the actual state in phase space must be one of M
possible microstates. Boltzmann postulated that the entropy of
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the system is related to the number M of the possible microstates
by

S = k lnM . (7)

The probability of any of the possible microstates to be the actual
microstate would be p = 1/M , if it would be identical for all of
the possible microstates. Then Boltzmann’s formula (7) could be
written as

S = k ·M · p︸ ︷︷ ︸
1

· ln (1/p)︸ ︷︷ ︸
M

= −kMp ln p .

But in reality, for example a microstate in which most of the
kinetic energy of the system is concentrated onto one single of
the N particles is certainly less probable than a microstate in
which the kinetic energy is distributed approximately equal to the
N particles. Therefore Gibbs made this formula more flexible,
allowing for different probabilities pj of the different microstates:

S = −k
M∑
j=1

pj ln pj with
M∑
j=1

pj = 1 (8)

This is the entropy of a system, which assumes with probabilities
pj various microstates j , all of which are compatible with the
observed (macro)state of that system.
Actually there exists a basic, very important difference in the

notions of entropy as defined by Clausius and Gibbs. In [6], that
difference, and it’s far-reaching consequences, are explicated. For
our present purpose — the discussion of Szilard’s theorem and
Landauer’s principle — , however, that difference can be ignored.
But the difference inbetween thermodynamic entropy (be it in the
definition of Clausius or Gibbs) on the one hand, and information
entropy on the other hand, will turn out to be essential in our
below considerations.
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2. Information entropy

Consider a variable X, which can assume the n different discrete
values {x1, . . . , xn}. X may for example be the result of throwing
a die (then n = 6 for a conventional die), or the result of tossing a
coin (then n = 2), or the signal received from a telecommunication
line.
We now want to define the information content of a particular

value xj of the variable X . The information content of a result with
a fair die is 3× as high as the information content of a result with
a fair coin, because the result of tossing the coin can be guessed in
advance (before the coin is actually thrown and the result observed)
with probability 1/2, while the result of throwing the die can be
guessed in advance only with probability 1/6 . Obviously the
information content I(xj) should be a function of P−1

j , with Pj
being the probability of X = xj :

I
(
xj
)

= function
( 1
Pj

)
(9a)

If two observations of the variable X are independent (for example
the result xa of throwing a die, and the result xb of a later throw
with the same die), then the information content of the combined
results is additive:

I(xa · xb) = I(xa) + I(xb) (9b)

Thus I(xj) must be a logarithmic function of xj . In his “Mathe-
matical Theory of Communication” [7], published in 1948, Claude
Elwood Shannon (1916 – 2001) chose the logarithm to the basis 2 .
Considering (9a) and (9b), information content may be defined as
follows:

I(xj) = log2

( 1
Pj

)
= − log2 Pj (10)
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Furthermore Shannon [7] defined the information entropy of the
variable X as the mean value of the information contents I(xj) of
all values xj which the variable X does assume with probabilities
Pj :

H(X) =
n∑
j=1

PjI(xj)
(10)= −

n∑
j=1

Pj log2 Pj with
n∑
j=1

Pj = 1 (11)

Here H is the Greek capital letter Eta. Famously it was John
v.Neumann, who in a discussion with Shannon suggested to name
the quantity (11) entropy, “because anyway nobody knows what
entropy is.” Indeed the similarity of the formulas for Gibb’s ther-
modynamic entropy (8) and Shannon’s information entropy (11)
is striking.4

Note, however, that I took care to discern the probabilities pj of
unobservable microstates in phase space, all of which are compatible
with the observed macrostate of the considered system, from the
probabilities Pj of observable macrostates, which furthermore may
be completely different from states in phase space, due to lower
and upper case characters. It is controversial amongst physicists,
whether the probabilities pj and Pj really are of basically different
nature and consequently must be kept separated, or whether the
difference is irrelevant, and the pj and Pj — and consequently
thermodynamic entropy and information entropy — should be
considered essentially equivalent. See the discussion in section 4
below.

4 In this article, the word “information” is always explicitly stated in case of
information entropy. When the word “entropy” is used without an explicit
specifier “information” or “thermodynamic”, then always thermodynamic
entropy is meant.
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3. Szilard’s theorem

In 1929, Leo Szilard (1898 – 1964) published an article [8], in which
he tried to demonstrate a deep relation between the second law
of thermodynamics and the accumulation of information. His
assertion may appropriately be called

Szilard’s theorem:
Any measurement and storage of the result causes per
bit of measurement result minimum the thermodynamic
entropy decrease

∆S = −k ln 2 < 0
of measured object&measurement instrument&memory.

(12a)

Szilard did not explicitly formulate this theorem, but from the
context of his article there can be no doubt that this is exactly
what he wanted to point out.

According to the second law of thermodynamics, an entropy
reduction of minimum ∆S = −k ln 2 of measured object&measure-
ment instrument&memory must be compensated by an entropy
increase of minimum

∆Sbath = +k ln 2 > 0 (12b)

of the environment, i. e. at temperature T minimum the heat2

−Q = kT ln 2 (12c)

must be dissipated to the thermal bath. According to the first law,
the energy (12c) must come from the work

W = kT ln 2 , (12d)

which minimum needs to be done per bit of measurement result,
to accomplish the measurement.
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In his article, Szilard discussed the entropy decrease (12a), but

he was silent about the related work (12d) and heat transfer (12c).
Thus in his examples, to be discussed below, it is unclear how and
when exactly that work and heat transfer are to happen.5

To motivate and explicate his idea, Szilard considered three
examples: A self-measuring gas, a perpetuum mobile of second
kind, and a measuring instrument with thermal memory. A general
theorem like (12a) can of course not be proved by the presentation
of some few examples. Indeed we will see that the self-measuring
gas example actually rests on a confusion of information entropy
and thermodynamic entropy,6 that the perpetuum mobile on closer
scrutiny turns to an argument against (12a), and that the thermal
memory can easily be modified to an argument against (12a). In
the sequel, Szilard’s three example machines are presented and
discussed one by one.

3.1. The self-measuring gas

To demonstrate a relation between information and thermodynamic
entropy, Szilard considered a gas of atoms, which have — besides
their three translational degrees of freedom — an internal degree
of freedom, which can assume the two discrete values X+ or X− .
This property is changing stochastically, such that an atom with
X+ changes at an unpredictable point of time to X−, and at a
later unpredictable point of time back to X+, and so on. While
it is impossible to predict the point of time, at which a particular
atom changes the X property, the time constant of the property
change for a statistically huge number of atoms can of course be

5 A modification of Szilard’s idea due to Bennett, in which this question is
precisely answered, will be described in the appendix.

6 As Szilard published his article 20 years before Shannon invented information
entropy, this confusion is not really surprising.
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Fig. 1 : Szilard’s self-measuring gas

precisely determined. We will use the Greek character τ for the
time constant of a full cycle from X+ to X− and back to X+.
The probability to observe an atom at some point of time with

property X+ is P+, and the probability to observe it with property
X− is P−, with P+ + P− = 1 .
Attached to each atom is a tiny measurement instrument and

a 1-bit memory. Upon command of an observer, the instrument
measures whether the atom is in state X+ or X− . If the result is
X+, the memory is set to Y +. If the result is X−, the memory is
set to Y −.

Szillard assumed to have a huge number N of these “molecules”
available, each molecule consisting of one atom, one measuring
instrument, and one memory. The molecules form an ideal gas,
which is enclosed in a vessel, as sketched in figure 1. Red dots sym-
bolize atoms which at this point of time are in state X+, blue dots
symbolize atoms which are in state X−. While “red” molecules are
permanently changing to “blue”, and “blue” molecules are chang-
ing to “red”, the fraction N+/N of “red” molecules deviates only
negligibly from P+ , and the fraction N−/N of “blue” molecules
deviates only negligibly from P− at any time, because N is a huge
number.

The gas is enclosed between movable partitions, whose positions
are steered from outside. The blue partition right of the gas is
permeable for molecules in state X−, i. e. the “blue” molecules, but
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impermeable for molecules in state X+, i. e. the “red” molecules.
The red partition left of the gas is permeable for molecules in state
X+, but impermeable for molecules in state X−. The movable
green partition is impermeable for all molecules. The volume left
of the green partition is evacuated. The vessel is embedded into a
thermal bath of temperature T .
Now Szilard considered this cyclic process:
OaO Long ago, very many time constants τ before the start of the

cycle, the outside observer has ordered a measurement. Upon
this order, each measurement instrument has measured the
state of it’s atom (X+ or X−), and set it’s memory accord-
ingly to Y + or Y −. Thus immediately after that measurement,
N+ = P+N molecules have been in state X+ and their mem-
ories were set to Y +, while N− = P−N molecules have been
in state X− and their memories were set to Y −. The atom
state X and the memory state Y of each molecule had been
perfectly correlated at that point of time.

Since then, almost all atoms have many times switched back
and forth between X+ and X−, while the Y values of the
memories have not changed since the measurement. Thus
there are now still N+ = P+N molecules in state X+ and
N− = P−N molecules in state X−, and N+ memories in
state Y + and N− memories in state Y −. But the correlation
between the X and the Y of each molecule is completely lost.
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This is the state OaO, from which the cyclic process starts.
¬ In the first process step, the outside observer orders a new

measurement. This measurement changes the information
entropy of the gas. To see that, consider the probabilities,
with which an arbitrarily picked single molecule might have
the properties {X,Y } before and after the measurement:

probability probability
properties beforemeasurement aftermeasurement
{X+, Y +} P+P+ P+

{X+, Y −} P+P− 0
{X−, Y +} P−P+ 0
{X−, Y −} P−P− P−

Before the measurement, the molecules could be in four differ-
ent {X,Y } states, while immediately after the measurement
they can be in only two different {X,Y } states. According to
Shannon’s formula

H(X) (11)= −
n∑
j=1

Pj log2 Pj

for information entropy (which was yet unknown in 1929), this
is the information entropy reduction of the gas in course of
the measurement:
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∆H = N
(
− P+ log2 P

+ − P− log2 P
−+

+ P+P+ log2(P+P+) + P+P− log2(P+P−) +

+ P−P+ log2(P−P+) + P−P− log2(P−P−)
)

=

= N
(
− P+ log2 P

+ − P− log2 P
−) +

+ 2P+(P+ log2 P
+ + P− log2 P

−) +

+ 2P−(P+ log2 P
+ + P− log2 P

−)
)

=

= N
(
P+ log2 P

+ + P− log2 P
−
)
< 0 (13)

Here P+ + P− = 1 has been used. Szilard, however, assumed
— using Gibbs’ entropy formula (8) — this thermodynamic
entropy reduction of the gas:

∆S (13)= Nk
(
P+ lnP+ + P− lnP−

)
< 0 (14)

This is a remarkable extension of the entropy notion as used
by Clausius, Boltzmann, and Gibbs, for two reasons: First, in
Gibbs’ formula (8) the pj are the probabilities of inaccessible
microstates, which all are compatible with the observed mac-
rostate of the considered system, while the Pj in Shannon’s
formula (11) are the probabilities of a macroscopically acces-
sible property of the considered system — in this case the
{X,Y } property of Szilard’s “molecules”. Second, the inacces-
sible microstates of Boltzmann and Gibbs are dynamic states
in phase space, which are to explain the heat content and
temperature of the considered system. The property {X,Y },
however, is not at all related to heat content and tempera-
ture of Szilard’s artificial “gas”: The ratio N+/N− = P+/P−

would not be affected by a change of the temperature T of the
system, while a change of temperature would of course change
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the phase space accessible to the gas, and consequently the
probabilities pj in Gibbs’ formula (8).

­ Immediately after the measurement the green partition (which
is impermeable for all molecules) is moved left, and syn-
chronously the blue partition (which is permeable for blue
molecules, but impermeable for red molecules) is moved left
at same speed. Thereby the sub-ensemble of red molecules is
moved left with unchanged volume V0 , while the sub-ensem-
ble of blue molecules stays with unchanged volume V0 at it’s
previous position. The movement is stopped when the blue
partition touches the red partition. No work needs to be done
to accomplish the shift, nor does the shift induce any change
of temperature or thermodynamic entropy.7

OcO If the shift is completed within a small time interval ∆t� τ
after the measurement, then immediately after the shift there
are N+ = P+N molecules in the left volume, which (almost)
all are in the “red” state X+ and have memory content Y +.

7 To see this clearly, imagine that — without changing the volume V0 — the
red gas is by means of a semipermeable partition compressed into the left half
of this volume, and the blue gas is by means of a semipermeable partition
compressed into the right half of this volume, such that we get N+ red
molecules and no blue molecules compressed into the volume V0/2 left of
the semipermeable partitions, and N− blue molecules and no red molecules
compressed into the volume V0/2 right of the semipermeable partitions. To
achieve this reversible demixing, the work
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And there are N− = P−N molecules in the right volume,
which (almost) all are in the “blue” state X− and have mem-
ory content Y −.

state ObO state OcO
left volume right volume

{X+, Y +} P+ 1 0
{X−, Y +} 0 0 0
{X+, Y −} 0 0 0
{X−, Y −} P− 0 1

Thus in step ­ a decrease of information entropy has hap-
pened:

∆H = −N+
( 0︷ ︸︸ ︷

1 log2 1 +3 ·
0︷ ︸︸ ︷

0 log2 0
)

︸ ︷︷ ︸
left volume

−

−N−
(
3 · 0 log2 0 + 1 log2 1

)
︸ ︷︷ ︸

right volume

+

+N
(
P+ log2 P

+ + P− log2 P
−
)

=

∆W
(23)= kT N+

V0/2∫
V0

d V

V
+ kT N−

V0/2∫
V0

d V

V
(15a)

must be done. After the demixing, each gas is reversibly expanded to volume
V0, i. e. to state OcO. Thereby the gas does the work

−∆W
(23)= kT N+

V0∫
V0/2

d V

V
+ kT N−

V0∫
V0/2

d V

V
= −(15a) . (15b)

Thus the overall net exchange of energy between gas and environment is zero,
and there is indeed no change of thermodynamic entropy in process step ­.
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= N
(
P+ log2 P

+ + P− log2 P
−
)

= ∆H < 0 (16)

But, while Szilard in step ¬ had concluded from the infor-
mation entropy reduction (13) the thermodynamic entropy
reduction (14), now in step ­ Szilard sticked to the conven-
tional definition of thermodynamic entropy, i. e. he assumed
no change of thermodynamic entropy, despite the change (16)
of information entropy.

® The third process step is merely a waiting time interval
∆t� τ . During this time, the atoms in both volumes change
back and forth between X+ and X−, while their memory
contents (i. e. the Y -values) don’t change. Thereby the proba-
bilities that a blindly picked molecule will be in state X+ or
X− (i. e. the information entropy of the X property) changes
as displayed in this table:

left volume right volume
probability in probability in

properties state OcO state OdO state OcO state OdO
{X+, Y +} 1 P+ 0 0
{X−, Y +} 0 P− 0 0
{X+, Y −} 0 0 0 P+

{X−, Y −} 0 0 1 P−

Consequently this is the change of information entropy:
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∆H = N+
(
− P+ log2 P

+ − P− log2 P
− +

0︷ ︸︸ ︷
1 log2 1 +

0︷ ︸︸ ︷
0 log2 0

)
︸ ︷︷ ︸

left volume

+

+N−
(
− P+ log2 P

+ − P− log2 P
− + 0 log2 0 + 1 log2 1

)
︸ ︷︷ ︸

right volume

=

= −N
(
P+ log2 P

+ + P− log2 P
−
)
> 0 (17)

This time Szilard again identified the change of information
entropy as a change of thermodynamic entropy, and assumed
by means of Gibbs’ entropy formula (8) this thermodynamic
entropy change during process step ®:

∆S (17)= −Nk
(
P+ lnP+ + P− lnP−

)
> 0 (18)

¯ At start of the last process step, a further semipermeable par-
tition, which is permeable for molecules with memory content
Y −, but impermeable for molecules with memory content Y +,
is vertically inserted directly right of the two semipermeable
partitions. And directly left of the semipermeable partitions
a further semipermeable partition is vertically inserted, which
is permeable for molecules with memory content Y +, but im-
permeable for molecules with memory content Y −. Then the
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two partitions, which are semipermeable for X+ resp. X− are
vertically pulled out. The change of partitions doesn’t need
energy, and does not change any parameter of the system.
Remember that all molecules right of the semipermeable

partitions have memory content Y −, and all molecules left
of the semipermeable partitions have memory content Y +.
Now the partition, which blocks Y + but not Y −, and the very
left (green) partition, which blocks all molecules, are shifted
right at same speed, until they touch the right vessel wall
respectively the third partition. Thereby the Y + gas is shifted
towards right at unchanged volume V0 , and mixed into the
Y − gas, which as well keeps it’s unchanged volume V0 .
As both the Y + gas and the Y − gas are ideal gases, and

their volumes V0 are constant during the mixing, no work
is done during the mixing, there is no heat exchange with
the bath, and no change of thermodynamic entropy. (That
could be double-checked with a quite similar computation as
presented in footnote 7 for process step ­.)
But of course there is a change of information entropy:

Before the shift, the probability to pick a Y + molecule in the
left compartment was 1 , and the probability to pick a Y +

molecule in the right compartment was 0 , while the probability
to pick a Y − molecule in the left compartment was 0 , and the
probability to pick a Y − molecule in the right compartment
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was 1 . After the shift, the probability to get by a blind pick a
Y + molecule is P+, and the probability to pick a X− molecule
is P−:

state OdO state OaO
left volume right volume

{X+, Y +} P+ 0 P+P+

{X−, Y +} P− 0 P−P+

{X+, Y −} 0 P+ P+P−

{X−, Y −} 0 P− P−P−

Thus the change of information entropy in step ¯ is

∆H = N
(
− P+P+ log2(P+P+)− P+P− log2(P+P−)−

− P−P+ log2(P−P+)− P−P− log2(P−P−) +

+ P+ log2 P
+ + P− log2 P

−
) (13)=

= N
(
− P+ log2 P

+ − P− log2 P
−
)
> 0 (19)

In this step, however, Szilard again sticked to the conventional
definition of thermodynamic entropy, and ignored the change
of information entropy.

At the end of process step ¯, state OaO is reached again, and the
process cycle is closed.
In total, we observed these changes of information entropy per

cycle of Szilard’s self-measuring gas system:

step ¬ : ∆H =(13) +N
(
P+ log2 P

+ + P− log2 P
−
)

(20a)

step ­ : ∆H =(16) +N
(
P+ log2 P

+ + P− log2 P
−
)

(20b)

step ® : ∆H =(17) −N
(
P+ log2 P

+ + P− log2 P
−
)

(20c)
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step ¯ : ∆H =(19) −N
(
P+ log2 P

+ + P− log2 P
−
)

(20d)

Note that ∆H = (20) sums up to zero. The machine cycle indeed
is a true cycle: At the end, we have exactly the same amount of
information about the {X,Y } property available as at the begin
of the cycle.
We noted that there is no thermodynamic entropy change ac-

cording to the definition of thermodynamic entropy by Clausius,
Boltzmann, and Gibbs in any step of the cycle. Szilard, however,
assumed these changes of thermodynamic entropy:

step ¬ : ∆S =(13) +Nk
(
P+ lnP+ + P− lnP−

)
(21a)

step ® : ∆S =(17) −Nk
(
P+ lnP+ + P− lnP−

)
(21b)

As Szilard — in accord with the conventional definition of thermo-
dynamic entropy — assumed no thermodynamic entropy changes
in steps ­ and ¯ of this cyclic process, and as the alleged thermo-
dynamic entropy changes of steps ¬ and ® exactly cancel, Szilard
argued: If we would have overlooked the thermodynamic entropy
reduction due to the measurement in step ¬, then

∮
dS would

be different from zero, even though the process is clearly cyclic.
Consequently the self-measuring gas example was in his opinion a
support for his theorem (12a).
Szilard’s argument is clearly circular, because he two times

confused information entropy and thermodynamic entropy. If he
had correctly inserted zero thermodynamic entropy change in step
®, then his argument for a thermodynamic entropy change in step
¬ would completely vanish.

Szilard explained that it seemed unlikely to him that the entropy
decrease due to a measurement should depend on the particular
values of P+ and P−. Considering that for arbitrary P+ = 1−P−
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−P+ lnP+ − P− lnP− ≤ −1
2 ln 1

2 −
1
2 ln 1

2 , (22)

he decided to insert ln 2 into (12a).
But why couldn’t we define: Entropy is entropy, no matter

whether is has traditionally been called thermodynamic entropy
or information entropy? I. e. why shouldn’t we state by definition
that Gibbs’ probabilities pj of different microstates and Shannon’s
probabilities Pj of different macrostates are equivalent and may be
inserted interchangeably, as Szilard has done two times? In section
4.3 good reasons will be presented, why these two types of entropy
should better be kept strictly separated.

3.2. A perpetuum mobile of second kind

Szilard constructed this machine such, that an entropy reduction
due to measurement is needed, to cure an alleged violation of
the second law of thermodynamics. We will see, however, that
actually that measurement is not correlated with any change of
thermodynamic entropy.

The perpetuum mobile of second kind is sketched in fig. 2 on the
next page in a slightly improved form as suggested by Bennett [9,10].
If this machine would be functional (of course it is not), it would
work like this:
OaO The machine cycle starts from state OaO. One single rare-gas

atom is trapped in a vessel of volume Vm . The vessel is
embedded into a thermal bath with temperature T . Movable
pistons can be shifted from left and right into the vessel. The
atom exerts a pressure p(a) onto the pistons and onto the walls
of the vessel, which can be computed from the equation of an
ideal gas, consisting of 1 atom:

p(a) = kT

Vm
(23)
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Fig. 2 : Szilard’s perpetuum
mobile of second kind

¬ In the first process step, a partition is inserted, which divides
the vessel into 2 cavities of size Vm/2 each. It’s of no relevance
whether the atom is trapped by chance in the left or in the
right cavity. No (or only negligible) energy is required to shift-
in the partition.8 As the volume of the ideal gas (consisting of
the 1 rare gas atom) is changed without doing mechanical work
on the gas or extracting work from the gas, the atom’s kinetic
energy, and hence the temperature of the gas, is not changed.
But there is a change of the volume, which is accessible to the
1-atom-gas, and the pressure, which it exerts onto the vessel
walls, the partition, and the pistons:

p(b) =
{
kT/(Vm/2) = 2p(a) in the cell with the atom
0 in the empty cell (24)

Thus the mean value over both cells is p(b) = p(a) .
As in state ObO only half as many microstates in phase-space

are accessible to the atom as in state OaO, the thermodynamic
8 In this analysis, we assume van derWaals forces to be negligible. Later we
will argue that this is a misleading over-simplification.
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Fig. 2 : Szilard’s perpetuum
mobile of second kind

entropy of the 1-atom gas has changed in process step ¬ by

∆S = −k ln 2 < 0 . (25)

This entropy decrease is not compensated by an entropy in-
crease of the bath, clearly violating the second law (5). This
strange fact makes Szilard’s machine a perpetuum mobile of
second kind.

­ In the second process step, a small force

f � p(b)A ,

with A being the area of the pistons, is exerted from outside
onto both pistons, trying to shift them into the vessel. One of
the pistons does not move because the small force f can not
overcome the pressure p(b) , and consequently no work is done.
The other piston is moved inside, until it touches the partition.
No (or only negligible) work is done with this piston, because
there is no (or only negligible) resistance against it’s inside
move. And there is no change of thermodynamic entropy in
this process step.

® In the third process step, appropriate mechanisms are attached
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Fig. 2 : Szilard’s perpetuum
mobile of second kind

to both pistons9 outside the vessel, which will lift loads against
the earth’s gravitational field, provided the pistons should be
pushed towards the outside. Then the partition is pulled-out.
This requires no (or only negligible) energy, and there is no
change of entropy in this process step.

¯ In the last process step, one of the pistons is moved due to
the pressure exerted by the atom, and lifts the load of mass
M up to height h . The useful mechanical work done by the
machine is2

−W = Mgh =
Vm∫

Vm/2

dV p(V ) (23)= kT

Vm∫
Vm/2

dV
V

= kT ln 2 ,

9 To extract work from Szilard’s original machine [8], the user needs to know
upfront in which of the two compartments the atom is trapped. That’s of
course a faulty design. Bennett, though he suggested [9, 10] the improved
form of Szilard’s machine, still believed that an upfront measurement of the
atom’s position would be needed to extract energy from the machine, and —
most important for Bennett’s interpretation of this process — that the result
of that measurement must be stored in a memory, and later be erased from
that memory, allegedly at the expense of energy. I will discuss Bennett’s
point of view in the appendix.
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Fig. 2 : Szilard’s perpetuum
mobile of second kind

with g being the gravitational acceleration. This energy comes
from the heat

Q = −W = kT ln 2 (26)

which the atom absorbs from the thermal bath during process
step ¯.

As the phase space, which is accessible to the atom, is twice
as large in state OaO than in state ObO, the entropy of the 1-
atom gas increases in process step ¯ by

∆S = +k ln 2 > 0 , (27a)

and the entropy change of the bath is

∆Sbath = −(27a) = −k ln 2 < 0 . (27b)

Note that Q = W = 0 in each of the process steps ¬,­,®.
Only in process step ¯ the heat transfer Q = −W > 0 happens.
Furthermore the entropy increase (27a) exactly compensates the
entropy decrease (25), while the entropy decrease (27b) of the bath
is not compensated.
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Thus the machine does exactly, what is impossible according to
the second law: It is a cyclic working machine, which in each cycle
absorbs heat Q > 0 from a bath and converts it into usable work
−W = Q > 0, even though there exists no temperature difference
between the bath, the machine, and the rest of the environment.
Stated in terms of entropy: This machine continuously decreases the
entropy of the closed system gas&bath by ∆Sgas & bath = −k ln 2
per cycle.
Here Szilard saw an argument for his theorem (12a), which

assigns an entropy reduction to any measurement. There is indeed
a measurement in the cyclic process fig. 2 : After the partition has
been inserted in process step ¬, we do not yet know whether the
atom has been trapped in the left or in the right cavity.
We get that information due to process step ­, which clearly

is a measurement and storage of the result. When a small force
is applied to both pistons, but only one of them yields and moves
in, then indeed the position of the atom has been measured, with
the result that it must be in the other cavity. Of course we do not
need9 this knowledge to successfully drive the perpetuum mobile
and extract useful work from it. But the measurement has anyway
been done, and the result (left piston in or right piston in) has
objectively come into existence, and is stored by the moved-in
position of the piston. It’s of no relevance whether anybody looks
and notices the result.
This measurement merely implies a decrease of information

entropy by 1 bit. According to Szilard’s theorem (12a), however,
there must be a decrease ∆S = −k ln 2 of thermodynamic entropy
due to this measurement and result storage. Consequently, if
Szilard’s theorem should be correct, then — due to the second
law of thermodynamics — the work W = kT ln 2 must be done in
course of the measurement, and thereby the heat2 −Q = kT ln 2
be dissipated into the bath. This work just compensates the work
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done by the machine in process step ¯, and the related heat
extraction from the bath. Therefore the machine displayed in fig. 2
is no perpetuum mobile of second kind, and the second law of
thermodynamics is “saved”, if Szilard’s theorem (12a) should be
correct.

A severe problem of Szilard’s theorem becomes visible, however,
when process step ­ is analyzed in detail. The three sketches show
Szilard’s machine after

0% 3% 100%
of this process step have been completed. Let’s assume that we can
clearly discern which piston moves, and which not, as soon as one
piston has moved 1% of it’s full stroke. We could stop the process
at this moment, and still would have 100% of the measurement
result, i. e. we would know for sure whether the atom is trapped
in the left or in the right cavity. Thus the measurement proper
(including storage of the result!) is completed after 1% of the
piston stroke, no additional information can be gathered during
the remaining 99% of process step ­. Consequently, if we had a
sufficiently sensitive calorimeter at our disposal, we would have
registered 100% of the heat kT ln 2 , which is dissipated according
to Szilard’s theorem due to the measurement, within the first 1%
of this process step. No further heat would be dissipated during
the remaining 99% of the piston stroke.

The first law of thermodynamics must be preserved. This means
that the dissipated heat does not come for free out of nothing.
Instead — different from our previous assumption that the piston
of the empty cavity can be moved with doing almost no work —
the work Wempty = kT ln 2 must be done to move this piston. And
all of this work must be done during the measurement, i. e. within
the first percent of the full piston stroke. With L0 = (Vm/2)/A
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being the full length of the piston stroke, and A being the area of
the piston, the work

Wempty =
1%·L0∫

0

dL Fempty = 1% · L0 · F empty = kT ln 2 (28a)

F empty = 100
L0

kT ln 2 (28b)

must be done, with F being the force resisting the inward move
of the piston, and F being the mean value of F during the first
percent of the stroke. But as soon as the measurement result is
available, F shrinks to zero, and the remaining 99% of the stroke
can be done with no (or only negligible) work. Lets compare this
work with the work that must be done to move the piston of the
other cavity (the cavity with the atom) 1% in:2

Watom = −kT
99%·Vm/2∫
Vm/2

dV
V

= −kT ln 0.99 (28c)

F atom = −100
L0

kT ln 0.99
(28b)
≈ F empty

69 (28d)

F empty is almost 69 times as large as F atom! Consequently, when the
force applied to both pistons is slowly increased, then — contrary
to our previous assumption — the piston of the cavity with the
atom will yield first, but not the piston of the empty cavity. But . . .
stop! Once we have learned which piston yields first, the 1% move
of this piston gives us the full measurement result. According to
Szilard’s theorem, we can not get the measurement result cheaper
than by the work kT ln 2 . Consequently neither F atom nor F empty
can be smaller than 100 kT ln 2 /L0 .

This situation is strange, to say the least. And it becomes even
stranger, if we consider this scenario: Imagine that due to a leak
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Fig. 2 : Szilard’s perpetuum
mobile of second kind

the atom unfortunately has suddenly disappeared, and the vessel
is empty in process state OaO. Now we perform process step ­.
Both pistons will move in and touch the partition. From this
result we get the information about the disaster. This information
clearly is a measurement result. Consequently we will not get this
information for free, but must spend minimum the work kT ln 2 .
Or two times that work, because this is a 2-bit-information?
At first sight, Szilard’s theorem seemed to cure the perpetuum

mobile of second kind. But once we dig into the details, the
situation becomes more and more absurd. Given this situation, it
seems advisable to look a little bit more skeptical onto Szilard’s
alleged perpetuum mobile of second kind.
A valid “gedankenexperiment” may assume a setup which is

today (and may be forever) beyond our technical capabilities and
available resources. But it must not be in conflict with well-
established laws of nature. Szilard’s perpetuum mobile fig. 2 does
not meet this requirement. Szilard’s essential error was, that he
neglected quantum fluctuations, which induce van derWaals forces.
It’s easy to see that van derWaals forces actually are dominating
the machine, while the tiny pressure due to the 1-atom-gas is almost
negligible. Let’s explicitly compute the contribution of these two
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types of forces in process step ¯:
With Vm being the total volume (both compartments) of the

vessel, A being the area of one piston, and V = Vm − L ·A being
the variable volume of the 1-atom gas during the stroke, the gas
exerts onto the piston the force

F (L) = p ·A (23)= kTA

V
= kTA

Vm − LA
. (29)

To get a strong force, the temperature must be as high as possible,
and the volume as small as possible. Let’s assume T = 1000K,
Vm/2 = 1µm3, and A = 1µm2.
The attractive van derWaals force between two metal plates of

area A at distance L is approximately [11, eq. (36)]

F (L) = π2~cA
240L4 . (30)

The sum of the van derWaals forces, which the right piston and
the left vessel wall exert onto the left piston in course of process

0 200 400 600 800 1000
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Fig. 3 : Force due to pressure of the 1-atom-gas (blue line)
and van derWaals force (red line)
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step ¯ is indicated in fig. 3 as a red line, while the force due to
the pressure of the 1-atom-gas is indicated by the blue line. Note
the logarithmic scale! The effect of van derWaals forces is by many
orders of magnitude stronger than the gas pressure, which shall
drive Szilard’s machine.

To avoid this effect, we could construct the vessel as a very long
tube, such that the pistons never come close to the left or right
vessel walls. But that would only shift the problem, because then
we would get a huge net effect due to van derWaals attraction
between the piston and the partition in process step ­. No matter
how we construct the details of Szilard’s machine, van derWaals
forces definitively are not negligible. Just the opposite: Vander
Waals forces are dominating, while the tiny pressure due to the
single atom is almost negligible.
This fact does not yet disprove Szilard’s argument. If the van

derWaals forces should be 100% conservative, then we would in
course of a full machine cycle get back 100% the work, which needs
to be done in some steps of the cycle against the van derWaals
forces.
But that is not to be expected, by the very nature of van der

Waals forces. VanderWaals forces are caused by induced dipole
moments of atoms and molecules, which again are caused by spon-
taneously fluctuating dipole moments of other atoms and molecules
[12]. Due to the fluctuating van derWaals forces, the machine will
in some cycles extract much more heat than Q = kT ln 2 = (26)
from the bath, and convert it into usable work. In other cycles,
the machine will not convert heat into useful work, but convert
work into heat, and dissipate that heat into the bath. The essential
thing is, that the effect of the fluctuating van derWaals forces will
in any case be larger by several orders of magnitude than the tiny
force due to the single rare-gas atom.
Furthermore the appearance of van derWaals forces between
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the pistons and the partition reminds us, that the van derWaals
force between the 1 rare-gas atom, which drives Szilard’s machine,
and the vessel walls must not be ignored. Due to the induced
electric dipole moment, the atom will quite often be adsorbed to
the surfaces of vessel, partition, and pistons, and not at all behave
like an ideal gas.

We made a further oversimplification, when we assumed that the
gas pressure of the vessel walls and the pistons is zero. Of course
the gas pressure of the solid surfaces of many metals is so small,
that it is not measurable, not even at 1000K . But in a consistent
description of a machine, whose functionality rests on the tiny
pressure of a 1-atom-gas, we certainly must not ignore the metal
atoms, which sometimes will detach from the metal surfaces, drift
through the vacuum, and demolish the functionality of Szilard’s
machine.

If we want to build a consistent model with the vessel, the parti-
tion, and the pistons as rigid classical bodies, and vanderWaals
forces being negligible, then we must not fill only one atom into
the machine, but a sufficiently large amount of atoms as sketched
in fig. 4.

Considering the diagram fig. 3 , less than something like N ≈ 106

¬
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OdO

Fig. 4 : Szilard’s perpetuum mobile
of second kind, corrected
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atoms would hardly be sufficient to make the van derWaals forces
negligible. But then it becomes quite unlikely that in process step
¬, when the partition is shifted-in, the numbers of atoms in the
left and right cell significantly differ. Only in 2 of 2106 ≈ 1018

cycles will all 106 atoms be trapped by chance in one cell, and
the other cell will be empty. If the machine runs at 1 cycle per
second, then the mean waiting time for that lucky event is about
18 · 109 years.

Of course we don’t need that perfect event. A cycle with — say
— 6 · 105 atoms in one cell and 4 · 105 atoms in the other may still
allow for extraction of a little bit of work. The essential thing is
that with this type of considerations, the second law turns from
a matter of principle to a matter of probability. The second law
in this understanding doesn’t say “an isothermal cyclic machine
will not extract heat from a bath and convert it into usable work
in any cycle”. Instead it says “an isothermal cyclic machine will
not extract a measurable amount of heat from a bath and convert
it into a measurable amount of usable work in almost all cycles”,
and statistical thermodynamics give a precise quantitative value
for the rare exceptions.
With the probabilistic interpretation of entropy, there exists

absolutely no problem with Szilard’s machine fig. 4 . It’s merely
unlikely, but not impossible, that the number of atoms trapped by
chance in process step ¬ in one cell differs significantly from the
number of atoms trapped in the other cell.
Once we accept that the second law may be violated in rare

events, Szilard’s perpetuum mobile turns into an argument against
his theorem (12a), due to the absurd consequences at which we
arrived when we assumed the theorem to be true.
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3.3. The thermal memory
T− T0−2δT T0−δT T0 T0+δT T0+2δT T+

B

The third device, by which Szilard tried to demonstrate a relation
between information and thermodynamic entropy, is an instrument
which can measure the property Z of an object. This property can
assume only two values: Z+ or Z−. If the instrument observes
Z+, then a body B is first thermally contacted to a heat bath
of temperature T0, then to a bath of temperature T0 + δT , then
to a bath of temperature T0 + 2δT , and so on, and eventually to
a bath of temperature T+. When the body B has assumed the
temperature T+, it is thermally isolated from the baths, and the
measurement is completed.

If the instrument observes Z−, then the body B is first thermally
contacted to the heat bath of temperature T0, then in infinitesimal
steps cooled down to T−, and then thermally isolated from the
baths.
In either case, the result (Z+ or Z−) of the measurement is

after the measurement documented by the temperature (T+ or
T−) of the body B. Szilard emphasized that the heating of the
body from T0 to T+, and the cooling of the body from T0 to T−,
(i. e. the adjustment of the thermal memory to the new value to
be stored), is done reversibly (i. e. with no change of entropy) due
to the infinitesimal small steps δT , while the heating or cooling of
the body from it’s previous temperature to T0, (i. e. the deletion
of the previously stored value from the thermal memory), is done
irreversibly(i. e. with entropy increase of the environment). In
contrast, in the example of the perpetuum mobile of second kind,
Szilard had assumed that the entropy increase would happen in
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course of the measurement. Only half a century later, Bennett [10]
proposed an explanation of Szilard’s perpetuum mobile of second
kind, in which again the irreversible step — correlated with entropy
increase of the environment — does not happen in process step ­
(i. e. in course of measurement of the atom’s position), but only later
when the user of the machine clears from his memory the result of
the previous measurement. Thereby the absurd consequences of
the entropy increase of the environment happening in course of the
measurement, which have been mentioned in the previous section,
can be avoided. Bennett’s point of view will be described in the
appendix.
Now Szilard entertained some rather intricate considerations,

to demonstrate that this storage of measurement results increases
the entropy of the baths by ∆Sbath = k ln 2 per 1-bit result, as
postulated in his theorem (12a). Those considerations are — in
my opinion — not worth the effort, because that setup of thermal
baths is anyway quite arbitrary. The mechanism could for example
be constructed such, that the body B never touches any heat bath,
i. e. that merely the position of B codes for the result, with “B
nearby (but never touching) the bath T+” coding for the measured
result Z+, and “B nearby the bath T−” coding for the measured
result Z−. Then the memory would still serve it’s purpose (storing
the result until the next measurement is started), but the entropy
change would be zero. Thereby this machine becomes an argument
against Szilard’s theorem of an unavoidable entropy change upon
measurements.

It’s probably fair to say that none of the three machines, which
Szilard presented, can be acknowledged a sufficient argument for
his theorem (12a). In case of the self-measuring gas, he arbitrarily
confused information entropy and thermodynamic entropy. That
logical error is called “begging the question”: Szilard used in
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the derivation the alleged equivalence of information entropy and
thermodynamic entropy, and thereby arrived at the result that
information entropy and thermodynamic entropy are equivalent. In
case of the perpetuum mobile, the assumption of thermodynamic
entropy reduction in course of the measurement resulted in absurd
consequences. And the thermal memory could easily be modified
to an example against Szilard’s theorem (12a).
The confusion is not surprising, as Szilard came up with his

ideas 20 years before Shannon worked out a clear definition of
information entropy. Szilard had the vague idea, that there was
something important to be found out with regard to a relation
between information and entropy. But he was not yet able to
pinpoint the issue with sufficient precision.

4. Landauer’s principle

If the input of a logical operation can be uniquely concluded from
the output, then that operation is called “logically reversible”.
The hallmark of logically reversible operations is a unique one-to-
one map between the input configurations and the output con-
figurations. Logical operations, which channel several different
input configurations into one output configuration are logically ir-
reversible. Logically irreversible operations reduce the information
entropy, while logically reversible operations don’t.10

Here are two most simple examples:

invert
input output
1 0
0 1

restore to one
input output
1 1
0 1

10 A device which channels one input configuration into several different output
configurations, and thereby increases information entropy, would not be a
functional logical device but something like a random number generator.
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The invert operation is logically reversible. In contrast, from the
output 1 of the restore to one operation, we can not conclude
whether the input is 1 or 0 .

Let’s compute the changes ∆H = Houtput−Hinput of information
entropy generated by these two operations. If we assume for the
input data the probabilities P (0) = P (1) = 1/2 , then we get

H(invert,input) =(11) −2 1
2 log2

1
2 = 1bit

H(invert,output) =(11) −2 1
2 log2

1
2 = 1bit

=⇒ ∆H(invert) = 0 (31a)

H(restore to one,input) =(11) −2 1
2 log2

1
2 = 1bit

H(restore to one,output) =(11) 1
1 log2

1
1 = 0

=⇒ ∆H(restore to one) = −1 bit . (31b)

Rolf Landauer (1927 – 1999) published in 1961 an influential
article [13], in which he asserted what became well-known under
the name

Landauer’s principle: If a logical operation re-
duces the information entropy of the processed
data by

∆H = −1 bit ,
then the thermodynamic entropy of the hardware,
which implements that logical operation, is reduced
by minimum

∆S = −k ln 2 .

(32a)

According to the second law of thermodynamics, the entropy reduc-
tion of the hardware must be compensated by an entropy increase
of the environment of minimum same size:
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∆Sbath ≥ k ln 2 (32b)

Thus at temperature T minimum the heat2

−Q ≥ kT ln 2 (32c)

must be dissipated, and consequently according to the first law
minimum the work

W ≥ kT ln 2 (32d)

must be done, to accomplish any logical operation which reduces
the information entropy of the processed data by 1 bit.
The similarity of Landauer’s principle and Szilard’s theorem

is striking. A minimum entropy reduction ∆S = −k ln 2 of the
hardware is postulated
∗ “per bit of measurement result for any measurement and

storage of the result” in case of Szilard’s theorem (12a), re-
spectively

∗ “per bit of information entropy reduction of the processed
data” in case of Landauer’s principle (32a).

As a measurement clearly is correlated with a reduction of informa-
tion entropy (we get the information of the — previously unknown
— actual value of a physical quantity), the theorems of Szilard
and Landauer are closely related. An important difference is that
Landauer had the precise notion “information entropy” (defined by
Shannon in 1948) available, while Szilard relied on the somewhat
vague notion “measurement”. Obviously Szilard’s prior work was
unknown to Landauer, as he did not cite it in his 1961 publication.

With regard to logically reversible operations, Landauer asserted
in later publications, that

“reversible classical computation [. . . ] can be
accomplished with as little energy dissipation, per
step, as desired.” [14]

(33)
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Thus — in his opinion — the entropy increase ∆Sbath ≥ k ln 2 is
strictly coupled to the information entropy reduction of 1 bit; as
reversible logical operation don’t reduce the information entropy,
they don’t induce an inevitable increase of thermodynamic entropy
of the environment.

Lossless computation has been advocated in particular by Fredkin
and Toffoli [15] and by Bennett [9]. Objections have been raised e. g.
by Porod et. al. [16]. The question is controversial still by today.11

Like Szilard, Landauer didn’t state his theorem explicitly. In-
stead (32a) is a condensed form of arguments presented in section
“4. Logical irreversibility and entropy generation” of his article [13].
In this section Landauer considers the example of the restore
to one operation, and argues:

(34)

“Note that our argument here does not necessarily depend
upon connections, frequently made in other writings, be-
tween entropy and information. We simply think of each
bit as being located in a physical system, with perhaps a
great many degrees of freedom, in addition to the relevant
one. However, for each possible physical state which will
be interpreted as a zero, there is a very similar possible
physical state in which the physical system represents a
one. [. . . ]

Consider a statistical ensemble of bits in thermal equi-
librium12. If these are [in a restore to one operation]

11 A “commercial” argument: High-power processors are a market of about
1011US$ per year, and the power dissipation of the devices is a predominant
problem, severely impeding the progress of computer technology. Why, then,
did no player in this market make — despite the huge 1011US$ incentive —
the slightest progress towards loss-less computation, even though the idea
for loss-less computation is available since more than half a century?

12 From the context it is obvious, that Landauer is speaking of an ensemble
of bits, in which one and zero are showing up with approximately same
frequency. He is definitively not speaking of a system in thermal equilibrium,
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all reset to one, the number of states covered in the en-
semble has been cut in half. The entropy therefore has
been reduced by k loge 2 = 0.6931 k per bit. The entropy
of a closed system, e. g., a computer with its own bat-
teries, cannot decrease; hence this entropy must appear
elsewhere as a heating effect, supplying 0.6931 kT per
restored bit to the surroundings. This is, of course, a min-
imum heating effect, and our method of reasoning gives
no guarantee that this minimum is in fact achievable.”

Landauer starts his explanation with the words “that our argument
here does not necessarily depend upon connections, frequently made
in other writings, between entropy and information.” But exactly
that is, what he is actually doing: He implicitly assumes that
information entropy and thermodynamic entropy are equivalent.
While Szilard erratically sometimes made this assumption, but
didn’t make it at other places, Landauer consistently bases all his
1961 article (and all his later writings) on this basic assumption.

In his argument (34), Landauer clearly skipped the distinction
between information entropy and thermodynamic entropy, which
Shannon had not yet denied. Landauer’s point of view since then
has been adopted by many physicists, though certainly not by all.
It has been worked out in particular by Bennett [9]. Landauer’s
arguments are not easy to understand. Fortunately there exists a
particular clear explanation of Landauer’s reasoning, published by
M.P. Frank [17]. In the sequel, I will go along Frank’s account of
the issue.
Frank first of all defines information entropy slightly different

from Shannon’s original definition. Shannon [7] defined the in-

in which — depending on temperature — some certain percentage of the
bits is set by chance to one and the other bits are set to zero. A computer
can only work correctly well apart from thermal equilibrium, i. e. as long as
it’s bits are not in thermal equilibrium.
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formation entropy of a variable C, which assumes the n different
values cj with probabilities P (cj), due to

H(C) =(11) −K
n∑
j=1

P (cj) log2 P (cj) (35)

with K = 1 and
n∑
j=1

P (cj) = 1 .

Shannon had already emphasized that his choice 1 for the constant
K is completely arbitrary. To give information entropy the same
dimension (energy/temperature) as thermodynamic entropy, Frank
decided for K = k/(log2 e) , resulting into

H(C) = − k

log2 e

n∑
j=1

P (cj) log2 P (cj) = −k
n∑
j=1

P (cj) lnP (cj)

with
n∑
j=1

P (cj) = 1 , (36a)

thereby making it formally almost identical to Gibbs’ definition

S(cj)
(8)= −k

∑
i

p(φ(j)
i ) ln p(φ(j)

i ) with
∑
i

p(φ(j)
i ) = 1 (36b)

for the thermodynamic entropy of an observable macrostate cj
which may be realized with probabilities p(φ(j)

i ) by any of the not
observable microstates φ(j)

i .
Consider a computer which can assume n computational macro-

states cj , which again may be realized each by any of a finite set
of microstates φ(j)

i of the hardware atoms in phase space:
φ

(1)
1 , . . . , φ(1)

m︸ ︷︷ ︸
c1

, φ
(2)
1 , . . . , φ(2)

r︸ ︷︷ ︸
c2

, . . . , φ
(n)
1 , . . . , φ(n)

s︸ ︷︷ ︸
cn
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Thus the cj define a discrete partition of the set of the microstates
φi. Frank concludes [17, eq. (17)] that the following relation must
hold between the probabilities P (cj) of the macrostates cj and the
probabilities p̃(φ(j)

i ) of the microstates φ(j)
i :

P (cj) =
∑
i

p̃(φ(j)
i ) (37)

Note that Frank’s p̃(φ(j)
i ) are different from Gibbs’ p(φ(j)

i ):

p̃(φ(j)
i ) (36b),(37)= p(φ(j)

i ) · P (cj) (38)

Now the following definition of total entropy seems reasonable:

S(Φ) = −k
∑
i

∑
j

p̃(φ(j)
i ) ln p̃(φ(j)

i ) =

=(38) −k
∑
i

∑
j

p(φ(j)
i )P (cj)

(
lnP (cj) + ln p(φ(j)

i )
)

=

= −k
∑
j

1︷ ︸︸ ︷∑
i

p(φ(j)
i ) P (cj) lnP (cj)︸ ︷︷ ︸

H(C)=(36a)

+

+
∑
j

P (cj)
( S(cj)=(8)︷ ︸︸ ︷
−k

∑
i

p(φ(j)
i ) ln p(φ(j)

i )
)

︸ ︷︷ ︸
S(Φ|C)

(39)

Frank comments [17, below eq. (18)]: “In other words, the (total)
physical entropy S(Φ) is exactly equal to the information entropy
H(C) of the computational state, plus the conditional entropy
S(Φ|C) of the physical state, conditioned on the computational
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state — this just means [. . . ] the entropy that we would expect the
physical state Φ to still have, if we were to learn the exact value of
the computational state C .”
Frank names (39) the Fundamental Theorem of the Thermody-

namics of Computation. I think it should not be called a theorem,
but a definition, because this is exactly what it is: The definition
(implicitly due to Landauer 1961) of a new notion of entropy, in
which thermodynamic entropy as defined in (8) by Boltzmann and
Gibbs, and Shannon’s information entropy (36a), are amalgamated
to just one overall type of entropy, which may appropriately be
called total entropy.
(39) becomes part of a theorem, however, due to the claim

(which Landauer made) that the total entropy S(39) as defined
in (39) exactly matches Clausius’ thermodynamic entropy S(3)
as defined in (3), and that consequently a reduction ∆S(39) < 0
implies — due to the second law — the emission of the heat2

−∆Q (6)= −T∆S(39) = +T∆Sbath > 0 (40a)

from the system to the environment. The problem is, that Boltz-
mann and Gibbs raised the same claim for their entropy S(8) as
defined in (8), i. e. that a reduction ∆S(8) < 0 implies the emission
of the heat2

−∆Q (6)= −T∆S(8) = +T∆Sbath > 0 (40b)

from the system to the environment. As in general ∆S(39) 6= ∆S(8) ,
both claims (40) can impossibly be right (they could of course both
be wrong).
The only way to disprove (40a) and/or (40b) is by experiment.

To understand why such a decisive experiment is extremely diffi-
cult, let’s evaluate eq. (39) for the example of a restore to one
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operation. As Landauer assumed that zero and one bits come in
with same frequency, the total entropy S(39) of the input is

S(39), in =(39) +
(1

2 + 1
2
)
k ln 2︸ ︷︷ ︸

H(C)

+

+ 1
2
(
−k

∑
i

p(φ(zero in)
i ) ln p(φ(zero in)

i )︸ ︷︷ ︸
S(8)(zero in)

)
+

+ 1
2
(
−k

∑
r

p(φ(one in)
r ) ln p(φ(one in)

r )︸ ︷︷ ︸
S(8)(one in)

)
.

The total entropy S(39) of the output is

S(39), out =(39) −k
( 0︷ ︸︸ ︷

0 ln 0 +
0︷︸︸︷

ln 1
)

︸ ︷︷ ︸
H(C)

−

−k
∑
s

p(φ(one out)
s ) ln p(φ(one out)

s )︸ ︷︷ ︸
S(8)(one out)

.

Thus the change of total entropy S(39) upon the restore to one
operation is

∆S(39)(restore to one) =
∆H(restore to one)︷ ︸︸ ︷
−k ln 2 +

+ S(8)(one out)− 1
2 S(8)(one in)− 1

2 S(8)(zero in)︸ ︷︷ ︸
∆S(8)(restore to one)

. (41a)
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Note that

∆S(Φ|C) = ∆S(8) ,

i. e. the change ∆S(Φ|C) of the conditional entropy of the physical
state is identical to the mean change ∆S(8) of thermodynamic
entropy as defined by Boltzmann and Gibbs, see (39). Obviously
Landauer assumed that ∆S(8) would be zero upon both logically
reversible and logically irreversible logical operations, because only
then his two claims (32a) and (33) result from (41a) and from

∆S(39)(invert) =
∆H(invert)︷︸︸︷
0 +

+ 1
2
(
S(8)(one out) + S(8)(zero out)−

− S(8)(zero in)− S(8)(one in)
)
.︸ ︷︷ ︸

∆S(8)(invert)

(41b)

∆S(8) = 0 is certainly not to be expected, however, with the usual
transistor implementations of logical operations in computers. The
numbers of microstates, which are identified as a zero or one may
be, say, something like (5± 1) · 1020. Then we have

∆S(8)(restore to one) ≈ ∆S(8)(invert) ≈
≈ (−1 . . .+ 1)k ln 1020 ≈ (−1 . . .+ 1) · 67k ln 2 ≈
≈ (+1 . . .− 1) · 67 ·∆H(restore to one) .

According to this very rough estimation, the range of uncontrolled
variations of ∆S(8) would be more than 130× as large as the change
∆H of information entropy. But ∆S(8) must be reliably controlled
down to a possible error� k for a significant check of (40), because
|∆H| is by order of magnitude typically O(k) for a logical operation.



46 Szilard’s Theorem and Landauer’s Principle

Thus a special hardware implementation of the logical operations
is required, to make the small contribution to the heat dissipation
— if it should exist — of ∆H visible.

Besides the problem to eliminate the contribution of ∆S(8) , it’s
anyway a very difficult task to approach the limit

∆S = −k ln 2 (42a)

in an experimental realization of logical 1-bit-processes, and mea-
sure (respectively conclude from other experimental parameters)
the related tiny work

W = kT ln 2 ≈ 3 · 10−21J at room temperature , (42b)

which must be done to drive the process. In the sequel several
experiments are discussed, which have been performed to check
Landauer’s principle.

4.1. Experimental evaluations

Landauer’s principle (32) states that logically irreversible logical
operations imply a power dissipation by the hardware of minimum
kT ln 2 per bit of information entropy reduction. And in (33)
Landauer asserts that no minimum power dissipation exists for
logically reversible logical operations. Several experiments have
been performed, which targeted to check these assertions.

4.1.1. A bead trapped in the laser focus

Berut et. al. [18] were the first to report an experiment of that
type. The title “Experimental verification of Landauer’s principle
linking information and thermodynamics” of their publication,
however, is misleading. Their experiment did not demonstrate
whatever link between information and thermodynamics, and in
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particular it did not verify Landauer’s principle (32). Instead their
experiment demonstrated that the work, which had to be done
to drive the thermodynamically irreversible process, which they
analyzed, approached — with decreasing switching speed — from
above the limit kT ln 2 .

2µ
m

0.9µm
2.

2k
T

Fig. 5 : The silica bead in
the double-well potential

In their experiment, a silica bead of 2µm diameter, which was
suspended in water, was trapped in the focus of a laser beam. The
laser beam was focused onto two nearby points with a switching
rate of 10 kHz , such that a double-well potential as sketched in
fig. 5 was created, with distance 0.9µm between the two minima,
and a barrier height of about 2.2 kT between the two wells.

At the begin of each experimental run, the bead was in one well,
the other well was empty. Even though the bead diameter was
much larger than the distance of the minima of the two wells, the
position of the bead could still be clearly assigned to one of the
wells, because it was observed at 502Hz with a fast camera, which
allowed (after picture treatment) for a resolution of better than
10 nm .

Then the water cell was moved for a time τ with speed v relative
to the laser focus. The speed was during the time interval τ linearly
increased from v = 0 to v = vmax . Due to the viscous drag of the
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water, the bead felt the force

F = γ · v (43a)
γ = 1.89 · 10−10 Ns/m = coefficient of friction ,

which was driving the bead towards the empty well. This pro-
cess can of course be interpreted as a realization of the logically
irreversible restore to one operation, with “bead in the left
well” coding for zero, and “bead in the right well” coding for one.
Note, however, that this process can as well be interpreted as a
realization of the logically reversible invert operation.

The time τ was varied in the range from 5 s to 40 s, and the work

W (τ) =
τ∫

0

d t F (t) v(t) (43b)

done onto the bead was computed. It turned out that W (τ) is an
exponentially decreasing function, which does not converge against
zero, but against

lim
τ→∞

W (τ) = kT ln 2 . (43c)

4.1.2. Clearing an RC-memory cell

Orlov et. al. [19] tried to check Landauer’s principle by means of
a surprisingly simple setup: The memory sketched in fig. 6 is
by definition set to one with UC ≈ +50µV , it is set to zero

Uin/out UC
R C

Fig. 6 : The RC-memory cell
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with UC ≈ −50µV , and it is set to neutral with UC ≈ 0V .
With C = 100pF , the bit-energy is C · (50µV)2/2 ≈ 30 kT at
room temperature. Thus the memory is stable against thermal
fluctuations, which are O(kT ).
Two methods to clear the memory were evaluated:

In the method “clear without memory”, Uin = 0V was applied to
the input clamps. Thereby the bit energy of 30 kT was dissipated
in the resistor R .
In the method “clear with memory”, first the actually stored

value (either one, coded by UC ≈ +50µV , or zero, coded by
UC ≈ −50µV) was measured, and the measurement result stored
in the brain of the experimenter, i. e. a copy of the memory con-
tent was prepared in the experimenter’s brain. Then an external,
continuously variable voltage source was connected to the input
clamps, with the value of the voltage source adjusted exactly to the
previously measured memory voltage. Then the external voltage
was slowly ramped down or up to 0V . With this method, the
power dissipation in the resistor R can be made arbitrarily small,
if the external voltage is tuned sufficiently slowly. With a total
switching time of 670µs from ±50µV to 0V , the measured power
dissipation over R was as low as 0.01 kT , i. e. less than 1‰ of the
30 kT bit energy.

Orlov et. al. concluded: Due to the previous measurement of the
actual memory value, and storage of the measurement result in the
experimenter’s brain, “clear with memory” is a reversible operation.
Indeed, the memory could be easily reset to the previous voltage
by tuning the external power supply from 0V to the previously
measured voltage. In contrast, “clear without memory” is a irre-
versible operation: As nobody knows what value had been stored
in the memory before the erasure, that value is lost forever.
In the opinion of Orlov et. al. these results confirm Landauer’s

assertions (32a) and (33) regarding the power dissipation of ir-



50 Szilard’s Theorem and Landauer’s Principle

reversible and reversible logical operations. Thus they obviously
believed that

∆S(8)(clear) (41)= S(8)(UC = 0)− 1
2 S(8)(UC = +50µV)−

− 1
2 S(8)(UC = −50µV)

?
� k,

would be much smaller than the Boltzmann constant k . But such
precise balance of the three S(8)-values seems unbelievable, given
that the number of different microstates, which all are interpreted
as one certain memory value, probably is something like ≈ 1020,
given that the capacitor is a macroscopic device.

Furthermore a trivial — and fatal! — error has slipped into the
reasoning of these authors: How is it possible that the variable
voltage source supplies a stable voltage with no significant thermal
fluctuations? This is only possible because the source is dissipating
in it’s internal regulation circuitry much more energy than kT .
The voltage source is an integral, indispensable part of the

experimental setup, which must not be ignored. Orlov et. al. could
as well perform the “clear without memory” operation by shortening
the input clamps with an external resistor Rext . Then only R/(R+
Rext) of the bit energy would be dissipated in R , while Rext/(R+
Rext) of the bit energy would be dissipated in the external resistor.
If it were correct to ignore the external energy dissipation, then
the energy dissipation in the internal resistor R could be made
arbitrarily small by choosing Rext arbitrarily large. But that’s of
course plain nonsense. The external energy dissipation, be it in
the external voltage source or be it in the external resistor Rext,
must clearly not be ignored.
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4.1.3. A particle in the electrokinetic trap

Jun et. al. [20] trapped a 200 nm fluorescent particle not in the focus
of a laser, but in the electric potential created by a “electrokinetic
feedback trap”. This is a trap, in which a varying voltage is applied
to electrodes. Depending on the observed position of the bead, the
voltage was chosen such that the bead felt a double-well potential
with variable height of the intermediate barrier. The update time
of the feedback loop was 10ms .
Two types of processes were run: In process ¬, the bead was

shifted (due to frictional forces of the water) from that well, where
it was first observed, to the other well, thereby simulating the
logically irreversible restore to one operation, or the logically
reversible invert operation. In process ­, the intermediate barrier
was lowered, and after some time raised again, without exerting
frictional forces due to the water. In this process, the bead ended
up in either well with probability 1/2 . This operation may be called
randomize. It is a defining requirement of any logical operation,
that the output data are uniquely determined by the input data.
The randomize operation does not meet this requirement, hence
it is no logical operation at all.

Again it turned out that the (computed) work, which was done
on the particle, was lower, if the process was run slower. The
extrapolated computed work done on the particle was

lim
τ→∞

W (τ) =
{
kT ln 2 with process ¬

0 with process ­.
(44)

Shifting a particle through a viscous fluid is by construction a
thermodynamically irreversible process. Jun et. al. demonstrated,
that a logical operation, if realized by a thermodynamically irre-
versible process, needs minimum the work kT ln 2 per processed
bit of information.
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Actually Jun et. al. interpreted their results as support for Lan-
dauer’s principle (32), because no energy was dissipated in process
­. But this interpretation is clearly mistaken:
In process ¬, work was done to overcome the potential barrier

and shift the bead into the target well. In process ­, the experi-
menters simply leaned back, and let the bead drift into whatever
well it wanted to drift. Thus quite trivially work had to be done
in process ¬, and no work needed to be done in process ­.

Process ­, which gave the limτ→∞W (τ) = 0 result, is realizing
the randomize operation, which is no logical operation. Process
¬, which gave the limτ→∞W (τ) = kT ln 2 result, is the (thermo-
dynamically irreversible) realization of both the logically reversible
invert operation and the logically irreversible restore to one
operation. Hence Jun et. al. did not demonstrate that a logical op-
eration (be it logically reversible or irreversible) can be performed
with no energy dissipation.

4.1.4. Switching a nanomagnetic memory

A further experiment, which deserves mention, has in 2016 been
published by Hong. et. al. [21]. These experimenters measured the
(magnetic) work needed to switch 1-domain nanomagnetic memo-
ries of lateral dimensions slightly below 100 nm . The nanomagnets
had an “easy” axis and a “hard axis”. More energy is needed to
align the magnetic moment to the hard axis than to the easy axis.
Hence in thermal equilibrium the magnetic moment is aligned
either parallel (this codes for zero) or antiparallel (this codes for
one) to the easy axis.

To switch the memory from zero to one or from one to zero,
work must be done due to externally applied magnetic fields.
Hong. et. al. measured the work needed to switch the memory,
and found values which come close to W ≈ kT ln 2, but scattered
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by 50% to 100% around this value.

Hong. et. al. interpreted this result as a confirmation of the Lan-
dauer limit W ≥ kT ln 2 . As their process, different from the
bead shifted against water friction, is not obviously dissipative, a
different speculation is tempting: Of course we must do work to
turn the magnetic moment from the easy axis into the hard axis.
But why don’t we get this work 100% back, when the moment
is relaxed from the hard axis to it’s new orientation along the
easy axis? Indeed the many results with W well below kT ln 2
might indicate (??) that this process might ideally be lossless (i. e.
thermodynamically reversible), and that the results W > 0 might
be caused by experimental imperfections. If, on the other hand,
the result W ≥ kT ln 2 should be confirmed for this system, then
this power dissipation must be caused by thermal fluctuations, but
not by ordinary friction.

Thus it is a pity that the results of just this experiment are rela-
tively unclear, and do not really confirm or disprove the importance
of thermal fluctuations.

4.2. The impact of thermodynamic fluctuations

None of the experiments reported until today could prove (40a)
and/or (40b) wrong. Actually a successful experiment may be
impossible, due to the impact of thermodynamic fluctuations.
To see how thermodynamic entropy is affected by fluctuations,

look for example at this experiment [22,23], sketched in fig. 7 on
the next page: Particles of 6µm diameter were held in the focus
of a laser, and dragged with velocity v through an aqueous sol-
vent. (Note the similarity of this experiment with the experiments
described in sections 4.1.1 and 4.1.3 !). If integrated over long
times (several seconds), the bead lagged the center of the potential,
as sketched in fig. 7OaO. This means that the bead-laser system
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OaO ObO

v v

Fig. 7 : Observing entropy fluctuations: The blue potential (created
by a laser focus) is dragging a bead with velocity v through
an aqueous solution.

dissipated heat to the solvent (i. e. the entropy of the solvent was
increased), because the laser had to do work against the frictional
force exerted by the solvent onto the bead. But when the system
was observed with fine time resolution (e. g. 0.01 seconds), then
in a significant part of the observation intervals the bead had to
be slowed down by the laser focus, as sketched in fig. 7ObO. This
means that sometimes for short time intervals heat was absorbed
from the solvent (i. e. the entropy of the solvent was reduced), and
converted into macroscopic kinetic energy of the bead.
Actually that experiment observed essentially the same effect,

which Brown observed and published[24] — but was not yet able to
understand — already in 1828 , i. e. the erratic “Brownian motion”
of tiny (just visible in the optical microscope) particles suspended
in water. Only in 1905 Einstein [25] presented the correct explana-
tion: Due to rare, but not impossible spontaneous fluctuations of
thermodynamic entropy, a significant share of the water molecules
nearby the particle, which normally move fully disordered (thermo-
dynamic equilibrium), by chance moves into one common direction
(spontaneous decrease of thermodynamic entropy), transferring
macroscopic visible momentum to the particle. Thus in this phe-
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nomenon chance is doing, what intentionally only Maxwell’s demon
is able to do: To cool a part of the water to a temperature which
is lower than the temperature of the surrounding water (and lower
than the temperature of the macroscopic particle, which is in
thermodynamic equilibrium with the surrounding water), thereby
transforming some heat of the water into macroscopic kinetic en-
ergy.

Observations like the fluctuating bead entropy [22, 23] or Brown-
ian motion [24] disprove Clausius’ assumption that the thermody-
namic entropy of a system can never decrease, unless that decrease
is compensated (or over-compensated) by an increase of thermody-
namic entropy of the environment. But they are in full accord with
Boltzmann’s and Gibbs’ understanding, that uncompensated small
entropy fluctuations are happening all the time, while uncompen-
sated observable huge fluctuations are utterly unlikely (but not
impossible!) in the > 1020-particles-systems which these scientists
considered. To make notions like small or huge quantitative, we
might — somewhat arbitrary — say that spontaneous reductions
of thermodynamic entropy of a closed system (which are violating
the deterministic second law of Clausius’ conception, but are in
accord with the probabilistic second law of Boltzmann’s and Gibbs’
conception) by

∗ < k/2 happen very frequently
∗ k/2 . . . 2 k happen frequently
∗ 2 k . . . 5 k happen sometimes
∗ 5 k . . . 20 k happen rarely
∗ > 20 k happen very rarely.

Consequently we will run into nonsense results, if we forget to take
spontaneous fluctuations of thermodynamic entropy into account
in evaluations of systems, in which entropy changes of order of
magnitudeO(k) are not negligible. For this reason, an experimental
decision between the incompatible entropy concepts
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(39), in which information entropy and thermodynamic entropy
are amalgamated to a “total entropy” as implicitly defined by
Landauer, and

(8)&(11), in which thermodynamic entropy as defined by Boltz-
mann and Gibbs, and information entropy as defined by Shan-
non, are kept separated,

may very well be impossible forever, because the difference be-
tween both concepts is O(k), hence masked by the unavoidable
fluctuations of thermodynamic entropy.

4.3. Conclusions

One might argue — given the experimental situation described in
the previous section — that a preference for one of the two concepts
is merely a matter of taste. But I think that there are minimum
four important arguments in favor of the (8)&(11) concept with
two different types of entropy kept separated:
∗ With the “total entropy” concept (39), the small changes ∆H

of information entropy get in almost all (or all?) cases masked
by the much larger changes ∆S(Φ|C) of conditional total
entropy (which are identical to the mean changes ∆S(8) of
thermodynamic entropy as defined by Boltzmann and Gibbs).
Whenever in successful evaluations of communication the-
ory allegedly the concept (39) has been applied, actually the
changes ∆S(Φ|C) of conditional total entropy have been sim-
ply ignored, but not seriously been proved to be precisely zero
or at least � k .

∗ The separate concept of information entropy is free of sponta-
neous fluctuations. Hence changes of information entropy can
with unlimited precision be traced down to ∆H = 0 processes.
This important advantage gets lost with the total entropy
concept (39), which is unavoidably affected by the fluctuations
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of thermodynamic entropy.
∗ In the concept of a separate information entropy, there exists

no counterpart for the second law of thermodynamics. There
is no restriction for ∆H < 0 processes.

∗ The second law of thermodynamics is about the exchange
of heat between the considered system and it’s environment.
And in the Boltzmann/Gibbs conception, the thermodynamic
entropy is proportional to the logarithm of the number of mic-
rostates in the phase space of the atomic constituents of the
considered system, which all are compatible with the observed
macrostate. The microstates in phase space determine — by
assumption of the kinetic theory of heat — the heat content
and temperature of the considered system.

The total entropy concept (39), on the other hand, assumes
that ∆H has, in addition to ∆S(8), some impact on the heat
exchange between system and environment. This assumption
seems not to be motivated by a physical argument, to say
the least, because only the phase space of the atomic con-
stituents of the considered system, but not information space,
is conceptually related to heat and temperature.
The thermodynamic entropy of system&environment in-

creases if — and because — system&environment approach
thermal equilibrium. The states which code in a computer
for zero and one, in contrast, are never in thermal equilib-
rium with the environment, and they do not approach thermal
equilibrium, as long as the computer is working correctly, see
footnote 12. Thus it seems physically not well-founded to pos-
tulate whatever correlation between changes of these states
and heat exchange with the environment.
Imagine that the computer is performing some certain op-

eration at room temperature (25°Celsius). This operation
results into the change
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∆S(39) @ 25◦C
(41)= ∆H@ 25◦C + ∆S(Φ|C)@ 25◦C︸ ︷︷ ︸

∆S(8) @ 25◦C

of total entropy. If we take the computer into a cooled room
(15°Celsius) and perform the same operation, then

∆S(39) @ 15◦C
(41)= ∆H@ 15◦C + ∆S(Φ|C)@ 15◦C︸ ︷︷ ︸

∆S(8) @ 15◦C

.

If the computer works correctly at both temperatures, then
clearly ∆H@ 15◦C = ∆H@ 25◦C , while obviously ∆S(8) @ 15◦C 6=
∆S(8) @ 25◦C , and consequently ∆S(39) @ 15◦C 6= ∆S(39) @ 25◦C .
This shows again that ∆H is not related to temperature, hence
not related to thermodynamic entropy, hence not subject to
the second law.

While neither of the incompatible concepts (39) versus (8)&(11)
is disproved by experiment (and therefore “wrong”), I think that
for these reasons it is clearly preferable to keep the concept (8)
of thermodynamic entropy and the concept (11) of information
entropy separate, and not to mix them into the concept (39) of
total entropy.

Appendix:
Bennett’s account of Szilard’s perpetuum mobile

Bennett’s interpretation [9, sect. 5] 13 of Szilard’s perpetuum mo-
bile of second kind is a beautiful example for an application of
the “total entropy” concept (39). At the same time, it is (like
Szilard’s own interpretation, discussed in section 3.2) a warning:
13 Bennett published his interpretation also in a more popular fashion — hence

less clear — in [10].
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It demonstrates that we run into purely theoretical speculations
far-off from physical reality, if we forget to take the unavoidable
(quantum and thermodynamic) fluctuations into account.

Bennett added to Szilard’s machine a memory, see fig. 8 . The
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Fig. 8 : Szilard’s perpetuum mobile of second kind in
Bennett’s interpretation
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pointer of the memory is set to L (R), if — due to process step ­
— the atom is observed to be trapped in the left (right) half of the
vessel. C is indicating the “clear” state of the memory. Note that
Bennett added the memory only to make his point perfectly clear.
He could as well skip the memory, and define “right (left) piston
shifted in” as “L” (“R”) and “both pistons shifted out” as “C”.
In Boltzmann’s and Gibbs’ statistical model of thermodynamic

entropy, the “phase space” of a system consisting of N hypothetical
submicroscopic particles is the 6N -dimensional space of the 3N
positions and 3N momenta of the N particles. Guided by (39),
Bennett combines this phase space with the space of the informa-
tions stored in the memory to a combined space as sketched on
the right side of fig. 8 . Bennett names this combined space again
“phase space”. To avoid confusion, I will stick to the conventional
definition of “phase space”, and will use the name “combi-space”
for the combination of phase space and information space.
In the combi-space diagrams of fig. 8 , the left [right] column

is marked by yellow color, if in the formula (39) of total entropy
p(left) > 0 [p(right) > 0] because the left [right] half of the vessel
is accessible to the atom. And the respective row(s) are marked, if
with probability P > 0 the memory’s pointer is indicating L and/
or C and/or R , i. e. if in (39) P (L) > 0 and/or P (C) > 0 and/or
P (R) > 0 . All yellow marked squares, but not the white ones, add
to the total entropy (39).

In state OaO the atom is with probability 1/2 in the left half of the
vessel, and with probability 1/2 in the right half of the vessel.

In state ObO the atom is still with probability 1/2 in the left half
of the vessel, and with probability 1/2 in the right half of the vessel.
Thus there is in process step ¬ no change of yellow marked phase
space volume, hence no change of total entropy.
Note that Bennett considers the two branches of fig. 8 in par-

allel, while Szilard assumed that in process step ¬ the atom is
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trapped either in the left cavity exor in the right cavity, and
consequently considered only one branch, see fig. 2 on page 22 .
The difference is due to the term S(Φ|C) = ∑

j P (cj)S(8)(cj) in
(39): Bennett considers S(Φ|C) = S(8)(left)/2 + S(8)(right)/2, re-
sulting into ∆S(Φ|C) = ∆S(8) = 0 in process step ¬. Szilard,
in contrast, considers the actual entropy S(8), but not the mean
entropy S(8), resulting into ∆S(8) = −k ln 2 in the same process
step. In Bennett’s account, the entropy reduction by −k ln 2 is
postponed to process step °.
In process step ­ the memory is set to L or R, depending

on whether the right or the left piston gets shifted-in. As the
probability for the result L or R is 1/2 each, there is no change of
combi-space volume, hence no change of total entropy. The yellow
marks are merely shifted up or down in combi-space.
No change of accessible combi-space, hence no change of total

entropy, happens in process step ®.
In step ¯ the combi-space is doubled, increasing the machine’s

total entropy by k ln 2 . Therefore the machine can do in this step
the useful work2 −kT ln 2 .
State OeO, however, is not yet identical to state OaO. Instead

now the memory must be reset to the “cleared” state C, to close
the cycle, and this requires according to Landauer’s principle the
work2 +kT ln 2 , thereby just compensating the useful work gained
in the previous step. This compensation solves — according to
Bennett [9, 10] — the problem of Szilard’s perpetuum mobile of
second kind: In total, per cycle no energy can be extracted, and
the second law of thermodynamics is “saved”.
Bennett’s solution of Szilard’s perpetuum mobile suffers, how-

ever, from the same problem as Szilard’s own interpretation: Van
derWaals forces must not be neglected but are dominating Szilard’s
machine (see fig. 3 on page 30). This makes Bennett’s considera-
tions anyway obsolete.
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