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Radiation and Radiation-Backreaction
The electromagnetic fields of charged point-particles

according to Maxwell’s electrodynamics, and
the radiation-backreaction

according to the theory of Abraham and Lorentz

Abstract

The four propagators of the classical electromagnetic field are
derived. On this basis, in section 2 the Lienard-Wiechert potentials
are computed, and from these again the retarded and advanced
fields are derived, which are radiated by point-particle charges. The
properties of these fields are investigated, and Larmor’s radiation
law is computed. In section 3, radiation-backreaction is considered
from the point of view of energy conservation. Subsequently the
same quantity is derived again in the last section, based on the
classical model of an extended electron, which has been proposed
by Abraham and Lorentz.
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2 Radiation and Radiation-Backreaction

1. Propagators

The Lagrangian of the classical electromagnetic field is [1, (4.121)]

L = −jµAµ −
1

4µ0
FστF

στ (1)

Fστ ≡ dσAτ − dτAσ , (Aµ) ≡ (Φ/c , A) .

By variation of the Lagrangian with respect to the field component
Aµ one gets the field equation [1, (4.126)]

0 = dν
∂L

∂(dνAµ) −
∂L
∂Aµ

= − 1
µ0

dν(dνAµ − dµAν) + jµ . (2)

By means of the

Lorentz gauge: dνAν = 0 (3)

the field equation simplifies to

�Aµ(x) ≡ dνdνAµ(x) = µ0j
µ(x) . (4)

According to Huygens’ principle, the field A(x) can be considered
as the superposition of waves, which propagate from the sources
µ0j(y) to the space-time point x, and there superpose to a field
with the components

Aρ(x) =
∫

d4y Dρσ(x, y) gστ µ0j
τ (y) . (5)

The Greens-function D(x, y), which has 4 × 4 space-time com-
ponents, often is called the propagator of the field A(x). (5) is
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inserted into the field-equation (4):

�Aρ(x) =
∫

d4y�Dρσ(x, y) gστ µ0j
τ (y) =

= µ0j
ρ(x) =

∫
d4y δ(4)(x− y) gρσgστ︸ ︷︷ ︸

gρτ

µ0 j
τ (y)

=⇒ �Dρσ(x, y) = gρσδ(4)(x− y) (6)

Note, that the operator � ≡ dνdν acts only onto the space-time
coordinate x, but not onto the space-time coordinate y. The
propagator’s dimension is[

Dρσ(x, y)
]

= 1
length2 . (7)

If the considered system is invariant under translations in space
and time, then Dρσ(x, y) depends only on the difference (x− y).
Then the Fourier-transformations

Dρσ(x− y) =
∫ d4k

(2π)4 D̃
ρσ(k) exp{−ik(x− y)} (8a)

δ(4)(x− y) =
∫ d4k

(2π)4 exp{−ik(x− y)} (8b)

can be performed. Thus one gets in the four-dimensional space of
the wavenumbers k the equation

�D̃ρσ(k) = −k2D̃ρσ(k) = gρσ

D̃ρσ(k) = −g
ρσ

k2 ,
[
D̃ρσ(k)

]
= length2 . (9)



4 Radiation and Radiation-Backreaction

Backtransformation to time-position space results into

Dρσ(x− y) = −
∫ d4k

(2π)4
gρσ

k2 exp{−ik(x− y)}

= −
∫ dk

(2π)3 g
ρσ exp{ik(x− y)} · F (10a)

F ≡
+∞∫
−∞

dk0

2π
exp{−ick0(t− ty)}

(k0)2 − k2 (10b)

t ≡ x0/c , ty ≡ y0/c . (10c)

F has two poles, because “on mass-shell”

k2 = (k0)2 − k2 = (k0 + ω/c)(k0 − ω/c) = 0 (11)

ω ≡ +c
√

k2 ≥ 0 .

We stipulate that ω/c shall always be interpreted as the positive
root of k2, i. e. that a negative value shall be written as −ω/c ≤ 0.
But in (10b), k0 is not fixed to mass-shell. Instead, being the
variable of integration, it assumes — independent of k — all values
in the interval −∞ ≤ k0 ≤ +∞. To avoid the divergence of the
integral F at the two poles (11), infinitesimal small terms ±iε
with 0 < ε ∈ R are inserted into the denominator. There are four
different alternatives to do this:

Fr ≡ lim
ε→0

+∞∫
−∞

dk0

2π
exp{−ick0(t− ty)}

(k0 +ω/c+ iε)(k0− ω/c+ iε) (12a)

Fa ≡ lim
ε→0

+∞∫
−∞

dk0

2π
exp{−ick0(t− ty)}

(k0 +ω/c− iε)(k0− ω/c− iε) (12b)

Ff ≡ lim
ε→0

+∞∫
−∞

dk0

2π
exp{−ick0(t− ty)}

(k0 +ω/c− iε)(k0− ω/c+ iε) (12c)
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Faf ≡ lim
ε→0

+∞∫
−∞

dk0

2π
exp{−ick0(t− ty)}

(k0 +ω/c+ iε)(k0− ω/c− iε) (12d)

∗ Fr has poles at k0 = −ω/c − iε and at k0 = +ω/c − iε. This
shift of poles results into the retarded propagator.
∗ Fa has poles at k0 = −ω/c + iε and at k0 = +ω/c + iε. This
shift of poles results into the advanced propagator.
∗ Ff has poles at k0 = −ω/c+ iε and at k0 = +ω/c− iε. This shift
of poles, which is depicted in figure 1, results into the Feynman-
propagator.
∗ Faf has poles at k0 = −ω/c − iε and at k0 = +ω/c + iε. This
shift of poles results into a propagator, for which no common
name exists in the literature. We will call it anti-Feynman-
propagator.

Dependent on the value of t− ty, the integrals (12) can be closed
— as sketched in figure 1 — in the upper or lower complex plane.
The values of the integrals are not changed, because for very large
|k0| their value is negligible due to the (k0)2 in the denominator.

Re(k0)

Im(k0)
path 2

ω/c− iε

−ω/c+ iε Re(k0)

Im(k0)

path 1

ω/c− iε

−ω/c+ iε

Fig. 1 :
for the Feynman-propagator
Integration paths (blue) and poles (red)
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And due to the factor exp{−ick0(t − ty)} in the numerator, the
integrals along the lower half circle (path 1) are negligible for very
large negative imaginary parts of k0 in case of t > ty. On the other
hand, in case of t < ty the integrals along the upper half circle
(path 2) are negligible for very large positive imaginary parts of k0.
Applying Cauchy’s integral theorem and the residue theorem1, the
integrals along the closed paths 1 and 2 can be solved. By means
of the step function

Θ(t− ty) =
{

1 if t > ty

0 if t < ty
(13)

the results can be clearly represented. No Greens-function is defined
for t = ty.

Fr = iΘ(t− ty)
(exp{+iω(t− ty)}

+2ω/c + exp{−iω(t− ty)}
−2ω/c

)
(14a)

Fa = iΘ(ty − t)
(exp{+iω(t− ty)}

−2ω/c + exp{−iω(t− ty)}
+2ω/c

)
(14b)

Ff = iΘ(ty − t)
exp{+iω(t− ty)}

−2ω/c +

+ iΘ(t− ty)
exp{−iω(t− ty)}

−2ω/c (14c)

Faf = iΘ(t− ty)
exp{+iω(t− ty)}

+2ω/c +

+ iΘ(ty − t)
exp{−iω(t− ty)}

+2ω/c (14d)

The colors are indicating, that only four of the eight terms are
different. With (10a) therefore the following relation holds for
1 A short explication of these valuable mathematical tools, which is tailored

to the particular needs of physicists, can be found in [2].
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the retarded propagator Dρσ

r (x − y), the advanced propagator
Dρσ
a (x − y), the Feynman-propagator Dρσ

f (x − y), and the anti-
Feynman-propagator Dρσ

af (x− y):

Dρσ
r +Dρσ

a = Dρσ
f +Dρσ

af (15)

We now are going to compute a generic propagator Dρσ
s (x− y)

by means of

Fs ≡ iΘ
(
s1(t− ty)

) exp{s2iω(t− ty)}
s32ω/c (16)

sn = +1 or − 1 , n = 1, 2, 3 .

The generic propagator is

Dρσ
s (x− y) (10a)= −gρσ

iΘ
(
s1(t− ty)

)
s32(2π)3 ·

·
∫

dk exp{ik(x− y)} exp{s2iω(t− ty)}
ω/c

. (17)

Once we have found this propagator, the four propagators for which
we are looking can easily be constructed by inserting the actual
values of s1, s2, s3 according to (14).

The computation of the integral (17) is demonstrated in [3,
chap. 20]. We define spherical coordinates in wavenumber-space
with azimuthal angle ϕ, polar angle ϑ, and radial coordinate ω/c =
|k|:

2π∫
ϕ=0

dϕ
π∫

ϑ=0

dϑ
∞∫

ω=0

dω
c

ω2

c2 sinϑ ≡
∫

dk (18)
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We choose the k3-axis of the spherical coordinates parallel to (x−y).
Thus

(x− y)·k = R
ω

c
cosϑ

R ≡ |x− y| (19)

holds. These definitions are inserted into the generic propagator
(17). Integration over ϕ gives 2π. Thus we get

Dρσ
s (x− y) = −gρσ

iΘ
(
s1(t− ty)

)
s32(2π)2 ·

·
∞∫

ω=0

dω
c

ω2

c2
exp{s2iω(t− ty)}

ω/c
·K (20)

K ≡
π∫

ϑ=0

dϑ sinϑ exp{iR ω

c
cosϑ} .

For the computation of K, we substitute

u ≡ iR ω

c
cosϑ ,

ic

Rω

−iRω/c∫
+iRω/c

du =
π∫

ϑ=0

dϑ sinϑ (21)

and get

K = ic

Rω

−iRω/c∫
+iRω/c

du exp{u}

= ic

Rω

(
exp{−iRω/c} − exp{+iRω/c}

)
. (22)
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Thereby the generic propagator becomes

Dρσ
s (x− y) = +gρσ

Θ
(
s1(t− ty)

)
s32(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(s2t− s2ty −R/c)} − exp{+iω(s2t− s2ty +R/c)}
)
.

By means of this formula, the four propagators can immediately
be constructed due to comparison of (16) with (14a) to (14d):

Dρσ
r (x− y) = +gρσ Θ(t− ty)

2(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(t− ty −R/c)} − exp{+iω(t− ty +R/c)}

− exp{+iω(ty − t−R/c)}+ exp{+iω(ty − t+R/c)}
)

(23a)

Dρσ
a (x− y) = −gρσΘ(ty − t)

(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(t− ty −R/c)} − exp{+iω(t− ty +R/c)}

− exp{+iω(ty − t−R/c)}+ exp{+iω(ty − t+R/c)}
)

(23b)

Dρσ
f (x− y) = +gρσ Θ(ty − t)

−2(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(t− ty −R/c)} − exp{+iω(t− ty +R/c)}
)

+ gρσ
Θ(t− ty)
−2(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(ty − t−R/c)} − exp{+iω(ty − t+R/c)}
)

(23c)
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Dρσ
af (x− y) = +gρσ Θ(t− ty)

2(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(t− ty −R/c)} − exp{+iω(t− ty +R/c)}
)

+ gρσ
Θ(ty − t)
2(2π)2Rc

∞∫
ω=0

dω
(

exp{+iω(ty − t−R/c)} − exp{+iω(ty − t+R/c)}
)

(23d)

For half of the terms we used the fact, that the sign of k in the
exponent of (10a) may be inverted, because the integration is
running symmetrically over all positive and negative wavenumbers
k.
Two terms + exp{. . .} and − exp{. . .} each in the retarded and

in the advanced propagator can be combined due to extension of
the integration range from 0→ +∞ to −∞→ +∞. Thereby the
delta-functions

+∞∫
−∞

dω exp{±iω(t− ty −R/c)} = 2π δ(t− ty −R/c) (24a)

+∞∫
−∞

dω exp{±iω(t− ty +R/c)} = 2π δ(t− ty +R/c) (24b)

become visible. Thus one gets the following retarded and advanced
propagators:

Dρσ
r (x− y) = +gρσΘ(t− ty)

4πRc
(
δ(t− ty −R/c)− δ(t− ty +R/c)

)
(25a)

Dρσ
a (x− y) = −g

ρσΘ(ty − t)
4πRc

(
δ(t− ty −R/c)− δ(t− ty +R/c)

)
(25b)
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As R/c > 0 always holds, the second delta-function in Dr and the
first delta-function in Da are always zero due to the step functions,
and therefore may be skipped. As we exclude R = 0, the remaining
delta-functions enforce t > ty in Dr and t < ty in Da. Therefore
the step functions may be skipped as well:

Dρσ
r (x− y) = + gρσ

4πRc δ(t− ty −R/c) (26a)

Dρσ
a (x− y) = + gρσ

4πRc δ(t− ty +R/c) (26b)

An explicitly covariant formulation of these propagators, in which
only the four-vector x− y shows up, but not it’s space components
R, will turn out useful in the sequel. To derive that formulation,
we invert in (25) the signs of the effectless delta-functions.

Dρσ
r (x− y) = +gρσΘ(t− ty)

4πRc
(
δ(t− ty −R/c) + δ(t− ty +R/c)

)
(27a)

Dρσ
a (x− y) = +gρσΘ(ty − t)

4πRc
(
δ(t− ty −R/c) + δ(t− ty +R/c)

)
(27b)

Now the retarded and the advanced propagator differ by nothing
than the step function. We make use of the formula

δ
(
f(a)

)
=
∑
i

δ(a− ai)∣∣∣∣dfda

∣∣∣
ai

∣∣∣∣ with f(ai) = 0 , df
da

∣∣∣
ai
6= 0 (28)

f(a) ≡ (a+ ai)(a− ai) = a2 − a2
i

=⇒ δ(a2 − a2
i ) = δ(a− ai) + δ(a+ ai)

|2ai|
,
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insert a ≡ t− ty and ai ≡ R/c, and get(
δ(t− ty −R/c) + δ(t− ty +R/c)

)
2R/c = δ

(
(t− ty)2 −R2/c2

)
.

(29)

Using c2(t− ty)2 −R2 = x2 − y2 and δ(bx) = δ(x)/|b|, we get the
formulation

Dρσ
r (x− y) = gρσΘ(t− ty)

2π δ
(
(x− y)2

)
(30a)

Dρσ
a (x− y) = gρσΘ(ty − t)

2π δ
(
(x− y)2

)
, (30b)

which is equivalent to (26). The step function Θ(t − ty) does
not compromise the covariance of this formulation, because the
combined delta-functions and step functions enforce that y is on the
backwards-lightcone of x in case of the retarded propagator, and
on the forward-lightcone of x in case of the advanced propagator.
If this holds true in one coordinate system, then it will hold true
in any other coordinate system which can be reached from the first
system by a proper Lorentztransformation. Thus in the context of
(30) the step functions may be regarded as Lorentz-scalars.

In the Feynman-propagator and in the anti-Feynman-propagator
there are no delta-functions. Instead they are usually quoted in
the formulations (10a+12) or (23). For later reference, we here
compile a list of the four propagators:

Dρσ
r (x− y) (26)= gρσ

4πRc δ(t− ty −R/c) (31a)

(30)= gρσΘ(t− ty)
2π δ

(
(x− y)2

)
(31b)
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Dρσ
a (x− y) (26)= gρσ

4πRc δ(t− ty +R/c) (31c)

(30)= gρσΘ(ty − t)
2π δ

(
(x− y)2

)
(31d)

Dρσ
f (x− y) (10a),(14)= −igρσ

∫ d3k

(2π)3 ·

· Θ(t− ty) exp{−ik(x− y)} −Θ(ty − t) exp{+ik(x− y)}
−2ω/c

(31e)

(23c)= − gρσ

8π2Rc

∞∫
ω=0

dω
(
Θ(t− ty) exp{−iω(t− ty +R/c)}−

−Θ(t− ty) exp{−iω(t− ty −R/c)}+
+ Θ(ty − t) exp{+iω(t− ty −R/c)}−

−Θ(ty − t) exp{+iω(t− ty +R/c)}
)

(31f)

Dρσ
af (x− y) (10a),(14)= −igρσ

∫ d3k

(2π)3 ·

· Θ(ty − t) exp{−ik(x− y)} −Θ(t− ty) exp{+ik(x− y)}
+2ω/c

(31g)

(23d)= − gρσ

8π2Rc

∞∫
ω=0

dω
(
Θ(ty − t) exp{−iω(t− ty −R/c)}−

−Θ(ty − t) exp{−iω(t− ty +R/c)}+
+ Θ(t− ty) exp{+iω(t− ty +R/c)}+

−Θ(t− ty) exp{+iω(t− ty −R/c)}
)

(31h)

Comparing (31a) with (31c) resp. comparing (31f) with (31h),
the following transformation property of the propagators can be
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discerned:

Inversion of time direction =⇒
=⇒ Dρσ

r ←→ Dρσ
a and Dρσ

f ←→ Dρσ
af . (32)

Note that upon time inversion also the sign of the frequency ω
changes, while R and c (the modulus of the speed of light) remain
unchanged.
The propagators D(x− y) are functions of the four-vector

x− y =
(
c(t− ty),x− y

)
. (33)

The space-time-components of this four-vector are not mutually
independent, but are subject to restrictions, which can most clearly
be discerned in the delta-functions of (31a) and (31c). It’s not
immediately obvious, which components should be regarded as inde-
pendent and which as dependent variables. These three definitions
seem possible:

ty(t, R) ≡ t∓R/c (34a)

t(ty, R) ?≡ ty ±R/c is wrong! (34b)

R(t, ty)
?≡ ±c(t− ty) is wrong! (34c)

We must take care that our formalism stays consistent. The point
of departure was the potential in the notation (5). There x = (t,x)
was a fixed “outside” quantity, while y = (ty,y) was introduced
as variable of integration. Thus t and x clearly do not depend
on whatever else variables. Therefore definition (34b) must be
discarded. Only ty and y may possibly be dependent variables.
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We try the following definitions:

ty(t,x,y) ≡ t∓ |x− y|/c = t∓R/c is correct (34d)
R(x,y) ≡ |x− y| is correct (34e)

y(t,x, ty)
?≡ ?? is not viable (34f)

The relation |x− y| = ±c(t− ty) is not sufficient to define y as a
function of t, x, and ty. Consequently only (34d) and (34e) remain
as consistent and viable definitions of the dependencies inbetween
the variables. t and x are fixed “from outside”. The parameter y
as well can and must be chosen arbitrary, it does not depend on t
nor on x nor on ty. Only after that, ty ≡ (34d) can be computed
as dependent variable, while R is merely a shorthand notation for
|x− y|. Therefore R as well does not depend on t nor on ty:

dR
dt = dR

dty
= 0 (35)

2. The electromagnetic field of a charged
point-particle

We are in particular interested in the case that the source of the
field is a charged point-particle. Let it’s charge be q, it’s position
at time ty be r(ty), and it’s velocity be v(ty) = dr(ty)/dt. The
derivation of the electromagnetic field emanating from that charge
is following by and large Jackson [4, chap. 14].

We will derive the retarded and advanced fields from the retarded
and advanced potentials. To compute the potentials, we insert
the retarded and advanced propagators (31) into equation (5).
Using gρσgστ = gρτ = δρτ and δ(x/c2) = c2δ(x), one finds the two
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notations

Aρr(x) = µ0
4π

∫
d3y

+∞∫
−∞

dty
jρ(y)
R

δ(t− ty −R/c) (36a)

= µ0c

2π

∫
d3y

+∞∫
−∞

dty jρ(y) Θ(t− ty) δ
(
[x− y]2

)
(36b)

Aρa(x) = µ0
4π

∫
d3y

+∞∫
−∞

dty
jρ(y)
R

δ(t− ty +R/c) (36c)

= µ0c

2π

∫
d3y

+∞∫
−∞

dty jρ(y) Θ(ty − t) δ
(
[x− y]2

)
. (36d)

As these potentials differ only by some few signs, we combine them
to a generic potential Aρs(x), in which the index s codes for r or a.
Double signs ± or ∓ shall be interpreted as advanced

retardet , i. e. the upper
sign always holds for retarded fields, the lower sign for advanced
fields. In this generic notation, the potentials become

Aρs(x) = µ0
4π

∫
d3y

+∞∫
−∞

dty
jρ(y)
R

δ(t− ty ∓R/c) (36e)

= µ0c

2π

∫
d3y

+∞∫
−∞

dty jρ(y) Θ(±t∓ ty) δ
(
[x− y]2

)
. (36f)

We adapt the definitions (19) for the case of a charged point-
particle by

R ≡ x− r , R ≡ |R| , n ≡ R

R
. (37)
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The current density

jρ(y) = jρ(ty,y) ?= q
(
c,v(ty)

)ρ
δ(3)

(
y − r(ty)

)
would be appropriate only for a non-relativistic description, because
(c,v) is no four-vector (it’s square c2 − v2 is no Lorentz-scalar).
We use instead the four-velocity

V ρ(t) ≡ drρ(t)
dτ ≡

d
(
ct, r(t)

)ρ
dτ =

= γ(t)
d
(
ct, r(t)

)ρ
dt = γ(t)

(
c,v(t)

)ρ
(38)

γ(t) ≡ dt
dτ =

(
1− v2(t)

c2

)−1/2
,

in which τ is the time in the coordinate system with v = 0, i. e.
the proper time of the source. As (rρ) is a Lorentz-vector and τ
is a Lorentz-scalar, (V ρ) is a Lorentz-vector as well. Thereby the
current density2

jρ(y) ≡ c
+∞∫
−∞

dτ qV ρ(τ) δ(4)
(
y − r(τ)

)
(39)

can be defined, which — being the integral over the proper time
of the source — is again a Lorentz-vector.
Inserting this current density into (36f), the integral over d4y

2 This formula has been proposed by Dirac [5, equation (5)].
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can be solved:

Aρs(x) = µ0c

2π

∫
d3y

+∞∫
−∞

dty c
+∞∫
−∞

dτ qV ρ(τ) δ(4)
(
y − r(τ)

)
·

·Θ(±t∓ ty) δ
(
[x− y]2

)
= µ0c

2π

+∞∫
−∞

dτ qV ρ(τ) Θ(±t∓ r0(τ)/c︸ ︷︷ ︸
τ

) δ
(
[x− r(τ)]2

)
. (40)

Comparing (31a) with (31b) resp. (31c) with (31d), one can discern:

1
2Rc δ(t− τ ∓R/c) = Θ(±t∓ τ) δ

(
[x− r(τ)]2

)
(41)

Thereby the integral over τ becomes easy:

Aρs(x) = µ0
4π

qV ρ(τs)
R

with τs = t∓R/c (42)

In (41) we transformed the delta function of [x − r(τ)]2 back
into the delta function of t− τ ∓R/c (starting upfront with (36e)
instead of (36f) would clearly be possible as well.) Now we want
to transform it into the delta function of τ − τs. For that purpose
we apply again formula (28) with f(τ) ≡ [x− r(τ)]2. f is zero at

[x− r(τ)]2 = c2(t− τ)2 −R2 = 0
τ = t∓ r/c ,

and the derivatives of f at these two points are

df
dτ = −2(x− r) dr

dτ
(38)= −2(x− r)V .
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The step function excludes in each case one of the two terms:

2Θ(±t∓ τ) δ
(
[x− r(τ)]2

)
= Θ(±t∓ τ) δ(τ − τs)

|(x− r)V | . (43)

The product in the denominator is

[x− r(τs)]V
(37)= c[t− τs]V 0 −R · V = ±Rcγ −R · vγ =

= ±Rcγ(1∓ n · v/c) with n ≡ R/R (44a)∣∣∣[x− r(τs)]V ∣∣∣ = ±[x− r(τr)]V = Rcγ (1∓ n · v/c) > 0 , (44b)

because the velocity v of the source is smaller than the velocity
c of light in any reference system. The retarded and advanced
potentials become, using c−2 = ε0µ0, in four- and three-dimensional
notation

Aρs(t,x) =(40) µ0c

4π

+∞∫
−∞

dτ qV ρ(τ) Θ(±t∓ τ) δ(τ − τs)
|(x− r)V |

= ± µ0c

4π
qV ρ(τs)

[x− r(τs)]V (τs)
(45a)

Φs(t,x) = 1
4πε0

q

R(1∓ n · v/c)

∣∣∣∣
τs

(45b)

As(t,x) = µ0
4π

qv

R(1∓ n · v/c)

∣∣∣∣
τs

(45c)

with t = τs ±R/c = τr +R/c = τa −R/c .

The step function Θ(±τs ∓ τ) can be skipped, if the values of τr
and τa are indicated explicitly. These equations for the poten-
tials generated by point charges have been found by Liénard and
Wiechert.
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We use greek letters ρ, σ, τ, . . . for the four space-time indices
0, 1, 2, 3, and latin letters j, k, l, . . . for the three space indices 1, 2, 3.
To derive the fields

F σρ(t,x) = dσAρ(t,x)− dρAσ(t,x) (46a)
Ek

c
≡ F k0 , Bj ≡ −F kl , jkl = 123 cyclic (46b)

E(t,x) = −∇Φ(t,x)− dA(t,x)
dt (46c)

B(t,x) =∇×A(t,x) (46d)

from the potentials, we start from the integral form (40) of the
potentials. As before, double signs are to be interpreted as advanced

retardet ,
i. e. the upper sign holds for retarded fields, the lower sign for
advanced fields. The derivative with respect to t does not affect
the arguments τ and r(τ) of the various functions, but only the
argument t of the theta-function and the argument x of the delta-
function. We are interested only in solutions with R 6= 0. Then in
the product

d
dt Θ(±t∓ τ) δ

(
(x− r(τ))2 =

= δ(±t∓ τ) δ
(
(x− r(τ))2

)
+ Θ(±t∓ τ) d

dt δ
(
(x− r(τ))2

)
= δ

(
±R

)
+ Θ(t− τ) d

dt δ
(
(x− r(τ))2

)
(47)

only the second term gives a contribution. Consequently we have
for σ = 0, 1, 2, 3

dσAρs(x) (40)= µ0c

2π

+∞∫
−∞

dτ qV ρ(τ) Θ(±t∓ τ) dσδ
(
(x− r(τ))2

)
.
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Into this equation we insert

dσδ
(
[x− r(τ)]2

)
=

=
(
dσ[x− r(τ)]2

) dτ
d[x− r(τ)]2

dδ
(
[x− r(τ)]2

)
dτ

= 2[x− r(τ)]σ

−2[x− r(τ)]V (τ)
dδ
(
[x− r(τ)]2

)
dτ

and integrate by parts:

2π
µ0c

dσAρs(x) =

= −qΘ(±t∓ τ) [x− r(τ)]σV ρ(τ)
[x− r(τ)]V (τ) δ

(
[x− r(τ)]2

)∣∣∣∣τ=+∞

τ=−∞
+

+
+∞∫
−∞

dτ qΘ(±t∓ τ) δ
(
[x− r(τ)]2

) d
dτ

[x− r(τ)]σV ρ(τ)
[x− r(τ)]V (τ)

Only the last line is different from zero because of Θ[±t∓(±∞)] = 0
and δ

(
[x− r(∓∞)]2

)
= 0. For the reason given at (47), the theta-

function could be shifted out of the derivative with respect to τ .
Insertion of (43) with the correct signs according to (44) results
into

dσAρs(x) = ± µ0c

4π

+∞∫
−∞

dτ qΘ(±t∓ τ) ·

· δ(τ − τs)
[x− r(τs)]V (τs)

d
dτ

[x− r(τ)]σV ρ(τ)
[x− r(τ)]V (τ) . (48)

We integrate over τ and then compute the derivative with respect
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to τ :

dσAρs(x) = ± µ0c

4π
qΘ(±t∓ τs)

[x− r(τs)]V (τs)
d
dτ

[x− r(τs)]σV ρ(τs)
[x− r(τs)]V (τs)

dσAρs(x) = ± µ0c

4π
qΘ(±t∓ τs)(

[x− r(τs)]V (τs)
)3 ·

[
(
− drσ

dτ V ρ + [x− r]σ dV ρ

dτ
)
[x− r]V −

−
(
− dr

dτ V + [x− r] dV
dτ
)
[x− r]σV ρ

]
τs

(49)

Using (44a) and using

drσ

dτ = dt
dτ

d
dt (ct, r)σ = γ (c,v)σ = V σ

V 2 = γ2(c2 − v2) = c2 − v2

1− v2/c2 = c2

one gets

F σρs (x) = ± µ0c

4π
q(

±Rcγ(1∓ n · v/c)
)3 ·

[
(
[x− r]σ dV ρ

dτ − [x− r]ρdV σ

dτ
)
(±Rcγ)(1∓ n · v/c) +

+
(
c2 − [x− r] dV

dτ
)(

[x− r]σV ρ − [x− r]ρV σ
)]

τs

mit t = τs ±R/c = τr +R/c = τa −R/c
V = V (τs), r = r(τs), n = n(τs), v = v(τs) . (50)

The step function Θ(±t∓ τs) could be skipped, because the time-
arguments τs = t∓R/c are explicitly indicated.
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To compute the three-dimensional fields E and B we need the

components F j0 and F kl. Insertion of the four-vector

x− r(τs)
(37)=

(
c(t− τs) ,R

)
=
(
±R ,R

) (37)= R
(
± 1 ,n

)
, (51)

of the notation

v̇ ≡ dv

dt 6=
dv

dτ , v̇ ≡ |v̇|
!
6= dv

dt , v ≡ |v| , (52)

of the four-vector

V = γ(c,v) , (53)

and of the derivatives

dV ρ

dτ =(38) [ dt
dτ︸︷︷︸
γ

d
dt (1− v2/c2)−1/2︸ ︷︷ ︸

γ

](
c,v

)ρ
+ γ2 d

dt
(
c,v

)ρ

=
[
− 1

2 γ
4
(
− v · v̇ + v̇ · v

c2

)]
(c,v)ρ + γ2(0, v̇)ρ

=
(
γ4 v · v̇

c
, γ4 (v · v̇)

c2 v + γ2 v̇
)ρ

, (54)

results into

F j0s (x) = µ0c

4π
q(

Rcγ(1∓ n · v/c)
)3 ·

[(
Rjγ4 v · v̇

c
∓

∓R(γ4 (v · v̇)
c2 vj + γ2 v̇j)

)
(±Rcγ)(1∓ n · v/c) +

+
(
c2 − (±R,R) (γ4 v · v̇

c
, γ4 (v · v̇)

c2 v + γ2 v̇)
)
·

·
(
Rjγc∓Rγvj

)]
τs
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F j0s (x) = µ0c

4π
qRcγ(

Rcγ(1∓ n · v/c)
)3 ·

[
c2(nj ∓ vj/c) +

+Rγ2
(
(nj ∓ vj/c)(n · v̇)− (1∓ n · v/c) v̇j

)]
τs

(55a)

F kls (x) = µ0c

4π
q(

Rcγ(1∓ n · v/c)
)3 ·

[(
Rk(γ4 (v · v̇)

c2 vl +

+ γ2 v̇l)−Rl(γ4 (v · v̇)
c2 vk + γ2 v̇k)

)
(±Rcγ)(1∓ n · v/c)

+
(
c2 − (±R,R) (γ4 v · v̇

c
, γ4 (v · v̇)

c2 v + γ2 v̇)
)
·

·
(
Rkγvl −Rlγvk

)]
τs

=

= µ0c

4π
qRcγ(

Rcγ(1∓ n · v/c)
)3 ·

[
c2(nkvl/c− nlvk/c) +

+Rγ2
(
(nkvl/c− nlvk/c)n v̇±

± (nk v̇l − nl v̇k)(1∓ n · v/c)
)]

τs

(55b)

In each factor of F kls the outer vector-product (a× b)j = akbl−albk
can be discerned. Furthermore we make use of c−2 = ε0µ0 and of
the Grassmann-identity

a×(b× c) = (a · c)b− (a · b)c . (56)

Thereby the retarded and advanced three-dimensional fields (46b)
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can be written in the form

Es(x) = E(v)
s (x) + E(a)

s (x) , Bs(x) = B(v)
s (x) + B(a)

s (x)

E(v)
s (x) = 1

4πε0
q(n∓ v/c)

R2γ2(1∓ n · v/c)3

∣∣∣∣
τs

(57a)

E(a)
s (x) = 1

4πε0
q

Rc2(1∓ n · v/c)3 ·
[

(n∓ v/c)(n · v̇)− v̇ (1∓ n · v/c)
]
τs

= 1
4πε0

q n×
(
(n∓ v/c)×v̇

)
Rc2(1∓ n · v/c)3

∣∣∣∣
τs

(57b)

B(v)
s (x) = −µ0c

4π
q (n× v/c)

R2γ2(1∓ n · v/c)3

∣∣∣∣
τs

(57c)

B(a)
s (x) = −µ0c

4π
q

Rc2(1∓ n · v/c)3 ·
[
(n× v/c)(n · v̇) +

+ (n× v̇)(±1− n · v/c)
]
τs

(57d)

with


s : retarded r , advanced a

± : retarded + , advanced -
∓ : retarded - , advanced +
t = τs ±R/c = τr +R/c = τa −R/c .

We marked the acceleration fields, which are proportional to v̇, by
an index(a) (don’t confuse this with the lower index a, which codes
for a = advanced), and the velocity fields, which are different from
zero also in case v̇ = 0, by an index(v).

Before we discuss these results in detail, we want to point out a
remarkable relation between the electric and magnetic fields. For
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that purpose we compute the outer vector-products

±n(τs)×E(v)
s (x) = − 1

4πε0
q(n× v/c)

R2γ2(1∓ n · v/c)3

∣∣∣∣
τs

= cB(v)
s (x) (58a)

±n(τs)×E(a)
s (x) = − 1

4πε0
q

Rc2(1∓ n · v/c)3 ·
[

(n× v/c)(n · v̇)± (n× v̇) (1∓ n · v/c)
]
τs

= cB(a)
s (x) . (58b)

Independent of velocity and acceleration of the source, the magnetic
field Bs is always vertical to the electric field Es, and the moduli
of the amplitudes of the electric and magnetic field differ only by
the factor c.
We stated in (32), that under time inversion the retarded prop-

agator becomes the advanced propagator, and vice versa. As all
of our derivation of the potentials and fields is based onto these
propagators, one might state as well: Retarded electrodynamics
become advanced electrodynamics under time inversion, and vice
versa. But this is not to say, that each single retarded field compo-
nent becomes the advanced field component under time inversion.
That symmetry only holds for measurable phenomena, caused by
some action of the combined fields.

Actually the symmetry of the fields (57) under time inversion is
more complicated: The signs of the magnetic fields change, while
the signs of the electric fields stay invariant. The velocity v of the
source is the only factor, which’s sign changes under time inversion.
v̇, being the second derivative with respect to time of the position
operator, is invariant under time inversion. The same holds for the
modulus c of the velocity of light.
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An observable phenomenon is for example the Lorentz force,

which a field (F στs ) exerts upon a particle with charge Q, mass m,
four-momentum (pα) = m(uα), four-velocity (uα) = γ(c,u), and
proper time τ :

dpα

dτ = QFαβs uβ = QFα0
s γc+QFαjs γuj (59a)

mc
dγ
dt = −QF 0j

s u
j

m
dγuj

dt = QF j0s c−QF jks uk .

Insertion of the three-dimensional fields (46b) gives the relativistic
form of the Lorentz force:

mc
dγ
dt = +Qu · Es/c (59b)

m
dγu

dt = Q(Es + u×Bs) (59c)

The first equation describes the particle’s gain in energy, to which
Bs contributes nothing, and to which Es contributes only with
it’s component parallel to u. dγ/dt is proportional to v · v̇, see
(54). Being the first derivative with respect to time of the position
vector, v changes sign under time inversion, while v̇ is invariant.
Thus the left side of (59b) changes sign under time inversion, just
like u on the right side. Consequently

Ea = Er (60a)

must hold. In contrast, due to the additional factor u, the left side
of (59c) is invariant under time inversion. On the right side, Es is
invariant according to (60a), while u changes sign. Consequently

Ba = −Br (60b)
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must hold. The fields (57) comply with these requirements.
In case of v = v̇ = 0 one gets B(v)

s = B(a)
s = E(a)

s = 0 and γ = 1.
Then E(v)

s assumes the well-known form

E(v)
s (x) (57a)= 1

4πε0
qn

R2

∣∣∣
τs

(61)

of Coulomb’s law. Inbetween the charges q and Q the retarded
force

m
dγu

dt = QEr
(61)= 1

4πε0
Qqn

R2

∣∣∣
τr

(62a)

and the advanced force

m
dγu

dt = QEa
(61)= 1

4πε0
Qqn

R2

∣∣∣
τa

(62b)

are acting. Addition of the two equations, and division by 2 gives
the result

m
dγu

dt = 1
2 Q(Er + Ea)

(61)= 1
2
Qq

4πε0

( n

R2

∣∣∣
τr

+ n

R2

∣∣∣
τa

)
. (62c)

Since the end of the nineteenth century, these equations are inter-
preted differently. According to one point of view, the advanced
fields are nothing but an artifact of the theory, don’t exist at all
in reality, and the observed force is caused alone by the retarded
field, which is described correctly by (62a).
Obviously it’s impossible by measurements of the force in the

static case, to decide whether (62a) or (62c) is correct; both equa-
tions predict the identical force. In contrast, the observations of
the fields of moving and accelerated charges seem to be evidence
against the existence of advanced fields: If a flash of light is emitted
in direction of a mirror, then the reflected flash is always observed
after the emission, but never before the emission. Still there is
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an alternative to Maxwell’s electrodynamics, namely action-at-a-
distance electrodynamics, which has been proposed and worked
out in particular by Gauß, Schwarzschild, and Frenkel (see [6, 7]
and the references cited in these articles). This theory claims to
be able to describe all observable electrodynamic phenomena as
good as Maxwell’s theory. In action-at-a-distance theory, fields are
no self-contained physical objects. Instead this theory only knows
charged particles, which interact due to action-at-a-distance forces.
Fields are considered to be only computing aids on the theorist’s
paper. We will not delve into that theory. But we want to keep
the option for both types of electrodynamics. Therefore we will
continue to describe retarded fields and advanced fields as well.
In the case v 6= 0 and v̇ = 0, B(v)

s increases proportional to
v. The position r of the source, it’s velocity v, and the point
of observation x define the plane of the left sketch in Fig. 2. In
the sketched example, B(v)

s ∼ −qn× v is directed for positive
charge (q > 0) of the source out of the drawing plane vertically
up. E(v)

s ∼ n ∓ v/c lies in the drawing plane. Only in the high-
relativistic case v → c the direction of E(v)

s can be significantly
different from n.

The power, which is transported by the fields Es and Bs through

x

R

r

n

v

x

R

r

ϑn v̇

Fig. 2 : Velocity and acceleration of the source
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a surface f , is equal to S · f . Thereby

S = 1
µ0

Es ×Bs
(58)= ± 1

cµ0
Es×(n× Es) (63)

is the Poynting-vector. It is zero in the static case v = v̇ = 0
because of Bs = 0. But also in case v 6= 0 and v̇ = 0, no power is
radiated by the source, because due to n× n = 0 we have in this
case

S ∼ (±)(∓)(n∓ v/c)×(n× v/c) =
= − n×(n× v/c)± v×(n× v/c2) .

The first term is vertical to n, i. e. this part of the power flows
around the source, but not away from the source nor towards the
source. The second term, which only in the hight-relativistic case is
of same order of magnitude as the first, has a component different
from zero, which is parallel to n. But if we integrate over a surface
of a sphere with the source in the center, then the contribution in
direction of n is compensated by an inversely directed stream of
energy of same value, but direction −n. The net stream of energy
through the surface is zero. The second term describes as well only
the field-energy which is carried along by the source. No energy is
radiated or absorbed.

Alternative explication: We start from the fact, that a charge at
rest does not radiate energy. To describe a source with constant
velocity v (no acceleration), we transform ourselves into a coor-
dinate system moving with constant velocity −v relative to the
source. This transformation cannot change the physical fact, that
the source is not radiating energy.

The issue can be made plausible by still another argument: Let’s
assume, that a charge in constant motion (no acceleration) would
radiate energy. If the theorem of energy conservation holds, then
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the radiating charge must loose kinetic energy, and come to rest
eventually. But that would mean, that one of the infinitely many
inertial systems with constant relative velocity is special, because
this one would be the particular inertial system in which radiating
charges eventually come to rest. That scenario cannot be reconciled
with special relativity theory.

In case v̇ 6= 0, in addition to the velocity fields E(v)
s and B(v)

s the
acceleration fields E(a)

s and B(a)
s appear. They are proportional to

R−1, while the velocity fields are proportional to R−2. Above we
have stated, that velocity fields do not contribute to the radiation
of energy. We could have arrived at that result by a much simpler
argument: If a source radiates energy, then the stream of energy
per area will decrease at large distance R from the source like R−2

(because the surface of a sphere with radius R is 4πR2). But from
(57a) and from (57c) one can immediately conclude:

S ∼ Es×Bs =
(
E(v)
s + E(a)

s

)
×
(
B(v)
s + B(a)

s

)
=

= E(v)
s ×B(v)

s︸ ︷︷ ︸
∼ R−4

+ E(v)
s ×B(a)

s︸ ︷︷ ︸
∼ R−3

+ E(a)
s ×B(v)

s︸ ︷︷ ︸
∼ R−3

+ E(a)
s ×B(a)

s︸ ︷︷ ︸
∼ R−2

(64)

If we want to investigate the radiation of energy, we only need to
consider the acceleration fields, which for this reason also are called
radiation fields. The Poynting-vector built from them at position
x and time t is

S = E(a)
s ×H(a)

s
(58)= ± 1

cµ0
E(a)
s ×

(
n(τs)×E(a)

s

)
|S| = 1

cµ0
|E(a)

s |2 , n · S 6= 0 . (65)

Note the negative sign of the advanced Poynting-vector: The
advanced field propagates against the “usual” direction of time
from the future into the past. Viewed through the glasses of
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the usual direction of time, the advanced radiation fields form a
spherical wave, which — coming from infinity — is collapsing onto
the position of the source.
All formulas stated thus far are valid for arbitrary velocities,

including relativistic velocities, of the source q. The non-relativistic
approximations of the radiation fields can easily be extracted from
(57) and (58):

E(a)
s (x) = 1

4πε0
q n× (n× v̇)

Rc2

∣∣∣
τs

(66a)∣∣∣E(a)
s (x)

∣∣∣ = 1
4πε0

|q sin(n, v̇)|
Rc2

∣∣∣
τs

(66b)

cB(a)
s (x) = ±n(τr)×E(a)

r (x) (66c)
if v/c� 1 , with t = τs ±R/c = τr +R/c = τa −R/c

E(a)
s lies in the non-relativistic case in the plane which is defined

by n and v̇ (see the right sketch in fig. 2), is vertical to n, and
the angle (E(a)

s , v̇) is always ≥ π/2. In the example of fig. 2 the
direction of E(a)

s is in case of q > 0 approximately 8 o’clock. The
retarded vector B(a)

r is in this case directed vertically up out of the
drawing plane, and the advanced vector B(a)

a is directed vertically
down into the drawing plane.
To compute the radiated power dP , which is going through an

infinitesimal area dϑ dϕ in the distance R from the source, we
define a system of spherical coordinates such, that the source is
at the origing (r = 0), and the polar axis ϑ = 0 is parallel to v̇,
see the right sketch of figure 2. (Thus this is an accelerated coor-
dinate system. But that’s of no relevance for our non-relativistic
considerations.) We have

dP
R2 sinϑ dϑ dϕ = |E

(a)
s |2

cµ0

(66a)= 1
cµ0

(
q v̇

4πε0Rc2

)2
sin2 ϑ . (67)
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Note the dependence of the radiated power on the direction of
acceleration, described by sin2 ϑ. The total radiated power is equal
to the integral

P =
π∫

0

dϑR2 sinϑ
2π∫
0

dϕ 1
cµ0

(
q v̇

4πε0Rc2

)2
sin2 ϑ

= q2v̇2

8πε0c3

π∫
0

dϑ sin3 ϑ = 2q2v̇2

3c3(4πε0) . (68a)

This formula was found in 1897 by Larmor. To derive the result for
the relativistic case v → c, one could try to repeat the computation
with the relativistic fields (57). But there is a much simpler alterna-
tive. We are looking for a relativistically covariant equation (i. e. an
equation which is composed exclusively of Lorentz-tensors), which
reduces in the limit v � c to (68a), and which shall furthermore —
with regard to (57) — shall only depend on v and v̇. If the non-
relativistic formula (68a) is written in in the form

P = 2q2

3c3(4πε0)m2

(dp

dt
)2

,

withm being the mass of the charged particle and p it’s momentum,
then it seems plausible that the relativistic generalization of (68a)
is

P = − 2q2

3c3(4πε0)m2

(dp
dτ
)2

. (68b)

dp/ dτ is the derivative of the particle’s four-momentum with
respect to it’s proper time τ . To check the result, we insert p =
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(E/c,p) = γ(mc,mv) and get

P = − 2q2

3c3(4πε0)
[(mc
mc

dγ
dτ
)2
− m

m

(dγv

dτ
)2]

≈ 2q2

3c3(4πε0)
(dv

dt
)2

for v
2

c2 � 1 .

3. Radiation-backreaction: energy conservation

In the previous section we computed the retarded and advanced
fields radiated by an accelerated point-charge. Where does the
radiated energy come from? It can come only from the radiating
particle’s kinetic energy, i. e. the radiating particle must be decel-
erated. This decelerating action is called radiation back-reaction.

Our discussion of radiation back-reaction will follow by and large
Jackson [4, chap. 16]. If a charged particle is accelerated by an
external force F ext, then it’s kinetic energy is increased. At the
same time, it looses energy due to radiation. This part of the
energy must be supplied by the external force as well. Therefore
the force F ext can formally be considered to consist of two parts:
One part F acc, which is accelerating the particle, and one part
F rad, which is supplying the radiated energy.

In the following non-relativistic investigation we assume, that the
velocity v 6= 0 of the charged particle is different from zero. This
does not reduce the general validity of our considerations, because
we can always perform the investigation in an inertial system, in
which v 6= 0 holds. The work done by F ext = F acc + F rad in the
time interval t2 − t1 is

t2∫
t1

dt (F acc + F rad) v
(68a)=

t2∫
t1

dt
(
mv̇v + 2q2v̇2

3c34πε0

)
. (69)
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To derive an explicit expression for F rad, we integrate the second
term by parts:

t2∫
t1

dtF rad·v = 2q2v̇ · v
3c34πε0

∣∣∣∣t2
t1

−
t2∫
t1

dt 2q2v̈ · v
3c34πε0

(70)

In the sequel we will concentrate on those cases, where the first
term on the right side is zero. This will be the case, if either
the external force is acting only during a limited time interval
t′1 . . . t

′
2 (then one can choose t1 < t′1 and t2 > t′2, and consequently

v̇(t1) = v̇(t2) = 0), or if the observed process is periodic (then the
points of time t1 and t2 can always be chosen such, that the first
term on the right side again is zero). If for example an electron is
accelerated up and down in an antenna, then v = 0 holds at the
points of return. If the particle is accelerated on an elliptic orbit,
then there are two points of time with v̇ · v = 0. In all of these
cases, the integrands of the remaining terms must be equal:

F rad·v = −2q2v̈ · v
3c34πε0

|F rad| cos(F rad,v) = − 2q2 |v̈|
3c34πε0

cos(v̈,v) (71)

This must hold for arbitrary angles (F rad,v). Consequently the
angles (F rad,v) and (v̈,v) must always be equal. If the direction of
v̈ would differ from the direction of F rad then the question would
arise: why just this direction? Regarding the symmetry of the
model, that question can not be answered. Thus the both vectors
must be parallel, resulting into the equation

F rad = − 2q2v̈

3c34πε0
. (72)
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With this expression, the particle’s equation of motion becomes

F = F acc + F rad = mv̇ − 2q2

3c34πε0
v̈ . (73)

F rad depends only on v̈ and on the modulus of the accelerated
particle’s charge.

In this equation, the limitations of the classicle model of radiation
and radiation-backreaction become clearly visible. First, it has for
F = 0 besides the reasonable solution v̇ = v̈ = 0 also the senseless
“run-away” solution v̇ = exp{+t 3c34πε0m/(2q2)}. The senseless
solution can be avoided due to fixing in addition to position and
velocity of the radiating charge at time t0 also v̇(t → ∞) = 0 as
the third boundary condition. With regard to that, Dirac [5, page
158] remarked in his discussion of equation (73): “We now have
a striking departure from the usual ideas of mechanics. We must
obtain solutions of our equations of motion for which the initial
position and velocity of the electron are prescribed, together with its
final acceleration, instead of solutions with all the initial conditions
prescribed.”
But (73) has even worse consequences: In the article just cited,

Dirac considered the acceleration of a charge due to a force which
is acting only for a very short moment (i. e. a pulse). Thereby he
found [5, equation (35)] that the electron is already accelerated
before the pulse arrives at the particle’s position. This is often called
“pre-acceleration” in the literature. A discussion worth reading on
the strange results and paradoxa, which are following from the
classical treatment of radiation and radiation-backreaction, has
been published by K.Brown [8].
Given these absurd results, one may try to evade backwards

or forwards. The backwards evasion goes along these lines: Our
derivation of (73) is based on Larmor’s formula (68a), which again
has been derived from the formulas (57) for the electromagnetic
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field of a charged point-particle q. Medina [9] gives good arguments
for the assertion, that the assumption of charged point-particles
(with the notion point used in the strict mathematical sense) is
irreconcilable with classical electrodynamics. Under the premise
that in a classical treatment the radius of a charged particle must
never assumed to be smaller than the classical radius (95), Medina
[9, (96)] finds instead of (72) in non-relativistic approximation the
following radiation-backreaction force:

F rad = − 2q2

3c34πε0

(
v̈ − v

(v̇ · F acc)
c2

)
.

The forwards evasion consists in challenging any attempt of a
classical description of radiation and radiation-reaction from the
outset. We know that electromagnetic energy is not emitted in
form of continuous waves, but in form of photons. If an accelerated
charge is emitting photons in irregular time intervals, then it will
feel some recoil at each photon emission, and hence it’s acceleration
is ill defined. If this point of view is assumed, then we should for
the sake of consistency abandon the notion of the “orbit” or “path”
r(t) of a particle completely, like Heisenberg [10] did in his seminal
work on quantum mechanics. Then consequently the notions of
the particle’s velocity v(t), acceleration v̇(t), and the derivative of
acceleration v̈(t) become obsolete.
Equation (73) has been discovered by Abraham and Lorentz.

These scientists did not content themselves with that formula.
Instead they looked for an explanation of radiation-backreaction,
which should be derived straight forward from Maxwell’s equations
of electrodynamics. The theory, at which they eventually arrived,
will be discussed in the next section.
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4. Radiation-backreaction of an extended charge

Abraham and Lorentz considered an accelerated electron, radiating
electromagnetic energy. They did not treat the electron as a
charged point-particle; instead they assumed that it’s charge is
distributed over an extended range of space:

−e =
∫

d3x ρ(x) = −1.6 · 10−19C (74)

The integral must be extended over all space, in which the electron’s
charge density ρ(x) differs significantly from zero.
The radiation back-reaction is in the model of Abraham and

Lorentz identical to the Lorentz force, which the accelerated elec-
tron exerts onto itself due to the retarded fields E(a)

r and B(a)
r

which it is radiating. It is characteristic for the work of Abraham
and Lorentz, that they considered the advanced fields E(a)

a and
B(a)
a as unphysical artifacts of the theory, and discarded them from

the outset. If no other charged particles are within the volume over
which the integral is extended, then that force can be written as

F (a) =
∫

d3x (ρE(a)
r + j ×B(a)

r ) . (75)

The solution of this integral is described in Jackson [4, chap. 16]. In
the sequel we content ourselves with a non-relativistic description
(v � c), and apply an inertial system, in which the electron’s
velocity is so small, that the second term in (75) is negligible
versus the first (j ×B(a)

r � ρE(a)
r ). Such a reference system can

always be defined, at least for a short time interval. If E(a)
r is

written as a function of the scalar potential Φ(a)
r and the vector

potential A(a)
r , then under these premises

F (a) =
∫

d3x ρE(a)
r = −

∫
d3x ρ(∇Φ(a)

r + Ȧ
(a)
r ) (76)
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holds. Into this equation we must insert the retarded potentials

Aρr(x) =(36e) µ0
4π

∫
d3y

+∞∫
−∞

dty
jρ(y)
R

δ(t− ty −R/c) (77)

with R ≡ x− y , R ≡ |R| .

These potentials allow for the finite time t− ty > 0 needed for the
propagation of the fields from the point y to the point x. Due
to the delta function, the integral over ty can easily be solved.
In a non-relativistic description with (jσ) ≈ (ρc, ρv), the three-
dimensional potentials can be written as follows:

Φ(a)
r (t,x) = 1

4πε0

∫
d3y

ρ(tr,y)
R

A(a)
r (t,x) = µ0

4π

∫
d3y

j(tr,y)
R

 with tr = t− R

c
(78)

In the model of Abraham and Lorentz the electron is extended
over a finite, but very small volume. In (95) we will compute
the “classical radius” of the electron as ≈ 3 · 10−15m. Therefore
t−tr = R/c is a very short time interval of about 10−23s. Therefore
it is reasonable to expand the retarded integrand of (78) in a Taylor
series around t (to be precise: before t > tr):

jα(tr,y) = jα(t−R/c,y) =
∞∑
n=0

(−R/c)n

n!
dn

dtn j
α(t,y) (79)

We insert the retarded potentials (78) with the expansion (79) into
(76), and make use of c−2 = ε0µ0:

F (a) = − 1
4πε0

∞∑
n=0

(−1)n

n! cn
∫

d3x

∫
d3y ρ(t,x)

[
∇Rn−1 dnρ(t,y)

dtn + 1
c2

d
dt R

n−1 dnj(t,y)
dtn

]
(80)
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For the moment being we ignore the second term in the square
brackets. Assuming that ρ(x) is a rigid structure with spherical
symmetry, for n = 0 the first term results into

− 1
4πε0

∫
d3x

∫
d3y ρ(t,x) ρ(t,y)∇R−1 = 0 , (81)

because there is — due to the spherical symmetry — for each
positive contribution to the integral a negative contribution of
same value. For n = 1 the first term in in the square brackets of
(80) again is zero due to the factor ∇R1−1 = 0. Using

∇Rn−1 = (n− 1)Rn−2 R

R
= (n− 1)Rn−3R

we get

F (a) = − 1
4πε0

∞∑
n=0

(−1)n

n! cn
∫

d3x

∫
d3y ρ(t,x)

[ n!
(n+ 2)! c2 (n+ 1) ·

·Rn−1R
dn+2ρ(t,y)

dtn+2 + 1
c2

d
dt R

n−1 dnj(t,y)
dtn

]
. (82)

The derivatives with respect to t can be shifted out of the square
brackets because of (35):

F (a) = − 1
4πε0

∞∑
n=0

(−1)n

n! cn+2

∫
d3x

∫
d3y ρ(t,x) dn+1

dtn+1

[ 1
(n+ 2) ·

·Rn−1R
dρ(t,y)

dt +Rn−1 j(t,y)
]

(83)

Using the equation of continuity

d
dt ρ(t,y) = −∇y · j (t,y) ,
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which is describing the conservation of charge, we find

F (a) = − 1
4πε0

∫
d3x ρ(t,x)

∞∑
n=0

(−1)n

n! cn+2
dn+1

dtn+1

∫
d3y Rn−1

[
− R

(n+ 2)∇y · j (t,y) + j(t,y)
]
. (84)

At the boundaries of the volume, over which the integral over y is
extended, ρ resp. j is zero (resp. negligible). Partial integration of
the first term over y thus gives besides some constant factors

−
∫

d3y Rn−1 R

(n+ 2)∇y · j (t,y) =

= +
∫

d3y (j · ∇y)Rn−1 R

(n+ 2)

=
∫

d3y
(
− (n− 1)Rn−3(j ·R) R

(n+ 2) −R
n−1 j

(n+ 2)
)
.

Therefore the y-integral over the square brackets of (84) is∫
d3y Rn−1

[
. . .
]

=

=
∫

d3y Rn−1
[
− (n− 1)R−2(j ·R) R

(n+ 2) + (n+ 1)j
(n+ 2)

]
.

As we are assuming a rigid charge distribution,

j(t,y) = ρ(t,y)v(t) (85)

holds. As we furthermore are assuming a spherical charge distribu-
tion, all components of the integrand, which are perpendicular to v,
mutually compensate upon integration over x and y. Therefore the
integral’s value remains unchanged, if the factor R in the square
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brackets is multiplied by the unit vector v/v:∫
d3y Rn−1

[
. . .
]

=
∫

d3y Rn−1ρ(t,y)v(t) ·

·
[
− (n− 1)

(n+ 2)
(v ·R)2

(vR)2 + (n+ 1)
(n+ 2)

]
(86)

As R assumes under the integral all directions with equal frequency,
(v ·R)2/(vR)2 may be replaced by it’s mean value

〈(v ·R)2

(vR)2

〉
= 1

4π

π∫
0

sinϑ dϑ
2π∫
0

dϕ cos2(v,R) =

= 1
2

[
− cos3 ϑ

3

]π
0

= 1
3 .

This results into

(86) =
∫

d3y Rn−1ρ(t,y)v(t) 2
3 .

Consequently the field radiated by the electron exerts onto the
electron itself the force

F (a) =
∞∑
n=0

F (a)
n (87a)

F (a)
n =(84) −4

3 U
(a)
n

(−1)n

n! cn+2
dn+1

dtn+1 v(t) (87b)

U (a)
n ≡ 1

2

∫
d3x

∫
d3y

ρ(t,x) ρ(t,y)
4πε0R1−n . (87c)

U
(a)
n could be shifted before the differential quotient, because we

are assuming a rigid form and charge distribution of the electron.
Therefore U (a)

n does not depend on t. The force is zero, if all
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derivatives dn+1v/dtn+1 are zero, i. e. if the electron is at rest or
is moving with constant velocity. In the limit of a point-particle
electron (R → 0), U (a)

0 would diverge, U (a)
1 is independent of R,

and U (a)
n with n ≥ 2 would converge to zero. As we are assuming an

extended, but quite small electron with radius of about 3 · 10−15m
(reasons for this assumption will be given in a moment), the terms
with n ≥ 2 are different from zero, but they are quite small. The
result is dominated by the two terms with n = 0 and n = 1. This
becomes obvious, if the orders of magnitude of the terms n and
n− 1 (with n ≥ 2) are compared:

|F (a)
n |

|F (a)
n−1|

≈
R
∣∣∣ dn+1

dtn+1 v(t)
∣∣∣

c
∣∣∣ dn

dtn v(t)
∣∣∣ ≈

≈ 10−23 if
∣∣∣ dn+1

dtn+1 v(t)
∣∣∣/∣∣∣ dn

s dtn v(t)
∣∣∣ ≈ 1 (88)

Due to the small value of R, all terms with n ≥ 2 are negligible in
most cases. Thus we find the radiation back-reaction

F (a) = F
(a)
0 + F

(a)
1 = −4

3
Us 0
c2 v̇ + 4

3
Us 1
c3 v̈ . (89)

The term F
(a)
0 essentially is the electron’s electrostatic self-energy

U
(a)
0

(87)= 1
2

∫
d3x

∫
d3y

ρ(t,x) ρ(t,y)
4πε0R

. (90)

This is the work required to bring together the charge of the
electron from infinite distance against the electrostatic repulsion
to it’s position within the electron.
Using

U
(a)
1

(87)= 1
2

∫
d3x

∫
d3y

ρ(t,x) ρ(t,y)
4πε0R1−1 = e2

8πε0
, (91)
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the radiation back-reaction may be written as

F (a) ≈ −4
3
U

(a)
0
c2 v̇ + 2e2

3c34πε0
v̈ . (92a)

This should be compared with

F
(73)= F acc + F rad = mv̇ − 2e2

3c34πε0
v̈ (92b)

The signs are different, because F was defined in (73) as an external
force acting on the electron, and thus is acting in opposite direction
to the back-reaction force F (a) exerted by the electron upon itself.
The both last terms in (92) are identical. Thus it seems reasonable
to mutually identify as well the both terms which are proportional
to v̇. The “electrostatic mass” of the electron is defined by

me ≡
4
3
U

(a)
0
c2 , (93)

resulting into the equation

F
(a)
0 = −mev̇ . (94)

Some years later (namely in 1905) Einstein discovered the relation
E = mc2 of energy and inertial mass. The inertial mass me found
by Abraham and Lorentz differs from Einstein’s result by the
strange factor 4/3. Regarding the explanation and elimination of
this factor we again refer to the work of Medina [9]. Besides that
issue, the theory of Abraham and Lorentz does not need a separate
mass parameter, but can explain the electron’s inert mass by the
self-interaction of it’s charge! The “classical radius” of the electron
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re is defined as weighted average of 2R in the integral (90):

e2

4πε0re
≡
∫

d3x

∫
d3y

ρ(t,x) ρ(t,y)
4πε0 2R

(90)= U
(a)
0

=⇒ re = 4
3

e2

4πε0mec2 ≈
4
3 2.8 · 10−15m ≈ 3.8 · 10−15m . (95)

This value is found, if the experimentally observed value me = 9.1 ·
10−31kg is inserted. If instead of me the mass m = U

(a)
0 /c2 = 9.1 ·

10−31kg according to Einstein is inserted, one gets re ≈ 2.8·10−15m.
At the end of the nineteenth century, the electron model of

Abraham and Lorentz was a remarkable progress of the theory,
because it supplied plausible explanations for
∗ the inert mass of the electron, and for
∗ the radiation back-reaction.
The close connection of both explications enforced their persuasive
power. Still there are several severe flaws. The two most obvious
and most important are:
∗ Until today (2013) no force is known, which could hold together
the electron against the electrostatic repulsion of it’s constituents
within the small volume of 4πr3

e/3 ≈ 10−43m3.
∗ There is by today convincing experimental evidence, that the
radius of the electron (if it should have finite size) must be
smaller than 2 · 10−22m [11]. (Remarkably, this limit does not
result from high-energy lepton collisions, which can restrict the
electron radius to about < 10−18m only, but from evaluation
of the electron’s anomalous magnetic moment.) The classical
radius of the electron is larger by more than a factor 107 than
compatible with observation.
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