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Time Dilation of accelerated Clocks

The definitions of proper time and proper length in General Rela-
tivity Theory are presented. Time dilation and length contraction
are explicitly computed for the example of clocks and rulers which
are at rest in a rotating reference frame, and hence accelerated
versus inertial reference frames. Experimental proofs of this time
dilation, in particular the observation of the decay rates of acceler-
ated muons, are discussed. As an illustration of the equivalence
principle, we show that the general relativistic equation of motion
of objects, which are at rest in a rotating reference frame, reduces
to Newtons equation of motion of the same objects at rest in an
inertial reference system and subject to a gravitational field. We
close with some remarks on real versus ideal clocks, and the “clock
hypothesis”.

1. Coordinate Diffeomorphisms

In flat Minkowski space, we place a rectangular three-dimensional
grid of fiducial marks in three-dimensional position space, and
assign cartesian coordinate values x1, x2, x3 to each fiducial mark.
The values of the xi are constants for each fiducial mark, i. e. the
fiducial marks are at rest in the coordinate frame, which they
define.

Now we stretch and/or compress and/or skew and/or rotate the
grid of fiducial marks locally and/or globally, and/or re-name the
fiducial marks, e. g. change from cartesian coordinates to spherical
coordinates or whatever other coordinates. All movements and
renamings of the fiducial marks are subject to the constraint that
the map from the initial grid to the deformed and/or renamed
grid must be differentiable and invertible (i. e. bijective), and that
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the inverse map as well must be differentiable. If the shifts and
renamings of the fiducial marks are subject to that constraint,
then the map from the primary to the final coordinate system is
called a diffeomorphism. The condition that the maps must be
invertible and differentiable makes sure that the new coordinate
grid is “smooth” and free of singularities.

We also allow for time-dependent diffeomorphisms. Such time-de-
pendent diffeomorphisms are parametrized by the time t displayed
by a clock, which is at rest in the primary cartesian coordinate
system with flat Minkowski metric, from which the diffeomorphism
starts.

2. Proper Time and Proper Length

To all fiducial marks equally built standard clocks are fixed, which
by definition read the proper time τ at these points of space. We
will specify in section 6, what qualifies a clock to be a standard
clock.

In the primary flat Minkowski space, proper time is identical at
all fiducial marks, and equal to the coordinate time t ≡ x0/c of the
inertial cartesian coordinate system, with c being the speed of light
in vacuum. After the diffeomorphism, the rate at which proper
time is passing is determined by the two conditions (2) and (4)
stated below. Proper time is still displayed at any point in space
by the standard clock fixed to this point of space. But now proper
time may be different at different points in space. And proper time
τ may differ from coordinate time t ≡ x0/c. Furthermore the run-
rates of coordinate time may be different for different coordinate
systems. The relation between coordinate time t and proper time
τ will be clarified in (3) below. c is assumed to have the same
value everywhere in space at any time, and to be independent of
the coordinate system, i. e. a constant of nature.
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For the following, we stipulate that greek space-time indices

µ, ν, ρ, . . . have to be summed over 0, 1, 2, 3 automatically, whenever
they show up twice in a product. Latin space indices i, j, k, . . .
have to be summed over 1, 2, 3 automatically, whenever they show
up twice in a product.
Before the diffeomorphism (i. e. in flat Minkowski-space), the

metric at any fiducial mark is

(gµν) = (ηµν) = diagonal(1,−1,−1,−1) . (1)

After the diffeomorphism, the metric gµν(x) is defined such, that
for the line element

ds2 = gµν dxµ dxν︸ ︷︷ ︸
after the diffeomorphism

= ds2︸︷︷︸
before the diffeomorphism

holds at any fiducial mark. (2)

ds is the (under diffeomorphisms invariant) differential of a four-
dimensional length in space-time. A standard clock with constant
spatial coordinates (i. e. at rest at some point of space) by definition
displays the proper time at this point of space. Its line element is

if dx1 = dx2 = dx3 = 0 :

ds2 (2)= g00(dx0)2 ≡ g00c
2 dt2 = c2 dτ2 . (3a)

In another coordinate system, in which the same clock is moving,
the relation between proper time τ of the moving clock (i. e. the
time displayed by this clock) and coordinate time t becomes

ds2 = c2 dτ2 =(2) gµν dxµ dxν =
= g00c

2 dt2 + 2g0icdtdxi + gij dxi dxj . (3b)

(2) does not completely determine the metric. As a further
constraint (which still does not completely determine the metric),
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we require that for a light signal in vacuum the invariant line
element is zero:

light signal : ds2 = gµν dxµ dxν =
= g00c

2 dt2 + 2g0ic dt dxi + gij dxi dxj = 0 (4)

Consequently we have dτ (3b)= 0 for a clock moving at the speed
of light in vacuum. This is a purely theoretical result, of course,
because no clock can be accelerated to that speed.
Following Cook [1], we define the proper length differential d`

by means of the proper time differential and the constant c :

d` ≡ cdτ (5a)

To implement d` practically at a certain fiducial mark F , a mirror
M is placed in arbitrary direction from F . Then we let a light
signal run from F to M and back to F . The mirror is shifted, until
the time between emission and absorption of the light signal at
point F , as measured by the standard clock fixed at F , is

2 dτ = 2× (distance F to M)
c

= 2 d`
c

. (5b)

d` is determined due to (5) by means of a light signal, whose
invariant space-time line element is zero:

light signal: ds2 (2)= gµν dxµ dxν (4)= 0 (5)= c2 dτ2 − d` 2 (6)

This is a quadratic equation for dt = dx0/c, see (4). Its solutions
are

dx0 = − g0i
g00

dxi ±
√
g0ig0j
g2

00
dxi dxj − gij

g00
dxi dxj . (7)
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Inserting this expression into (5b), we get the same expression
for the signal running from F to M , and for the reflected signal
running from M to F , but the signs of the dxi are changed. Thus
the total time for the signal running from F to M and back to F ,
measured by the standard clock fixed at F , is

2 dτ = total run-time of the light signal =
(3a)=
√
g00
c

(dx0
FM + dx0

MF ) (7)= +2
c

√(g0ig0j
g00

− gij
)

dxi dxj . (8)

We decided for the positive square root for the physical reason,
that dτ shall be ≥ 0 . Note that our signs differ from Cook’s [1],
because Cook is using triple-plus convention for Minkowski metric,
while we are using triple-minus convention. Thus we reasonably
get in case of Minkowski metric dτ ∈ R.
Inserting (8) into (6), we get the proper length differential

d` =
√
−
(
gij −

g0ig0j
g00

)
dxi dxj . (9a)

(8) is merely the runtime of the light signal. The general expression
for the proper time differential is

dτ =(3b)
√
g00 dt2 + 2g0i

c
dtdxi + gij

c2 dxi dxj

=(3a) √g00 dt if dx1 = dx2 = dx3 = 0 .
(9b)

These formulas for proper length and proper time are valid in
arbitrary coordinate systems with arbitrarily curved space-time,
provided that the map from cartesian coordinates in flat Minkowski
space-time to the new coordinates in possibly curved space-time is
a diffeomorphism.
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If two events A and B happen on the worldline of a clock, then
the proper time interval τ(B)− τ(A), measured by this clock, is
given by the line integral

τ(B)− τ(A) =
∫

pathAB

dτ (10)

along the clocks worldline, with dτ according to (9b). Note that
the proper time interval does depend on the worldline of the clock.
Both events A and B may also be on the worldline of another clock,
but in-between the two events the worldlines of the two clocks may
differ. Then the proper time interval τ(B)− τ(A) may be different
for these two clocks. (Remember the well-known “twin paradox”.)
The proper length interval between two space points F and M

is given by the line integral

`FM = 1
2

( ∫
pathFM

d` +
∫

pathMF

d`
)

=
∫

pathFM

d` (11)

along the worldline of a light signal sent from F to G and mirrored
back to F , with d` according to (9a). Note that the definition (5)
assumes that the local metric gµν(x) at any point on the path of
the light signal must still be the same when the mirrored signal is
moving from M to F as it was when the signal moved from F to
M . Therefore the two line integrals in (11) could be reduced to
one. For the same reason, the notion “proper length” is restricted
to space intervals in which the metric does not vary appreciable
while the light signal is moving forth and back. No such limitation
exists for the notion “proper time”.

Note furthermore that the notion of proper length is ambiguous,
if there exist different possible paths for the light signal, e. g. if
there are “gravitational lenses” between F and M . In that case the
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notion “proper length interval between F andM” is only defined, if
the world line of the light signal between F and M is specified, like
the notion “proper time interval between A and B” is only defined,
if the world line of the clock moving from A to B is specified.

3. A rotating Reference Frame

As an application of (9), we define in flat Minkowski space an
inertial reference frame with cylinder coordinates (ctI , ρI , θI , zI).
Furthermore we define a rotating (hence not inertial) reference
frame with cylinder coordinates (ctR, ρR, θR, zR) such that

t ≡ tI = tR

ρ ≡ ρI = ρR

θI = θR + ωt

z ≡ zI = zR . (12)

Thus the only difference between the two systems is, that the
θR = 0 axis is rotating versus the θI = 0 axis with angular velocity
ω in the z = 0 plane. The invariant line element becomes in these
two reference systems

ds2 = c2 dt2 − dρ2 − ρ2 dθ2
I − dz2 (13a)

= c2 dt2 − dρ2 − (ρ2 dθ2
R + 2ρω dt ρdθR + ρ2ω2 dt2)− dz2

=
(
1− ρ2ω2

c2

)
c2 dt2 − 2ρω

c
cdt ρdθR−

− dρ2 − ρ2 dθ2
R − dz2 . (13b)

The non-zero elements of the metric tensors are

gI00 = 1 , gI11 = −1 , gI22 = −1 , gI33 = −1 (14a)
gR00 = 1− ρ2ω2/c2 , gR11 = −1 , gR22 = −1 ,
gR33 = −1 , gR02 = gR20 = −ρω/c . (14b)
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Note that we took care to get all components of the metric tensor
dimension-less, i. e. we identified ρ dθ, but not dθ, as a component
of ds with the correct dimension [length].
The metric (gIµν) of the inertial coordinate system is “time-

orthogonal”, because all gI0i are zero. The metric (gRµν) of the
non-inertial rotating system is called “not time-orthogonal” or
“asynchronous”, because there are some gR0i 6= 0 . In a time-orthog-
onal system, a global time can be defined, and for any two events it
can be uniquely stated whether they happen simultaneously, or not.
Different time-orthogonal systems, however, will in general answer
the question of simultaneity of the identical events differently. In
an asynchronous system, the question of simultaneity of two events,
which happen at different points in space, can not be answered
uniquely (not even within this single coordinate system!), because
in such systems no global time can be uniquely defined.
Inserting (14) into (9a) and (9b), we get

d`I =(9a)
[

dρ2 + ρ2 dθ2
I + dz2

]1/2
(15a)

d`R =(9a)
[

dρ2 +
(
1− ρ2ω2

c2

)−1
ρ2 dθ2

R + dz2
]1/2

(15b)

dτI =(9b)
[

dt2 − 1
c2 dρ2 − ρ2

c2 dθ2 − 1
c2 dz2

]1/2
(15c)

dτR =(9b)
[(

1− ρ2ω2

c2

)
dt2 − 2ρ2ω

c2 dtdθ2
R−

− 1
c2 dρ2 − ρ2

c2 dθ2
R −

1
c2 dz2

]1/2
. (15d)

If only lengths with ρ = constant and z = constant are measured,
and if the clocks are at rest in the respective coordinate systems,
this simplifies to

d`I =(15a) ρdθI if dρ = dz = 0 (15e)
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d`R =(15b)
(
1− ρ2ω2

c2

)−1/2
ρdθR if dρ = dz = 0 (15f)

dτI =(15c) dt if dρ = dθI = dz = 0 (15g)

dτR =(15d)
[
1− ρ2ω2/c2

]1/2
dt if dρ = dθR = dz = 0 . (15h)

In (15f) and (15h) the well-known phenomena of contraction of
a moving ruler and dilation of a moving clock are visible. As
ρω = v is just the (position-dependent!) relative velocity v of the
two coordinate systems, time dilation and length contraction are
determined by the Lorentz factor

γ ≡
(
1− v2

c2

)−1/2
. (16)

A clock, which is at rest in the rotating coordinate system, is
accelerated by

a = v2/ρ = ρω2 (17)

in the inertial reference system, and its velocity in the inertial
system is v = ρω. Note the remarkable fact, that time dilation
(15h) and length contraction (15f) would have exactly the same
values, if the second coordinate system would not be rotating, but
would be a second inertial system, which is moving linearly with
velocity v versus the first inertial system. This result is caused by
our assumption that the time is measured by “standard clocks” as
specified below in section 6 .

4. Equivalence Principle

Within a sufficiently small laboratory, its impossible to find out
by whatever type of measurement or physical experiment inside
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the laboratory (without looking out of the window), whether a
gravitational field observed inside the laboratory is caused by
some mass concentration outside the laboratory, or by mechanical
acceleration of the laboratory in a region of space with no significant
gravitation.

Einstein’s Equivalence Principle (EP) [2] :
All laws of nature are identical in an inertial reference
system in a homogeneous gravitational field with gravi-
tative acceleration g, and in a reference system which is
mechanically accelerated by a = −g in a region of space
which is free of measurable gravitation.

(18)

Note: The EP says, that the metric (14b) of the rotating reference
system, which is caused by the acceleration ρω2 = v2/ρ in a space
free of significant gravitation (mid sketch in fig. 1), could as well
be explained as a gravitational effect in an inertial reference system

g
ρω2 =

v2

ρ

a

Fig. 1 : Einsteins Equivalence Principle (EP): If the accelerations
g = ρω2 = a are equal, then the tree physicists will find exactly
the same results for the free fall, and for whatever other physical
experiments they perform in their small laboratories.
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(left sketch in fig. 1). But it does not say that there is an additional
modification of this metric due to an equivalent gravitational effect.
We now want to check whether the equation of motion of GRT

d2xκ

dτ2 = −Γκµν
dxµ

dτ
dxν

dτ (19)

Γκµν ≡
gκσ

2
(∂gνσ
∂xµ

+ ∂gµσ
∂xν

− ∂gνµ
∂xσ

)
of a small massive object, i. e. an object which does not significantly
modify the space-time metric at its position x, can indeed be
reduced to Newtons equation of motion

d2xi

dt2 = − ∂Φ
∂xi

(20)

for the same small object in an inertial reference system, if the
curved metric gµν(x) of (19) is replaced by the equivalent gravi-
tational field with potential Φ(x) in a flat space with Minkowski
metric ηµν . Thereby we follow by and large the presentation by
Fließbach [3, Kap. 11].
For simplicity we assume that the field is static:

∂Φ
∂t

= 0 ⇐⇒ ∂gνσ
∂x0 = 0 (21)

With this assumption, the general relativistic equation of motion
(19) simplifies to

d2xκ

dτ2 =(19) +gκj

2
∂g00
∂xj

dx0

dτ
dx0

dτ −

−
(
gκ0∂g00

∂xi
+ gκj

∂g0j
∂xi
− gκj ∂gi0

∂xj

)dx0

dτ
dxi

dτ −

− gκσ

2
(∂gjσ
∂xi

+ ∂giσ
∂xj

− ∂gji
∂xσ

)dxi

dτ
dxj

dτ . (22)
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Newtons theory is a good approximation for weak gravitational
fields. Hence we assume that in case of weak fields the metric (gµν)
does not deviate very much from Minkowski metric (ηµν):

hµν ≡ gµν − ηµν , |hµν | � 1 (23)

Furthermore we use reference frames, in which the velocity of the
test object is much smaller than the speed of light:

dxi

dτ �
dx0

dτ ≈ c if v � c (24)

Therefore we may drop all small terms

O
(dxi

dτ
dxj

dτ
)

, O
(∂hµν
∂xk

dxi

dτ
)

, O
(
hρσ

∂hµν
∂xk

)
, (25)

and get in this approximation the equation of motion

d2x0

dτ2
(22)
≈ 0 (26a)

d2xi

dτ2
(22)
≈ −1

2
∂h00
∂xi

dx0

dτ
dx0

dτ ≈ −
c2

2
∂h00
∂xi

. (26b)

From this equation we conclude

dt
dτ ≈ constant = 1 (27a)

d2xi

dt2 ≈ −
c2

2
∂h00
∂xi

(20)= − ∂Φ
∂xi

. (27b)

Thus we get Newtons result with

g00(x) (23)= η00 + h00(x) (27)= 1 + 2Φ(x)
c2 if |2Φ|

c2 � 1 . (28)
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For the rotating frame with no gravitational field we had

g00(x) (14b)= 1− ρ2ω2/c2 . (29)

Hence both systems indeed are equivalent, as stated by the EP, if

−Φ(x) ≡ −Φ(ρ) = +ρ2ω2

2 = +v2

2 � c2 . (30)

The time dilation of a clock at rest in the rotating system with
no gravitational field is

dτR
(9b)= √

g00 dt (29)=

√
1− ρ2ω2

c2 dt =

√
1− v2

c2 dt . (31)

Consequently the proper time differential, measured by a clock
which is in the equivalent gravitational field at rest in an inertial
reference system, is

dτ (9b)= √
g00 dt (28)=

√
1 + 2Φ

c2 dt (32)

if dx1 = dx2 = dx3 = 0 and |2Φ|
c2 � 1 .

As Φ ≤ 0, clocks slow down in gravitational fields.
These are the values of |2Φ|/c2 at the surfaces of some typical

celestial bodies:

|2Φ|
c2 ≈


1.4 · 10−9 earth

4 · 10−6 sun
3 · 10−4 white dwarf
3 · 10−1 neutron star

(33)

Hence (28) is an excellent approximation in our sun system, a quite
good approximation at the surface of white dwarfs, and it is still a
useful rough approximation at the surface of neutron stars. It is of
course not at all capable to describe black holes appropriately.
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5. Experimental Results

The decay rate of muons can be considered a clock. Indeed the
observation of the significantly extended lifetime of muons at high
linear speed versus muons at rest [4] has been interpreted as an
experimental confirmation of the special-relativistic effect of time
dilation.

The decay rate of muons has also been used to check experimen-
tally the time dilation of clocks at rest in accelerated reference
frames: In the CERN [5] and Brookhaven [6] muon storage rings,
muons with

energy = 3.1GeV (34a)

were stored in 14m diameter rings. Thus the Lorentz factor of
these muons in the laboratory coordinate system, which may be
considered an approximate inertial system, was

γ = 3.1GeV
105.7MeV = 29.3 =

(
1− v2

c2

)−1/2
, (34b)

their velocity was

v = c

√
29.32 − 1

29.32 = 0.9994 c , (34c)

and the Lorentz force due to the ring’s magnetic field accelerated
them radially by

a = v2

7m ≈ 1.3 · 1016m
s2 . (34d)

The time dilation as predicted by GRT, extending the muon lifetime
from 2.198µs to 64.44µs = γ · 2.198µs, was confirmed with an
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accuracy of 0.1 %:

dτ︸︷︷︸
2.198µs

(15h)=

√
1− ρ2ω2

c2︸ ︷︷ ︸
1/29.3

dt︸︷︷︸
64.44µs

=

√
1− v2

c2 dt (35)

According to GRT, clocks are slowed down due to gravitational
fields, see [2, §3] and our result (32). This result has been confirmed
experimentally since the seventies [7], and by today it is confirmed
every day by the Global Positioning System [8].
The equivalence principle (18) says, that the time dilation (35)

can locally as well be explained as the effect (32) of a gravitational
field, i. e. this is a possible alternative explanation for the observed
time dilation. The equivalence principle does not say, however,
that there should be any time dilation in addition to (35).

6. Ideal versus Real Clocks: The “Clock Hypothesis”

The time dilation of clocks at rest in a rotating system, as predicted
by GRT, has been confirmed by the muon experiment, see (35).
But there is a problem: How can we be sure that the acceleration
does not impair the functionality of the accelerated clock? To
understand the concern, lets replace the muons by a pendulum
clock, consisting of a mass M suspended by a thin wire of length
L and mass mw. The other end of the wire is fixed at rest in the
rotating system. The oscillation period of this clock, as seen by a
co-moving observer who is at rest in the rotating system, is

T = 2π

√
L

a
if mw �M , with a = ρω2 . (36)

The co-moving observer, enclosed in a laboratory of size � ρ,
can interpret the acceleration a as a gravitational acceleration g.
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Another observer, at rest in the inertial system, should observe the
time dilation (15h) of the rotating clock.

If we now try to check (15h) systematically due to variation of ω,
we face a problem: With increased rotation frequency, the length
L of the wire will increase as well (as the modulus of elasticity of
any real material is finite), thus changing the proper frequency of
the clock. And further increased rotation frequency will eventually
break the wire and thus destroy the clock. Hence (15h) can only
be checked approximately at low rotation speed, if a pendulum
clock is used for that purpose.
There are other types of clocks available, of course, which are

better suited to check (15h). But all of them are somehow influ-
enced by accelerations, hence no ideal clocks. Even the decay rate
of muons, discussed in section 5, is not an ideal clock. As pointed
out by Lorek et. al. [9], field-theoretical effects like the creation of
particles out of the vacuum in accelerated reference frames (this is
the Unruh-effect [10]), or pair production of particles and antipar-
ticles at sufficiently high energies, will impact the rate at which
time is passing according to any type of real clock.

All our considerations in the previous sections rest on the tacitly
implied condition, that the function of standard clocks is not
affected by their acceleration, i. e. that they are ideal clocks with
regard to accelerations. Have these considerations at all been
meaningful, if such clocks don’t exist in reality?

The “clock hypothesis”, often encountered in the literature, says
that the standard clocks, which display the proper time at their
positions, are not affected by their accelerations, but behave as ideal
clocks. Brown and Read [12] suggested to replace the misleading
notion “clock hypothesis” by “clock condition”. This wording
indeed is much better, emphasizing that we must not expect that
any arbitrary type of clock is an appropriate standard clock in
any arbitrary reference frame, but that for each reference frame
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an appropriate type of standard clock must be carefully chosen, to
make sure that this standard clock will not be significantly affected
by the acceleration of the reference system, in which it is at rest.
This interpretation presupposed, the clock hypothesis says that
appropriate real standard clocks can be found for any accelerated
reference frame.
Considering quantum field theoretical effects, the decay rate of

accelerated muons has been computed by Eisele [11]. He confirmed
that indeed the decay rate of muons is no ideal clock. But he also
found that this type of real clock comes remarkably close to an
ideal clock: In the muon storage ring experiments [5, 6] mentioned
in section 5, the relation (15h) was confirmed with an accuracy of
10−3. According to Eiseles findings, this experiment would need
an accuracy better than 10−25, to see the deviation from (15h).
Hence by today the precision, with which the GRT prediction

(15h) of time dilation in rotating systems can be tested, is not
limited by lack of an ideal clock, but by the insufficient precision of
other parts of the experiments. It seems unlikely that this situation
will change in foreseeable future.
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