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Electromagnetic Units

In electrodynamics, various systems of units are commonly used,
in which not only different numerical values, but different physical
dimensions are assigned to quantities like charges or fields. We
describe in this article, how the formulas of electrodynamics can be
translated simply and efficiently in-between the various systems of
units.

According to the definition of the meter, the speed of light in
vacuum is

c ≡ 2.997 924 58 · 108 m
s . (1)

In addition we will define immediately five further constants
µ0, ε0, e, b, r. µ0 is the magnetic field-constant of the vacuum, and
ε0 is the electric field-constant of the vacuum. The constants e, b, r
are related to the electric field E, the magnetic field B (sometimes
called induction), and the density of electric charge ρ, respectively.
These five constants are defined differently in the various systems of
units. The definitions differ not only in their numerical values, but
also in their physical dimensions. Consequently, transformations
inbetween the different systems of units are much more intricate
than for example the transformation from “pounds per square inch”
into “Newton per square-meter”. Here the dimensions of both
specifications are “pressure”; only their numerical values differ.
With regard to the various definitions of µ0, ε0, e, b, r, the situation
is quite different.

Using these constants, Maxwell’s equations outside of macroscop-
ically described matter (polarization = magnetization = 0) can be
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written in any system of units as

e∇ · E = r 4π ρ (2a)

e∇× E = −b
c

dB

dt (2b)

∇ ·B = 0 (2c)

b∇×B = e

c

dE

dt + r
4π
c

J . (2d)

J is the electrical current density. With regard to the relativistic
invariance of Maxwell’s equations, the time-coordinate has been
written as ct. As J and ρ differ only by mechanical units, J got
the general multiplier r.
With the macroscopic electrical polarization P and the macro-

scopic magnetization M , the dielectric displacement D and the
magnetizing field H (often also called magnetic field) are defined
in any system of units by

e

ε0
D ≡ eE + 4π

e
P (3a)

µ0bH ≡ bB − 4π
b

M . (3b)

Then Maxwell’s equations in macroscopically described matter can
be written in any system of units in the form

e

ε0
∇ ·D = r 4π ρ (4a)

e∇× E = −b
c

dB

dt (4b)

∇ ·B = 0 (4c)

µ0b∇×H = e

ε0c

dD

dt + r
4π
c

J . (4d)
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Outside of macroscopically described matter (P = M = 0) these
equations turn into the equations (2). (“Outside of macroscopically
described matter” does not mean “in vacuum”. The vacuum instead
is defined by P = M = ρ = J = 0.)

All equations which we have used until now are valid for arbitrary
systems of units. In the five systems of units, which are most
commonly used in electrodynamics, the five constants µ0, ε0, e, b, r
are defined as follows:

System µ0 ε0 b e ≡ 1
r

MKSA 4π · 10−7 N
A2

1
µ0c2

√
4π
µ0

√
4π
µ0c2

Heaviside-
-Lorentz 1 1

√
4π

√
4π

Gauß 1 1 1 1

ESU 1
c2 1 c 1

EMU 1 1
c2 1 1

c

(5)

The MKSA-system and the system of Heaviside and Lorentz often
are called rationalized systems, because the irrational factor 4π
is due to the constants canceled from Maxwell’s equations. In
exchange, factors 4π show up in these systems at other places,
where they are absent in the other systems. Thus is is quite arbi-
trary which systems should be considered as rationalized or not
rationalized. But it is a physically important point, that only the
MKSA-system — different from all other systems listed in (5) — is
defining a special unit (namely the Ampere) for the description of
electromagnetic phenomena. The other systems have been invented
at a time, when many physicists still assumed that they might
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some day succeed to embed electrodynamics into Newtons mechan-
ics. Furthermore it is an advantage of the MKSA-system, that
one notorious source of errors in the collaboration with engineers
(who are using exclusively the MKSA-system, which also is called
SI = systeme internationale) is eliminated upfront. The system of
Heaviside and Lorentz and the system of Gauß have the remarkable
advantage, that the electrical field and the magnetic field, which are
the six independent components of the skew-symmetric relativistic
field-strength tensor, reasonably get the same units. Certainly
none of the five systems listed in (5) can be called incorrect. And
certainly the assertion of some textbook authors, that students can
comprehend the meaning of electrodynamics only if they are using
the system of units favored in their respective books, may justly
be called rubbish.

Using the constants listed in table (5), the formulas of electrody-
namics can be translated relatively simple from one system of units
to another. Example: The Lorentz-force, which is acting onto a
charge q moving with velocity v, is in the Gauß system

F = qGauß
(
EGauß + 1

c
v ×BGauß

)
. (6a)

We want to translate this formula into the MKSA-system. As the
charge q differs only by mechanical units (i. e. by an integral over
position space) from the charge density ρ, the general multiplier of
q is r. The general multiplier of E is e. According to (5), e ≡ 1/r
holds. Thus the form of the product qE is identical in all systems
of units. In total one finds

F = qMKSA

(
EMKSA + 1

c

rMKSAbMKSA

rGaußbGauß
v ×BMKSA

)
= qMKSA

(
EMKSA + 1

c

√
µ0c2

4π
4π
µ0

v ×BMKSA

)
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F = qMKSA

(
EMKSA + v ×BMKSA

)
. (6b)

In the example of the Lorentz-force it was easy to find the
general multiplier of the charge q by simple considerations. It’s
not difficult to find the general multipliers of other quantities by
similar considerations. Some important examples are listed in the
following table:

Quantity general
multiplicator

electric field-strength E, voltage U ,
scalar potential Φ e

displacement D
e

ε0

polarization P
4π
e

magnetic field-strength (induction) B,
vector potential A

b

magnetizing field H µ0b

magnetization M
4π
b

charge density ρ, charge q, current I,
current density J

1
e

resistance R, inductance L e

r
= e2

capacity C, conductivity σ 1
e2

(7)


