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The Casimir-Effect:
No Manifestation of Zero-Point Energy

Gerold Gründler 1

The attractive force between metallic surfaces, predicted by Casimir in
1948, seems to indicate the physical existence and measurability of the
quantized electromagnetic field’s zero-point energy. It is shown in this
article, that the measurements of that force do not confirm Casimir’s
model, but in fact disprove it’s foundational assumption that metal plates
may be represented in the theory by quantum-field-theoretical boundaries.
The consequences for the cosmological constant problem are discussed.

PACS numbers: 03.70.+k, 04.20.Cv

1. Is the zero-point energy of quantized fields
observable?

General relativity theory (GRT), and the relativistic quantum field
theories (QFT) of the standard model of elementary particles, are
describing all experimental observations with impressive accuracy —
as long as GRT or QFT are used separately. But as soon as one tries
to combine these successful theories, serious problems turn up. One
of the most spectacular examples of such incompatibility has been
dubbed “the cosmological constant problem”. A by now classical
review article on that issue has been compiled by Weinberg [1].
See the article by Li et. al. [2] for an updated review. In short, the
cosmological constant problem manifests itself as follows:
According to the field equation
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Rµν −
R

2 gµν + Λ gµν = −8πG
c4 Tµν (1)

of GRT, the curvature of space-time, represented by the Ricci-tensor
(Rµν) and it’s contraction R, is proportional to the energydensity-
stress-tensor (Tµν), which again is determined by the energy density
and the momentum density of all fields contained within space-
time, i. e. of all fields with exception of the metric field (gµν).

Upon canonical quantization of any classical continuous field, the
energydensity-stress-tensor of that field will diverge. For example,
canonical quantization of the classical electromagnetic field results
into the Hamilton operator
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with a(v)+
k and a(v)

k being the creation- and annihilation-operators
respectively of photons with wavenumber k and polarization v.
The integration is over the complete normalization volume, and the
summation is running over all of the infinitely many wavenumbers
k, which are compatible with the normalization volume (if an
infinite normalization volume is chosen, the sum over k is replaced
by an integral over k). Due to the commutator, the energy is
infinite. The waves described by the second term in (2b) are the
zero-point-oscillations, and their energy is the zero-point-energy,
of the quantized electromagnetic field.

The observed curvature of intergalactic space is close to zero [3],
suggesting that either
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(a) the cosmological constant Λ in (1) should be adjusted, to com-
pensate the zero-point-energy of the quantum fields, or that
(b) the zero-point-energy of the quantum fields should be consid-
ered as a strange artifact of the theory without analog in observable
reality, and therefore be removed somehow from QFT.
To avoid misunderstandings, we note that the zero-point oscil-

lations of quantum fields with only a finite number of degrees of
freedom, e. g. the zero-point oscillations of the phonon fields of
molecules and solids, have been experimentally confirmed since
almost a century [4, 5]. But what we are exclusively discussing in
this article is the zero-point energy of elementary quantum fields
with infinitely many degrees of freedom.

Alternative (a) calls for a fine-tuning of the cosmological constant
Λ with an accuracy of many dozens of decimal digits, the exact
number depending on the method applied for regularization of the
diverging term in (2b). Therefore this solution — though being
completely correct under purely formal criteria — does seem to
be quite “unnatural”, and is not considered acceptable by many
scientists.

On first sight, there seem to be less objections against alternative
(b). In pure quantum-field-theoretical computations (neglecting
gravity), only energy differences matter, but not absolute energy
values. Therefore the offset of an infinitely large zero-point energy
is merely a tiresome ballast without discernible functionality. To
get rid of that offset, normal order is often applied as an ad-
hoc measure. It means, that in (2a) all creation operators are
shifted left, and all annihilation operators are shifted right, under
disregard of their commutation relations! Thus the Hamilton-
operator becomes

H =
∑

k
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~c |k| a(v)+
k a

(v)
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and the infinite energy offset has disappeared.
As the results of quantum-field-theoretical computations are

not changed, if normal order is applied to the Hamilton operator,
and as no gravitational effect of the zero-point-energy of quantum
fields is observed, one might very well ask whether that zero-point
energy does exist at all. Words like “existence” or “reality” in this
context of course mean the question, whether the zero-point energy
is observable and can be tested experimentally.

2. The Casimir-effect

A possible method to observe the quantized electromagnetic field’s
zero-point energy — and actually the only method proposed until
today, besides the missing gravitational effect — has been suggested
by Casimir [6] in 1948. Casimir considered a resonator as sketched
in figure 1. The rectangular cavity’s size is X×Y × (Z+P ). Inside
the cavity there is a plate of thickness P , which is aligned parallel

Z+P

Y

X Z- D

D

P

Fig. 1 : Cavity resonator with movable plate
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to the cavity’s XY -face and movable in Z-direction. The plate’s
distance from one side wall of the cavity is D, it’s distance from
the opposite side wall is Z −D.

The resonance spectra of the left and right cavities are discrete.
The wavenumbers are

krst =

√(rπ
X

)2
+
(sπ
Y

)2
+
( tπ
A

)2

with r, s, t ∈ N , (3)
There are 2 modes each with r, s, t = 1, 2, 3, . . . and 1 mode
each with one of the indices 0 and the both other indices
1, 2, 3, . . . [7, chap.D.II.2.b.]

with A = D for the left cavity and A = Z − D for the right
cavity. Casimir identified the plate and the walls of the cavity
with the boundaries of the normalization volume of quantum-
electrodynamics=QED. Therefore he considered this equation not
only valid for photons, but as well for the zero-point oscillations
of the quantized electromagnetic field. According to this point of
view, long-wavelength zero-point oscillations, which don’t fit into
the cavities, can not evolve in the respective volumes. Casimir
computed the zero-point energy Uleft enclosed in the left cavity, and
the zero-point energy Uright enclosed in the right cavity. A detailed
account of Casimir’s computation can be found elsewhere [8, sect. 4].
Both Uleft and Uright are functions of D, and both are of course
infinite, as infinitely many short-wavelength zero-point oscillation
modes fit into the cavities. But the derivative

FCasimir ≡
d(Uleft + Uright)

dD (4)

is finite! Under the assumption, that the cavity walls and the mov-
able plate perfectly reflect electromagnetic radiation of arbitrary
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frequencies, and assuming Z � D, Casimir found a surprisingly
simple result:

FCasimir = − π
2~c

240
XY

D4 = −1.3 · 10−9N · XY/mm2

D4/µm4 (5)

This is a small, but measurable force, which is pushing the movable
plate towards the nearer cavity wall. It has by now been mea-
sured many times, and the approximate correctness of equation
(5) has been confirmed [9]. It is no surprise, that the experimental
confirmation is only approximate but not exact, because Casimir
derived (5) not for real metal plates, but for perfectly reflecting
plates, i. e. boundaries in the terminology of quantum field theory.
The important differences in the physical concepts of real metals
and boundaries will be discussed in the next section. The approxi-
mate experimental confirmations of (5) have been declared to be
“physical manifestations of zero-point energy” [10].

These observations, however, do not conclusively prove the re-
ality of zero-point energy, because an alternative explanation for
the same observations is available, which does not refer at all to
zero-point energy: Lifshitz [11] and Dzyaloshinskii, Lifshitz, and
Pitaevskii [12] have computed the retarded van der Waals-force,
which is acting between two infinitely extended half-spaces with rel-
ative dielectric constants ε1 and ε3, while the gap between them is
filled with a material with relative dielectric constant ε2. Schwinger,
DeRaad, and Milton [13] reproduced and confirmed the results of
Lifshitz et. al. . They also considered the limit ε1 = ε3 →∞, ε2 → 1,
i. e. the limit of two metal plates with infinite conductivity, sepa-
rated by a vacuum gap. It turned out that the formula of Lifshitz
et. al. simplifies in this limit to the Casimir-force (5).

The question “does the observed Casimir-force prove the observ-
able existence of zero-point energy?” at first sight seems not to
be answered by the theory with a clear-cut YES or NO, because
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there are two different theoretical concepts, one of them indicating
YES, and the other indicating NO. But closer scrutiny reveals, that
the answer definitely is NO. Jaffe [14] remarked, that Casimir’s
assumption of perfect reflectivity of the metal plates is equivalent to
taking the limit α→∞, with α being the QED coupling constant,
and thus is obscuring the true nature of the interaction between
the electromagnetic field and the charged matter-fields constituting
the metallic plates. While this criticism certainly is justified and
pointing into the right direction, it is missing — or at least not
explicitly naming — the essential point: Only the Lifshitz model
is compatible with the results of measurements, while Casimir’s
model is refuted by experimental evidence.

The two explanations of the Casimir-force are predicting similar,
but not identical values of that force: The model, which is based on
van derWaals-forces, can match the measurement results exactly if
parameters like the complex dielectric constant ε(ω) = ε′(ω)+iε′′(ω)
as a function of photon frequency ω are adjusted [9]. In contrast,
in Casimir’s model there are no adjustable parameters, see his
equation (5). And it is an essential feature of Casimir’s model,
that no adjustable parameters like e. g. a reflection coefficient < 1
can be introduced without complete demolition of the model. This
assertion will be proved in the next section.
Only the model of Lifshitz et. al. can stand the confrontation

with the results of measurements, while the results derived from
Casimir’s model differ typically by about 10 to 20% at a plate
distance of 1µm from experimental observations [15, sect. 5.2].
Casimir’s explanation of the Casimir-force is disproved by the
experiments, because a significant discrepancy of about 10 to 20%
between theory and experiments, which can not be eliminated due
to improvement of the model, is about 10 to 20% to much.
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3. Metals and boundaries

At the outset of any quantum field theory, a normalization volume
(which may be finite or infinite) must be fixed, and well-defined
boundary conditions must be imposed onto the field at the bound-
aries. A simple choice is for example a Dirichlet-type boundary
condition, requiring that the field amplitude must be zero at the
boundary. Another, often more convenient choice is a periodic
(Cauchy-type) boundary condition, requiring that the value and
the derivative of the field at one point of the boundary must at
any time be identical to the value and the derivative of the field
at the opposite point of the boundary. Either of theses conditions
makes sure, that the norm

〈s|s〉 = N ∈ R , 0 < N <∞ (6)

of any state-function |s〉 has a well-defined value N which can be
normalized to unity, and — most important! — which is constant.
This means, that either no probability density assigned to the state
|s〉 can penetrate through the boundaries (Dirichlet-type boundary
condition), or that probability density flowing out of the normal-
ization volume at one spot of the boundary is exactly compensated
by probability density flowing into the normalization volume at the
opposite spot of the boundary (Cauchy-type boundary condition).
The resonance spectrum (3) is enforced by the boundary condi-

tion

Etangential(surface) = Hnormal(surface) = 0 (7)

onto the electrical amplitude E and the magnetizing amplitude
H of the electromagnetic field at any spot of the surface of the
cavity walls and the surface of the plate. No real metal can enforce
this condition onto the field, but only an ideal material which is
reflecting 100% of impinging radiation at any frequency.
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If a photon impinges onto a plate made of real metal, then it

may be reflected, or it may be absorbed, or it may be transmitted.
For example, good electrical conductors like copper or gold reflect
most long-wavelength sub-infrared photons, reflect about half and
absorb about half of optical photons, and are almost transparent
for short-wavelength X-ray photons. Note that at least a small
part of the impinging photons are absorbed by any metal at almost
any frequency. Only superconductors absorb strictly no photons
of sufficiently long wavelength, but even they absorb photons
of infrared and shorter wavelengths. If one wants to compute
the resonance spectrum of a cavity made from real metal, one
therefore needs to relax condition (7), and allow for absorption
by and transmission through the cavity walls in particular with
regard to high-frequency radiation. This results into damping and
broadening of resonance modes.
In contrast, the well-defined boundary conditions of the nor-

malization volume must not be relaxed under any circumstances,
because a damped norm like

〈s|s〉 = Ne−γt , N, γ, t ∈ R ,

0 <N, γ, t <∞ , (8)

with γ being some damping parameter, and t being time, would
not be a reasonable extension of (6), but a contradiction to the
basic tenets of quantum field theory. If for example |s〉 is a state,
in which exactly one photon is excited, then of course this photon
may disappear after some time due to interaction with matter. But
(8) would imply that the photon would little by little disappear
even without any interaction, i. e. somehow slip out from the
normalization volume.
To exclude the senseless result (8), boundaries must not be

merely approximate boundaries, which allow for damping due to
dissipation of probability density. Even a good approximation
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would not be sufficient. Only perfect boundaries are good enough,
because only perfect boundaries can guarantee that probability
density is conserved and that the norm of state-functions is constant.
The boundaries of any quantum field theory are mathematical, not
tangible entities, and no real metal can replace the boundaries of
QED.
Fields and boundaries exhaust the inventory of quantum field

theory. Every entity of physical reality must be represented in
QFT either by a boundary or by a field. If realistic parameters
are assigned to the cavity walls and the plate, then they can not
be described as boundaries but must be described as material
fields, like conduction band electrons, or crystal ions, or Cooper
pairs in case of superconductors, or whatever types of charged
matter fields, which can couple to the electromagnetic field. As the
electromagnetic field according to QED is nothing but the gauge
field of charged matter fields, the interaction between the matter
fields and their gauge field is uniquely defined: Photons, described
by state functions like |k, v〉 = a

(v)+
k |0〉 or linear combinations of

such state functions, are the electromagnetic field’s quanta, which
can couple to charged matter fields. If the electromagnetic field is
in the the vacuum-state |0〉, in which no photons are excited but
only the electromagnetic field’s zero-point oscillations exist, then
it does not couple to any field, but only to boundaries. As soon
as the quality of boundaries is no more ascribed to the walls of
the cavity and to the plate, the electromagnetic field’s zero-point
oscillations vanish from the picture. If the metals are represented
in the theory not by boundaries but by matter fields, then the
interaction between the metals and the electromagnetic field is not
affected, if zero-point energy is skipped from the theory due to
normal order of the Hamilton operator.

The geometry of the boundaries can be chosen in quantum field
theory to a large extend at will. But of course the boundaries must
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enclose all parts of the physical system to be described. If the
resonator depicted in fig. 1 shall be described with walls and plate
made from real metals, then the boundaries must enclose, besides
the cavity space, both the walls and the plate, because photons
may be absorbed by them or may penetrate through them. The
volume enclosed by the boundaries must be larger than the cavity
volume, and consequently the spectrum of photon-wavenumbers
in this setup of QED will not be identical to the spectrum of the
resonator’s resonance wavenumbers. In particular, the spectrum of
the zero-point oscillations, which is determined by the geometry of
the QED boundaries, is in this setup not related to the spectrum
of the resonator’s resonance wavenumbers, because the resonator
walls must be described as matter fields, which do not interact
with the electromagnetic field’s zero-point oscillations.

Side note: From the field-theoretical point of view it is obvious,
that only boundaries, but not real metal plates with finite conduc-
tivity, can shape the spectrum of zero-point oscillations. In the mid
of the second page of his article [6], Casimir made a quite strange
remark to the contrary. There he pointed out that most zero-point
oscillations of very short wavelength (e. g. of X-ray wavelength)
would penetrate through metals, while most long-wavelength zero-
point oscillations would be reflected. I. e. he assumed that the
reflection spectra of metals are similar (if not identical) for photons
and for zero-point oscillations. The present author undertook the
tedious task, to evaluate the consequences of that assumption [16].
Not surprisingly it turned out that Casimir’s strange assumption
is leading to results which are contradicting the experimental ob-
servations. Note that Casimir’s final result (5) is not affected by
that strange assumption, because he achieved that result for a
model, in which the plates are represented by boundaries but not
by metals. Therefore (5) is independent of any considerations on
the interaction of zero-point oscillations with real metals.
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Idealized conditions can be considered approximations to real-
istic conditions, if the conditions can (at least theoretically) be
gradually changed from the idealized to the realistic case. For
example, one could approach a realistic scenario by first assuming
no interaction between matter and radiation, i. e. setting the QED
coupling constant α to zero, and then step by step improve the
approximation by increasing α gradually to α ≈ 1/137. But no
gradual transition is possible from a boundary to a matter field. A
boundary either is a perfect boundary, or it is no boundary at all.
If one tries to gradually improve the approximation of Casimir’s
model, in which metal plates are represented by boundaries, i. e.
in which α = ∞ is assumed, then the quality of boundaries is
abruptly removed from the plates and thus the foundations of the
model are completely destroyed as soon as one decreases α to a
finite (even if arbitrary high) value.

Thus the significant differences between the experimental obser-
vations and the predictions of Casimir’s model, which have been
mentioned at the end of the previous section, can not be elimi-
nated nor diminished by assigning to the boundaries the reflectivity
of metals. Casimir’s model of the Casimir-force, in which metal
plates are represented by boundaries, is an ingenious theoretical
construction, but by experimental evidence ruled out as a correct
description of reality. Therefore the observed Casimir-force does
not indicate the physical existence of zero-point energy.

4. Conclusions

The findings presented in this article may be helpful to avoid blind
alleys, and to stir the search for a solution of the cosmological
constant problem into the right direction. The essential facts are:
Firstly, no gravitational effect, caused by the zero-point energy of
quantum fields, has been observed. Secondly, the results of QFT
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— including all of the impressive achievements of QED like Lamb-
shift, electron g-factor, hydrogen hyperfine-splitting, and so on
— are not compromised, if zero-point energy is skipped from the
theory due to application of normal order (2c) to the Hamilton
operator. Thirdly, as shown in this article, the observed Casimir-
force does definitely not prove the reality of zero-point energy.

In total, no experimental evidence at all is indicating the measur-
able, observable existence of the zero-point energy of elementary
quantum fields. Therefore, instead of renormalizing the cosmo-
logical constant Λ (or even modifying GRT), it is certainly more
promising to approach the problem directly at it’s root, i. e. to
somehow remove zero-point energy from QFT. The crude measure
of normal order is not an acceptable solution, as the disregard of
the non-commutative operator algebra is irreconcilable with the
basic principles of QFT. Unfortunately, at this moment I cannot
offer a better solution.
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