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How to read this e-Book

For several reasons, this e-book should not be printed, but be read from
screen:
∗ At times improved versions are published and posted in the net. A paper
print might soon be out-dated.
∗ There are countless links in this book. (This is of course exaggerated,
they could be counted. . . ) It only needs a mouse click to jump to the
linked targets, and to jump back subsequently (using the readers “Go to
Previous View” button, or the Alt ← key-combination) at same speed,
instead of cumbersome browsing in a paper print.
∗ The book is not (yet) equipped with a keyword index. The reader’s
search function can compensate this deficit to some extend.
∗ Sometimes it is useful, to view at the same time several formulas or
pictures, which are located on different pages. While the file can be
viewed without difficulty in several windows on the screen at the same
time, it would be quite expensive to prepare several prints.
∗ By saving ink and paper, you can avoid unnecessary pollution of the
environment.

Reading a book on screen is confusing and soon becomes tiresome, if one
scrolls unstructured through the pages, respectively must scroll unstructured
because of inappropriate reader settings. Therefore make sure to choose the
following settings for the pdf-reader:
In the View>Page Display menu activate the option
3 Single Page View (but not Single Page Continuous or Enable Scrolling

or similar, which is absolutely unsuitable ! It is most important, that
the upper or lower border of a page always is located at the upper or
lower border of the window when scrolling through the pages, but not
somewhere near the window’s center. Otherwise you will soon get watery
eyes and loose overview.)



10 How to read this e-Book

Select zoom 100%, and draw out the reader’s window sufficiently to get
one page visible in full width and minimum 2/3 of it’s height. Pressing
two times the keys page ↓ or page ↑ you then can scroll one page forth
or back. Of each page, you see the upper or lower part, with an overlap
of about 1/3 page height. This view will seem stunning familiar to you,
because unconsciously you don’t look much differently onto the pages of a
printed book.
If your screen is large enough to view without scrolling a page in full

height (at zoom 100%), then you probably also can display two pages at
the same time. In the readers menu View>Page Display select the two
options
3 Two Page View (but not Two Page Scrolling oder Automatically Scroll

or similar, which is absolutely unsuitable !)
3 Show Cover Page in Two Page View
Some readers offer a combination of these options, named
3 Book-View
or similar. Never select a view, which forces you to scroll horizontally, or
which places the upper or lower page borders anywhere else than at the
upper or lower window borders !
Perhaps you feel the reader’s Read Mode convenient. It offers a slightly

larger window due to hiding the toolbar. To jump back to the previous
view after you followed a link in the Read Mode, press the keys Alt ←
simultaneously.
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Preface
Physics really is much to difficult for physicists!

David Hilbert

This book was written for physics students at the end of their master studies,
or at the beginning of their graduate studies. Clearly it also is suited for
other readers with similar precognitions, who are looking for an introduction
to relativistic quantum field theory. I was motivated to write this book by
the quite hard and sometimes really frustrating times I had, when I first
time became acquainted with this matter, and often had to struggle heavily
to keep my head above water.

When Albert Einstein developed his General Relativity Theory, and had
to delve into the secrets of non-euclidean geometry, which at that time
was completely unknown to physicists, David Hilbert – in early 20. century
Ordinarius for Mathematics at the Göttingen university – became one of
his most important and helpful partners. Possibly it were these discussions
with Einstein, which led Hilbert to the bonmot printed above.

Today, General Relativity Theory has lost its horror, because a wide
spectrum of textbooks on GRT is available to the student on any thinkable
level in between mathematical abstraction and pedagogical detailedness.
Regarding relativistic quantum field theory, the situation unfortunately

is very different. There are some elementary treatments on “bachelor
level” (with this characterisation I really don’t want to tread on someone’s
toes), which can not at all satisfy a reader, who is striving towards a solid
comprehension of the basic facts and physical significance of the theory. The
book of Harris [1] could be cited as an example of that type of presentations.
It’s probably the purpose of such books, not to release the reader from
university before she/he at least once has marveled at some quantum field
theory formulas with their impressive and bewildering multiplicity of indices.
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But such books don’t lay the foundations for the study of the more ambitious
and profound literature.
On the other hand, any well-assorted university library has minimum

eight shelf-meters of textbooks available, which treat in physical (and,
less often, in mathematical) rigor the faintest details of QFT. Of course
there is a price to pay for this: If a textbook wants to treat quantum
chromodynamics on page 400 by the latest, wants to discuss all important
methods of renormalization before, which clearly must be motivated by an
appropriate number of examples of second order perturbation computations,
then not much time and space is left for the discussion of the theory’s
foundations.
If one is looking for textbooks in english or german language, which

treat the essential basic features and physical implications of relativistic
quantum field theory thoroughly and comprehensively, and at the same
time presuppose merely the mathematical skills of a student, who can pass
with good grade the master examination in theoretical physics at a german
university, then the choice becomes – to put it diplomatically cautious –
displeasing scarce.

Even the physically extensive and good textbooks on relativistic quantum
field theory, which usually are recommended to newcomers, like e. g. the
older one by Bjorken and Drell [2], or the somewhat newer by Peskin and
Schroeder [3], put the endurance of the readers to a very tough test. These
books take for granted a lot of mathematical und group-theoretical skills,
which students on master level in general don’t have. Seemingly simpler
books of this kind, as e. g. those by Maggiore [4] or by Mandl and Shaw [5],
turn out on closer scrutiny as merely more superficial, but not simpler (just
the contrary !) than those mentioned before, because they are sweeping
many most difficult issues hand-waving under the rug. The books by Greiner
and Reinhard [6–8] deserve special mention. These authors demonstrate
almost all computations in remarkable detail. However these books have
the character of lecture scripts (actually they are declared as such). They
can not really be recommended for self-study without the explanations,
which the authors certainly add verbally in their lectures. Unfortunately I
discovered the book of Gross [9], which in many respects comes nearer to
the book which I have missed than most others, only after I had already
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almost completed my book.

The physicist, who first time became acquainted with relativistic quantum
field theory, in this situation had no other choice than to cumbersomely
search and collect the necessary informations and tools from a large variety
of physical and mathematical textbooks. It was my intention to write a
book which fills this gap in the textbook literature. All necessary tools,
which are exceeding the standard skills of a physics student on master level,
are provided within the book itself.
The books, which turned out as the (relatively) most useful sources, are

listed in the bibliography [2–30].
Clearly the extensive treatment of the foundations necessitates reductions

in other places. Applications are rarely mentioned, and non-abelian gauge
theories are treated only rather scantily in part IV. This book was not
written to replace the rightly recommended textbooks on the subject, but
shall facilitate the access to them. The present author is convinced, that
the student will make faster progress by first working through this book,
and subsequently continuing with the textbooks mentioned above, than by
jumping in at the deep end immediately, and trying somehow to survive.

In the end, only the readers can decide whether this book is meeting their
needs, and opens a path to relativistic quantum field theory. The author is
looking forward to feedback from the readers, to applause, and to criticism.
And he will be thankful for hints on typos and other errors.
mailto:gerold.gruendler@astrophys-neunhof.de

Neunhof, in spring 2012 Gerold Gründler

mailto:gerold.gruendler@astrophys-neunhof.de
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Conventions

K.1 Matrices

M j , N jk etc. are elements of the matricesM , N etc. The complete matrices
are indicated by the matrix name without indices, or by the matrix name
with indices and brackets:

M = (M j) =

M1

M2

M3

 ; N = (N jk) =

N11 N12 N13

N21 N22 N23

N31 N32 N33

 (K.1)

With the sign ∗ for the complex conjugate, and with the sign ∼ for the
transposed matrix,

N † = N∗∼ =

N11 ∗ N21 ∗ N31 ∗

N12 ∗ N22 ∗ N32 ∗

N13 ∗ N23 ∗ N33 ∗

 (K.2)

is the matrix which is adjoint to N .
N is called self-adjoint oder hermitean, if N † = N .
N is called orthogonal, if N∼ = N -1.
N is called unitary, if N † = N -1.

K.2 Brackets and Differential Operators

The differential operator dµ = d
dxµ affects all factors to its right, until it is

stopped by a closing ) bracket, whose opening ( counterpart is placed left
of the operator:
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(Adµ(B + C)DE)F = (A(dµB + dµC)DE)F

+ (A(B + C)(dµD)E)F
+ (A(B + C)DdµE)F (K.3)

Important exception: A differential operator is not stopped by a closing
bracket, which is following the operator immediately. An example is Euler’s
equation

ρ
(
dtv + (v · ∇)v

)
= −∇P ,

in which the operator v · ∇ is acting onto the vector v.

K.3 Kronecker Symbol

δab ≡
{

1 if a = b

0 if a , b
(K.4)

We will write all indices of the Kronecker symbol subscript (not superscript),
i.e. we don’t distinguish covariant from contra-variant index position. If the
indices happen to be the four space-time-indices, then the Kronecker symbol
often is replaced by the elements of the four-dimensional unit tensor:

gµν = gµ
ν =

{
1 if µ = ν

0 if µ , ν
(K.5)

With the metric tensor, we carefully distinguish sub- and superscript indices.
Only with diagonal position of the indices,

(gµν) = (gµν) =
( 1 0 0 0

0 1 0 0
0 0 1 0
0 0 0 1

)
(K.6)

is the four-dimensional unit tensor. Find more informations on the metric
tensor in chapter 2.
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K.4 Einstein’s sum-convention

If a space-time-index or a spinor-index is showing up two times in a product,
it shall always be summed up, even if no

∑
sign is explicitly written:

GaF
a ≡

∑
a

GaF
a (K.7)

Usually for spinor indices, we use the letters a, b, c, . . . For space-time-indices
we use greek letters λ, µ, ν, . . ., if the sum of all four space-time-coordinates
is to be taken, and latin indices j, k, l, . . ., if only the sum of the three
space-coordinates is to be taken:

AµB
µ =

3∑
µ=0

AµB
µ = A0B

0 +
3∑

k=1
AkB

k = A0B
0 +AkB

k (K.8)

Other indices than space-time-indices and spinor-indices are not to be
summed automatically.

K.5 Unit Vectors

We define four unit vectors in direction of the four coordinate axes of space
and time:

e(0) ≡
( 1

0
0
0

)
, e(1) ≡

( 0
1
0
0

)
, e(2) ≡

( 0
0
1
0

)
, e(3) ≡

( 0
0
0
1

)
(K.9)

These contra-variant unit vectors fulfill with arbitrary contra-variant Lorentz
vectors V the relations

e(σ) · V = e(σ)ρgρτV
τ = gστV

τ (K.10a)

V λ = gλτV
τ = gλσgστV

τ =
3∑

σ=0
gλσe(σ) · V (K.10b)

Vρ = gρλV
λ =

3∑
σ=0

gρλg
λσe(σ) · V = e(ρ) · V (K.10c)
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V =
3∑

λ=0
V λe(λ) =

3∑
λ=0

3∑
σ=0

gλσ(e(σ) · V )e(λ) (K.10d)

e(σ) · e(τ) = e(σ)ρgρλe
(τ)λ = gστ (K.10e)

with λ, ρ, σ, τ = 0, 1, 2, 3 .

Sometimes we will use the space-like components

e(1) ≡
(

0
e(1)

)
, e(2) ≡

(
0
e(2)

)
, e(3) ≡

(
0
e(3)

)
(K.11)

of these unit vector as 3-vectors. As usual, 4-vectors are printed thin, and
3-vectors are printed boldfaced:

e(1) ≡
( 1

0
0

)
, e(2) ≡

( 0
1
0

)
, e(3) ≡

( 0
0
1

)
(K.12)

For 3-vectors, usually (but not always), Euclidean metric is used. Arbitrary
vectors V of three-dimensional space fulfill the relations

V j = e(j) · V (K.13a)

V =
3∑
j=1

V je(j) =
3∑
j=1

(e(j)·V )e(j) (K.13b)

e(j) · e(l) = gj
l (K.13c)

for j, l = 1, 2, 3 .

The letters in brackets (σ), (j) etc. do not indicate the unit vectors compo-
nents, but are their “names”. They are put into brackets to make clearly
visible, that these are not component indices. Therefore no summation shall
be performed, if a name is showing up two times in a product.

K.6 The Partial Derivative

For the derivative, we use the convention established in physics, which is dif-
ferent from the convention established in the mathematical literature. With
the physicists convention, functions like L

(
t, q(a(t)), q̇(t)

)
are admissible, in
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which identical variables (in this example t) are showing up explicitly and
implicitly (in this example as implicit variable of L and q, and as explicit
variable of L and q̇ and a).

The chain rule has to be applied in the total derivative (indicated by the
letter d). If the chain rule shall not be applied, but only the derivative with
respect to the explicit variable shall be taken, this is indicated by the sign
∂ :

d
dtL

(
t, q(a(t)), q̇(t)) = ∂L

∂t
+ ∂L

∂q

∂q

∂a

da
dt + ∂L

∂q̇

dq̇
dt (K.14)

∂L

∂a
= 0 (K.15)

The derivative ∂L
∂q to the explicit variable is called “partial derivative”. This

notion is conventional but misleading, because the total derivative dL
dq is

as “partial” as the derivative ∂L
∂q to the explicit variable. An extensive

discussion can be found in [31].
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Part1:
Classical Field Theory
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1 Why Classical Field Theory?

The relationship of quantum theory to classical physics is fundamentally
different for example from the relationship of special relativity theory to
non-relativistic theory. Two aspects deserve special mention in this context:

∗ The mathematical description of a process by special relativity theory
changes seamlessly over to the description by non-relativistic theory if
v2/c2 � 1.
∗ The description of the experimental set-up, the description of the observed
events, the description of the applied measurement devices, and the
description of the measurements results, all happen in a homogeneous
language. Namely in the language and with the notions of (relativistic
or non-relativistic) classical physics.

Both is completely different in the case of quantum phenomena. Quantum
field theory can only be called a physical theory, if conclusions can be drawn
from it, which can be checked by experiments. Experimental tests are
possible only, if physicists can discuss and agree on the experimental set-up,
the observed facts, and the functionality of the instruments of measure1,
which produce the results. The inventors of the “Copenhagen interpretation”
of quantum theory were convinced, that this is possible only in the language
of classical physics. While not all physicists want to agree to this credo,
until today nobody was able to express the result of any measurement in
the language of quantum theory.

Quantum phenomena invariably are described by first fixing the boundary
conditions in the language of classical physics. Then an evolution takes place,
for which the language of quantum theory is appropriate. To achieve results,
which can be discussed and compared to the predictions of the theory, the

1 The instrument could be for example a tool as simple as the eye of a human being.
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evolution finally must be terminated by an interaction with measurement
devices, whose modes of function and measured values imperatively must
be described again in the language of classical physics.
Thus we can on no account dispense with classical physics. Relativis-

tic quantum field theory is not a replacement for classical physics, but
an addendum and extension of classical physics. Following the historical
order of events, we will reproduce quantum field theory in this book in
close analogy to classical field theory. There are alternative, axiomatic
delineations of QFT, but these are even more abstract and mathematically
even more difficult than our approach. As classical physics are indispensable
anyway, its reasonable to prefer the simpler way and choose classical field
theory as starting point for the development of quantum field theory.
In this part of the book, we will derive a rich variety of classical field

theory concepts, which will turn out most useful for quantum field theory
as well. And we will first describe all fields, which we study in this book,
as classical fields, and evaluate their characteristics, before we then will
quantize them in the second part of this book.
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2 Relativity Theory

2.1 Invariant Length

In General Relativity Theory, all 10 linearly independent elements of the
metrical tensor

(gµν) =


g00 g01 g02 g03
g01 g11 g12 g13
g02 g12 g22 g23
g03 g13 g23 g33

 (2.1)

can be different from zero. In Special Relativity Theory, the metrical tensor
always and everywhere has1 the simple form

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 . (2.2)

In this and the following sections, we allow for non-zero off-diagonal elements
of the metrical tensor. Only starting from section 2.4, we constrain to the
special case (2.2) for the rest of this book.
The four-dimensional position vector’s differential is

1 Actually the form (2.2) is not unique. In literature on General Relativity and cosmology,
often (gµν) = diag.(−1,+1,+1,+1) is encountered. And in very old literature (before
about 1960) even (gµν) = diag.(+1,+1,+1,−1) can be found, with the time-like
component shifted to the 44-position. In this book we decide for convention (2.2),
which is commonly adopted in QFT texts.
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ds ≡


cdt
dx
dy
dz

 =


dx0

dx1

dx2

dx3

 . (2.3)

Cardinal point of Relativity Theory is the assertion, that the square of this
differential is independent of the coordinate system:

ds2 = gµνdxµdxν
has the same value in all coordinate systems. (2.4)

This is a statement with regard to the geometry of four-dimensional space-
time, which is specified by the metrical tensor gµν . Generally, the metrical
tensor is a function of space and time. In any reference system the geometry
of space and time is deformed such, that the identical value of ds2 is being
measured. Since the differentials dxµ and dxν commute, the metrical tensor
is symmetric:

ds2 = gµνdxµdxν = gµνdxνdxµ = gνµdxνdxµ

=⇒ gµν = gνµ (2.5)

Thus only 10 of the metrical tensor’s 16 components are independent.

2.2 Transformations

The transformation Λ transforms the differential ds from one reference
system to another, which we mark by a prime′. The transformed differential
is

ds′ = Λds . (2.6)

We write the transformation Λ as a (4× 4) -matrix with row index left and
column index right. Multiplication of the column vector ds by Λ results
into the column vector ds′.
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dx′ν = Λνµdxµ =⇒ Λνµ = dx′ν

dxµ (2.7)

holds for the components. The sub- and superscript index positions will be
explained immediately. Generally Λ varies with space and time, therefore
the transformation is non-linear.

The back-transformation of the differential ds′ from the primed reference
system to the unprimed system is carried out by application of Λ-1, the
inverse matrix of Λ. The concatenation of transformation and back-transfor-
mation clearly must yield the identical transformation, i. e. the unit matrix
1:

ds = Λ-1ds′ (2.6)= Λ-1Λ︸  ︷︷  ︸
=1

ds (2.8)

The individual components are

dxµ = Λ-1µνdx′ν =⇒ Λ-1µν = dxµ

dx′ν . (2.9)

Next we want to find out the transformation of the differential operator
dµ. To this end, we apply the chain rule:

d′ν = d
dx′ν = dxµ

dx′ν
d
dxµ

(2.9)= Λ-1µν
d
dxµ = Λ-1µνdµ (2.10)

If we want to write this equation as a matrix equation, we obviously must
interprete (d′ν) and (dµ) as row vectors, because the summation is running
over the row index of (Λ-1µν). The matrix equation therefore is

d′ = dΛ-1 . (2.11)

The back-transformation is

dµ = d
dxµ = dx′ν

dxµ
d
dx′ν

(2.7)= Λνµ
d
dx′ν = Λνµd′ν (2.12)

with the matrix equation
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d = d′Λ . (2.13)

Summary:

Λµν
(2.7)= dx′µ

dxν
(2.12)= dν

d′µ
(2.14a)

Λ-1µν
(2.9)= dxµ

dx′ν
(2.10)= d′ν

dµ
(2.14b)

2.3 Vectors and Tensors

We wrote the indices of the differential dxν superscript, but the indices of
the differential operator dν subscript. We turn this into a general rule:

If a four-component quantity A is transformed from one reference system
to another by the same transformation matrix as the differential operator,
then A is a co-variant vector, and is being written with subscript index
A = (Aν):

d′ν = Λ-1µν dµ dν = Λµνd′µ (2.15a)

A′ν = Λ-1µν Aµ Aν = ΛµνA′µ (2.15b)

If a four-component quantity B is transformed from one reference system to
another by the same transformation matrix as the four-dimensional position
vector, then B is a contra-variant vector, and B = (Bν) is being written
with superscript index:

dx′ν = Λνµdxµ dxν = Λ-1νµdx′µ (2.16a)

B′ν = ΛνµBµ Bν = Λ-1νµB′µ (2.16b)

A tensor of rank n is a quantity with n indices (for example the tensor
(Dκ

µ
ν) has 3 indices), which is transformed component-by-component like

a vector:

D′κ
µ
ν = Λ-1ρκΛµσΛ-1τ νDρ

σ
τ (2.17)
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Thus a tensor of rank n has 4n components. Vectors are tensors of rank
one. Tensors of rank zero are called scalars. Due to contraction, a tensor or
rank n becomes a tensor of rank n− 2:

Fσρ
σ
τ = F0ρ

0
τ + F1ρ

1
τ + F2ρ

2
τ + F3ρ

3
τ = Fρτ (2.18)

Eν
ν = E0

0 + E1
1 + E2

2 + E3
3 = E

Cν
ν ≡ AνBν = A0B

0 +A1B
1 +A2B

2 +A3B
3 = AB = C

Note that not every tensor of rank n+m can be factorized into the direct
product of a tensor of rank n and a tensor of rank m. In example (2.18)
the tensor (Eστ ) has 16 linearly independent components, while the tensor
(Cστ ) = (AσBτ ) has only 8 .

Any product of a covariant vector and a contravariant vector is a scalar,
which is invariant under a transformation of the space-time coordinates:

C ′ = A′νB
′ν = Λ-1µνΛνσ︸        ︷︷        ︸

δµσ

AµB
σ = AµB

µ = C (2.19)

Next we investigate the transformation properties of the product of the
metric tensor (gµν) and a contravariant vector (Bν). The components

g′µνB
′ν = Λ-1σµ Λ-1τ νΛνρ︸        ︷︷        ︸

δτρ

gστB
ρ = Λ-1σµgστBτ (2.20)

are transformed like the components of a covariant vector. For the compo-
nents of this covariant vector we define the shortcut notation

Bσ ≡ gστBτ . (2.21)

According to (2.5), the metric tensor is symmetric. Therefore also

gτσB
τ = gστB

τ (2.21)= Bσ . (2.22)

Definition (2.21) can be read as well in inverse direction: Whenever a
covariant vector (Aµ) with subscript index shows up, we implicitly define by
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gµνA

ν ≡ Aµ (2.23)

its contravariant complement (Aν). This definition is extended to tensors
of arbitrary rank:

Dκµν = gκρD
ρ
µν = gκρgντD

ρ
µ
τ = gκρgµσgντD

ρστ (2.24)

The definition holds as well for the metric tensor:

gµν = gµσg
σ
ν = (2.25a)

= gνσgµ
σ (2.5)= gσνgµ

σ = (2.25b)

= gµσgντg
στ (2.5)= gµσgντg

τσ (2.25c)

From these equations, the relations

gσν
(2.25a)= δσν , gµ

σ (2.25b)= δµσ , gντg
τσ(2.25c)= δνσ (2.26)

follow. Therefore for the metric tensor

(gνσ) = (gνσ) = (gντgτσ) = 1 and (gνσ) = (gνσ)−1 . (2.27)

Remarkably these relations hold for arbitrarily curved space-time. Only
for the metric (2.2) of inertial systems in addition the relation (gνσ) =
(gνσ)−1 = (gνσ) is valid.

By multiplication with gµν , superscript indices of vectors and tensors are
“pulled down”. By multiplication with gµν , subscript indices of vectors and
tensors are “pulled up”:

gντA
τ (2.23)= Aν

(2.26)= gντg
τσ︸    ︷︷    ︸

δνσ

Aσ =⇒ gτσAσ = Aτ (2.28)

Different from mathematically oriented authors, we do not define the
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Kronecker symbol: δfg ≡
{

1 if f = g

0 if f , g
(2.29)

as a tensor, but place it’s indices always bottom. We stick to this rule
even for the Kronecker symbol of two space-time indices δµν = gµ

ν . If
we would want to treat the Kronecker symbol δkf with indices different
from space-time indices as a tensor, we would need to introduce besides
the 4-component Lorentz space further n-component tensor spaces (with
n finite or countable infinite), in which a Kronecker tensor δf g then had
to be defined as a twofold indexed tensor. In this book, we don’t want to
consider any tensors different from the tensors of 4-dimensional space-time.
To stay consistent, we consider gµν as a component of a tensor (which may
be called the Kronecker tensor of space-time). But we do not consider δµν
as a tensor component, not even if µ and ν are space-time indices.
Due to multiplication by the metric tensor, indices are pulled up or

down, i.e. covariant tensor components are transformed to contravariant
components, and vice versa. The transformations Λµν are no tensors, they
are not transformed like the direct product of co- and contravariant vectors.
They are not at all transformed. Instead they transform vectors and tensors
from one reference system to another. Thus the notion of co- or contravariant
index position would be pointless for Λµν . Still the relation

g′µσx′σ
(2.28)= x′µ = Λµνxν

(2.28)= Λµνgντxτ

g′ρµg
′µσx′σ

(2.26)= x′ρ = g′ρµΛµνgντxτ
(2.15)= Λ-1 τ ρxτ (2.30)

is suggesting the following definitions:

Λµν ≡ g′µσΛσν (2.31a)
Λµν ≡ Λµτgτν (2.31b)
Λµν ≡ g′µσΛστgτν

(2.30)= Λ-1 νµ (2.31c)

If Λ transforms vectors from an unprimed to a primed coordinate system,
then the row index of Λ must be pulled with g′, while the column index
must be pulled with the unprimed g. That makes the application of these
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definitions complicated and prone to errors. In the case g′ = g, i. e. in
particular for transformations inbetween inertial systems (see the next
section), this complication doesn’t exist. For transformations inbetween
inertial systems therefore (2.31) is often applied.
Above we proved that scalars (i. e. quantities with no un-contracted

space-time indices) are invariant under arbitrary coordinate transformations.
Actually there also exist two tensors (i. e. not scalars), which are invariant
under coordinate transformations:
The invariance of the unit tensor 1 = (gαβ) can be checked easily:

g′α
β = Λ-1 σαΛβτgστ = ΛβτΛ-1 τ

α = gα
β (2.32a)

While the unit tensor is invariant under all transformations of coordinates,
which are admitted in GRT, the tensor

(gµν) =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (2.32b)

is invariant only under global transformations of the space-time coordinates,
i.e. under transformations, whose elements are not defined differently at
different points of space-time, but which are globally identical at all points.
These global transformations are called Lorentz transformations. In sec-
tion 5.5.2 we will derive the Lorentz transformations explicitly, and will
thoroughly discuss their characteristics.

2.4 Inertial Systems

By definition, a reference system is an inertial system, if no inertial forces
are acting on massive bodies which are at rest or in uniform rectilinear
motion in this system. This is the case if and only if the metric tensor has
the simple form (gµν) = (2.32b). Obviously this matrix is identical with it’s
inverse — and therefore also with (gµν):
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(gµν) = (gµν)−1 (2.27)= (gµν) (2.33)

GRT considers gravity forces as inertial forces. Therefore no gravitation
must exist in inertial systems, i.e. inertial systems are fixed to free falling
laboratories. Because in a free falling laboratory of sufficient size tidal
forces will be measurable (to compensate gravity exactly, the laboratory’s
deeper, ahead falling part must fall faster than the upper, back part), the
inertial systems of GRT are of finite size only. Strictly speaking they must
be infinitesimal small.

SRT on the other hand considers gravity not as an inertial force. Acceler-
ations, which can be interpreted — following Newton’s theory of gravity —
as the attractive effect of massive bodies, therefore are subtracted when the
metric field g is measured. Consequently, all inertial systems of SRT have
infinite size, and all of them are moving rectilinear and without acceleration
relative to another.

In this book, we will exclusively use reference systems, which are moving
rectilinear and without acceleration relative to another, and in which devia-
tions of the metric tensor from (2.32b) are to small to be detected. And as
transformations Λ of the coordinates of four-dimensional space-time we will
use exclusively the Lorentz transformations, which are defined globally, i.e.
which are independent of time and position. Under these preconditions,

x′ν = Λνµxµ (2.34)

is a linear equation, because Λ does not depend on x.
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3 Lagrangian and Hamiltonian

3.1 Classical Point-Particle Mechanics

3.1.1 Hamilton’s Principle

The mechanical state of a systems of n mass points can be computed
for any point of time in the future or the past, if its generalized coordi-
nates q1, q2, . . . , qn, and their time derivatives, the generalized velocities
q̇1, q̇2, . . . , q̇n, are known at an arbitrary point of time t. To actually per-
form this computation, one needs to know the system’s equation of motion.
This equation can be found by means of the Lagrangian, and an extremal
principle, which was discovered by Hamilton.
The system’s Lagrangian is a function of time t, and of the generalized

coordinates and the generalized velocities of the n mass points:

Lagrangian: L(q1, q2, . . . , qn, q̇1, q̇2, . . . , q̇n, t) (3.1)

For brevity, we often will use the notation L(q, q̇, t).
At time t1 the system has coordinates q(t1) and velocities q̇(t1), at time t2

it has coordinates q(t2) and velocities q̇(t2). In the time interval between t1
and t2, according to experience q(t) and q̇(t) evolve such, that the integral

S =
t2∫
t1

dt L(q, q̇, t) (3.2)

will have an extreme value. This is Hamilton’s extremal principle, which
we mentioned above. S is called the system’s action. Let us assume that
we have found the coordinates q(t) and consequently the velocities q̇(t), for
which the action S is extreme. Then in linear approximation, S will not be
changed by small variations δq(t) of q(t) and consequently small variations
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δq̇(t) of q̇(t). Note that q(t) is varied in the time interval between t1 and
t2, but not at these boundary points themselves. For these variations we
demand

δS =
t2∫
t1

dt
(
∂L

∂q
δq + ∂L

∂q̇
δq̇

)
= 0 . (3.3)

Using the identity

δq̇ = lim
t′→t

δ
(q(t′)− q(t)

t′ − t

)
= lim

t′→t

(δq(t′)− δq(t)
t′ − t

)
= d(δq)

dt , (3.4)

the second term can be reshaped:

t2∫
t1

dt ∂L
∂q̇
δq̇ =

t2∫
t1

dt
[ d
dt

(
∂L

∂q̇
δq

)
− d

dt

(
∂L

∂q̇

)
δq

]

= ∂L

∂q̇
δq

∣∣∣∣t2
t1

−
t2∫
t1

dt d
dt

(
∂L

∂q̇

)
δq (3.5)

Because of δq(t1) = δq(t2) = 0, only the last term is different from zero,
and the extremal condition becomes

δS =
t2∫
t1

dt
(
∂L

∂q
− d

dt
∂L

∂q̇

)
δq = 0 . (3.6)

For arbitrary δq this condition can only be met, if the term in brackets is
zero. Thus one finds the equation of motion

d
dt
∂L

∂q̇
− ∂L

∂q
= 0 . (3.7)

For a system with n coordinates qj , these must be varied independently,
resulting in the n equations
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d
dt
∂L

∂q̇j
− ∂L

∂qj
= 0 , j = 1 . . . n . (3.8)

The equation of motion follows uniquely from the Lagrangian, but different
Lagrangians may lead to the same equation of motion. An important
example are two Lagrangians L and L′, which differ only by the total time
derivative of an arbitrary function G(q, q̇, t):

L′(q, q̇, t) = L(q, q̇, t) + d
dt G(q, q̇, t) (3.9)

According to Hamilton’s principle,

δS′ = δ

t2∫
t1

dt
(
L(q, q̇, t) + d

dt G(q, q̇, t)
)

= δ

t2∫
t1

dt L(q, q̇, t) + δ

(
G(q, q̇, t)

∣∣∣t2
t1

)
︸                  ︷︷                  ︸

=0

= δS = 0 . (3.10)

The additional term G(q, q̇, t) contributes nothing to the variation δS′,
because q and q̇ are varied only within the integration interval, but not at
it’s borders. Therefore the condition δS′ = 0 and the condition δS = 0
result in the same equations of motion.

The Lagrangian of a classical system of mass points in most cases is equal
to the difference of the mass points’ kinetic energy T , and their potential
energy U :

L = T − U =
n∑
j=1

Tj − U(q1, . . . , qn)

=
n∑

j,k=1

1
2 ajk(q1, . . . , qn)q̇j q̇k − U(q1, . . . , qn) , (3.11)

with the coefficients ajk being functions of the generalized coordinates
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q ≡ (q1, . . . , qn). If Cartesian coordinates x ≡ (x1, . . . , xn) are used, then
the matrix of coefficients is diagonal, with

ajk = mjδjk (3.12)

being the mass of the jth mass point. The equation of motion of this mass
point

d
dt
∂L

∂ẋj
− ∂L

∂xj
= 0 (3.13)

becomes in Cartesian coordinates

mj ẍj = − ∂U
∂xj

. (3.14)

Historically speaking, the mass points equations of motion are much
longer known than the Lagrangian, from which we derived them here. And
most of the field equations, with which we will become acquainted in this
book, were found directly, but not derived from a Lagrangian density (the
field-theoretical counterpart of the point mechanics Lagrangian). Only
after the field equations were known, Lagrangian densities were constructed
retroactively, from which the field equations can be derived using Hamilton’s
principle of least action. The occupation with Lagrangian densities therefore
might seem to be a superfluous detour.
But that is not at all the case, because the field equations “inherit” the

symmetry properties of the Lagrangian densities, from which they are
derived. We will see, that the symmetries usually can be investigated
much simpler on the basis of Lagrangian densities, than on the basis of the
field equations themselves. The small detour via the Lagrangian densities
therefore will soon pay off.

3.1.2 Canonical Equations

The equations of motion, which have been derived from the Lagrangian
by means of Hamilton’s principle, are second order differential equations.
Alternatively and equivalently, two first order differential equations can be
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stated. To this purpose, consider the total differential

dL =
n∑
j=1

∂L

∂qj
dqj +

n∑
j=1

∂L

∂q̇j
dq̇j + ∂L

∂t
dt . (3.15)

Using the definition of the canonically conjugate momentum

pj ≡
∂L

∂q̇j
(3.16)

and the equation of motion

∂L

∂qj
= d

dt
∂L

∂q̇j
= ṗj , (3.17)

the total differential of L becomes

dL =
n∑
j=1

ṗjdqj +
n∑
j=1

pjdq̇j + ∂L

∂t
dt

=
n∑
j=1

ṗjdqj + d
(

n∑
j=1

pj q̇j

)
−

n∑
j=1

(dpj)q̇j + ∂L

∂t
dt . (3.18)

We change the sequence of terms

d
(

n∑
j=1

pj q̇j − L
)

︸                    ︷︷                    ︸
≡dH

= −
n∑
j=1

ṗjdqj +
n∑
j=1

(dpj)q̇j −
∂L

∂t
dt , (3.19)

and define the Hamiltonian

H ≡
n∑
j=1

pj q̇j − L , (3.20)

whose total differential is
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dH(q, p, t) =
n∑
j=1

∂H

∂qj
dqj +

n∑
j=1

∂H

∂pj
dpj + ∂H

∂t
dt . (3.21)

Comparing (3.19) with (3.21), we find the two first order canonical differen-
tial equations

∂H

∂pj
= q̇j (3.22a)

∂H

∂qj
= −ṗj . (3.22b)

They often are called Hamilton equations. These two equations together
are equivalent to the Lagrange equation (3.8). Formally the third equation

∂H

∂t
= −∂L

∂t
(3.22c)

results from the comparison of (3.19) and (3.21), but it does not add useful
informations to the equations of motion.
To evaluate the Hamiltonian’s time dependence, we divide (3.19) by dt:

dH
dt =

n∑
j=1

∂H

∂qj
q̇j +

n∑
j=1

∂H

∂pj
ṗj + ∂H

∂t

= −
n∑
j=1

ṗj q̇j +
n∑
j=1

q̇j ṗj + ∂H

∂t

= ∂H

∂t
(3.23)

If L, and consequently H, does not explicitly depend on time, then the
system does not change if it is translated in time, i. e. dH/dt is zero. The
translation in time then is called a symmetry of the system. In section
4.1 we will establish, that any continuous symmetry of a system (in this
case the invariance under a translation in time) correlates to a conservation
law. The quantity, which is conserved due to invariance of a system under
translation in time, is by definition called energy. Thus the Hamiltonian H
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is representing the system’s energy.
If Cartesian coordinates are used, the Lagrangian L = (3.11) becomes

L = T − U =
n∑
j=1

1
2 mj ẋ

2
j − U(x1, . . . , xn) . (3.24)

With Cartesian coordinates, the canonical conjugate momentum of particle
j is

pj = ∂L

∂ẋj
= mj ẋj , (3.25)

and the Hamiltonian becomes

H =
n∑
j=1

pj ẋj − L

=
n∑
j=1

1
2mj ẋ

2
j + U = T + U

=
n∑
j=1

1
2mj

p2
j + U(x1, . . . , xn) . (3.26)

From this, the canonical equations in Cartesian coordinates

∂H

∂pj
= 1
mj

pj = ẋj =⇒ pj = mj ẋj (3.27a)

∂H

∂xj
= ∂U

∂xj
= −ṗj =⇒ ṗj = − ∂U

∂xj
(3.27b)

follow, which together are equivalent to the equation of motion (3.14).

3.2 Classical Field Theory

3.2.1 Hamilton’s Generalized Principle

The variables in the action integral
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S =
t2∫
t1

dt L(q, q̇, t) (3.28)

of classical point mechanics are (besides time t) the generalized coordinates q
and the generalized velocities q̇ of discrete mass points. To make Hamilton’s
principle usable for field theory, several modifications are required: In field
theory we are dealing with field amplitudes φ, which are defined for a space-
time continuum:

φ(ct, x, y, z) ≡ φ(x0, x1, x2, x3) ≡ φ(x0,x) ≡ φ(x) (3.29)

We construct a Lagrangian density L, which is a function of the field
amplitude φ(x), of the amplitude’s derivatives to all coordinates of space
and time, and of the space-time-coordinates x:

L ≡ L
(
φ(x), dφ(x)

dx0 ,
dφ(x)
dx1 ,

dφ(x)
dx2 ,

dφ(x)
dx3 , x

)
≡ L(φ,d0φ, d1φ, d2φ,d3φ, x) (3.30)

We often will call the Lagrangian density simply “Lagrangian” for brevity.
In three-dimensional position space, we fix a normalization volume Ω

of sufficient size, such that at any time only within Ω the amplitude φ(x)
differs significantly from zero. (Many authors prefer an infinitely large
normalization volume. In section 7 we will state reasons, why an arbitrarily
large but finite normalization volume is physically more sensible.) The
field’s Lagrangian is the space integral over the Lagrangian density:

L(t) =
∫
Ω

d3xL (3.31)

In practice, we will almost always use the Lagrangian density, but not the
Lagrangian.
The action integral is defined by
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S ≡
x0
b∫

x0
a

dx0

c

∫
Ω

d3xL ≡
x0
b∫

x0
a

d4x

c
L . (3.32)

On the right side, a shortcut notation for the combination of a time integral
over the interval xa to xb and the space integral over Ω was defined, which
will be used in the following.

According to Hamilton’s principle (adapted to field theory), the field
will evolve in the time interval from x0

a to x0
b such, that the action integral

becomes extreme. Thus the variation of S with respect to φ and to the
derivatives of φ must be zero in linear approximation. The variation thereby
is – same as in mass point mechanics – to be performed only within the
integration range, but not on its borders. The borders of the integration
range in this case are fixed by the surface of Ω and the points of time x0

a

and x0
b .

δS =
x0
b∫

x0
a

d4x

c

(
∂L
∂φ

δφ+ ∂L
∂(dµφ)δ(dµφ)

)
= 0 (3.33)

Here Einstein’s summation convention was used (see K.4), according to
which the sum over all four space-time coordinates is to be computed, if in
a product an index is showing up twice, i.e. in this case

∂L
∂(dµφ)δ(dµφ) ≡

3∑
µ=0

∂L
∂(dµφ)δ(dµφ) . (3.34)

Using the identity δ(dµφ) = dµ(δφ), the last term in (3.33) can be
modified:

x0
b∫

x0
a

d4x

c

∂L
∂(dµφ)δ(dµφ) =

x0
b∫

x0
a

d4x

c

∂L
∂(dµφ)dµ(δφ) =
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=
x0
b∫

x0
a

d4x

c
dµ

∂L
∂(dµφ)δφ−

x0
b∫

x0
a

d4x

c

(
dµ

∂L
∂(dµφ)

)
δφ (3.35)

The second to last term is zero, because according to Gauß’ theorem the
integral of a vector fields divergence over the volume V equals the same
vector field’s integral over the surface of V . Everywhere on the surface of
the four-dimensional integration volume δφ = 0, because the field is varied
only within that volume.
The remaining term of (3.35) is inserted into (3.33):

δS =
xb∫
xa

d4x

c

(
∂L
∂φ
− dµ

∂L
∂(dµφ)

)
δφ = 0 (3.36)

This condition can only be met for arbitrary δφ with the field equation

dµ
∂L

∂(dµφ) −
∂L
∂φ

= 0 . (3.37a)

If L depends on n fields φr, φs, φt, . . . and their derivatives, then all these
fields must be varied independently from another, and one finds n field
equations of the form

dµ
∂L

∂(dµφr)
− ∂L
∂φr

= 0 , r = 1 . . . n . (3.37b)

The components of vector fields, which are defined in four-dimensional
space-time, must be varied separately. For each of the components one gets a
particular field equation. In contrast a field with several spinor components
is varied on the whole, i. e. there is only one field equation for a spinor field.
The different treatment of fields with several components is caused by the
fact, that the variation of (3.32) is done in four-dimensional space-time, but
not in spinor space.
If the Lagrangian depends on the field φ(x) and its complex-conjugate

φ∗(x), then L must be varied with respect to φ(x) and — separately — with
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respect to φ∗(x), as if φ(x) and φ∗(x) were two independent fields. Thereby
one gets the two field equations

dµ
∂L

∂(dµφ) −
∂L
∂φ

= 0 and dµ
∂L

∂(dµφ∗)
− ∂L
∂φ∗

= 0 . (3.37c)

This is surprising at first moment, as φ∗(x) clearly is not independent,
but uniquely determined by φ(x). But φ(x) can be split in it’s real and
imaginary parts by

a(x) ≡ 1
2

(
φ(x) + φ∗(x)

)
b(x) ≡ − i

2

(
φ(x)− φ∗(x)

)
φ(x) ≡ a(x) + ib(x) with a(x) ∈ R , b(x) ∈ R . (3.38)

a(x) and b(x) actually are two independent fields, for which — using the
chain rule — one finds the field equations

0 = dµ
∂L

∂(dµa) −
∂L
∂a

(3.39a)

= dµ
∂L

∂(dµφ)
∂(dµφ)
∂(dµa)︸      ︷︷      ︸

1

+dµ
∂L

∂(dµφ∗)
∂(dµφ∗)
∂(dµa)︸       ︷︷       ︸

1

−∂L
∂φ

∂φ

∂a︸︷︷︸
1

− ∂L
∂φ∗

∂φ∗

∂a︸ ︷︷ ︸
1

0 = dµ
∂L

∂(dµb)
− ∂L
∂b

(3.39b)

= dµ
∂L

∂(dµφ)
∂(dµφ)
∂(dµb)︸      ︷︷      ︸

+i

+dµ
∂L

∂(dµφ∗)
∂(dµφ∗)
∂(dµb)︸       ︷︷       ︸
−i

−∂L
∂φ

∂φ

∂b︸︷︷︸
+i

− ∂L
∂φ∗

∂φ∗

∂b︸ ︷︷ ︸
−i

.

From these expressions, the two equations

0 = 1
2

(
(3.39a)− i(3.39b)

)
= dµ

∂L
∂(dµφ) −

∂L
∂φ

(3.40a)

0 = 1
2

(
(3.39a) + i(3.39b)

)
= dµ

∂L
∂(dµφ∗)

− ∂L
∂φ∗

(3.40b)

result, which are identical to (3.37c). The independent variations of L with
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respect to φ(x) and to φ∗(x) are nothing but a shortcut, which give the
same result as the formally correct method (3.39).

Equations (3.37) follow uniquely from the Lagrangian, but the inverse is
not true. Different Lagrangians may lead to the same field equation. In
particular, one finds the identical field equation for two Lagrangians L and
L′, which differ only in the four-divergence of an arbitrary vector function
G:

L′ = L+ dµGµ (3.41)

We compute the action’s variation:

δS′ = δ

xb∫
xa

d4x

c

(
L+ dµGµ

)
= δ

xb∫
xa

d4x

c
L

︸          ︷︷          ︸
δS

+ δ

xb∫
xa

d4x

c
dµGµ

︸               ︷︷               ︸
=0

(3.42)

According to Gauß’ theorem, the four-dimensional volume integral over the
four-dimensional divergence of G equals the integral over G on the volume’s
surface. On this surface, G is not varied, so that the integral’s variation is
zero.

Hamilton’s principle (adapted to field theory) can not be “derived”. It is
a law of nature, i.e. a postulate found by guessing, which can be legitimated
solely by the fact, that the consequences, which are derived from that law,
coincide with all experimental experiences.

3.2.2 Canonical Equations

It’s not immediately obvious, how the method of point mechanics, to derive
canonical equations from the Lagrangian, can be transferred to field theory.
The field amplitude φ(t,x) and its canonically conjugate momentum p(t,x) –
which we now want to construct – have instead of the discrete index j of qj(t)
and pj(t) the continuous, innumerable coordinates x of three-dimensional
position space. We will define the conjugate momenta of continuous fields
by two different methods: First by discretization of the field, and then once
again by a more elegant, but less transparent method on page 56, equation
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(4.40), by means of Noether’s theorem. For discretization of the field, we
construct numerable field amplitudes φj(t) by splitting the position space
into countably infinitely many small cells with volume V . Then we take the
average of φ(t,x) in the cell V (xj), which is enclosing the point xj :

φj(t) ≡
1
V

∫
V (xj)

d3xφ(t,x) (3.43)

Thus φ(t) at xj is

φ(t,xj) = lim
V→0

1
V

∫
V (xj)

d3xφ(t,x) = lim
V→0

φj(t) . (3.44)

The countable conjugate momenta pj(t) are defined as averages in the same
volumina:

pj(t) ≡
1
V

∫
V (xj)

d3x p(t,x) (3.45)

Thus p(t) at xj is

p(t,xj) = lim
V→0

1
V

∫
V (xj)

d3x p(t,x) = lim
V→0

pj(t) . (3.46)

The Lagrangian of field theory

L = L
(
φ(t,x), dµφ(t,x), t,x

)
with µ = 0, 1, 2, 3 (3.47)

depends on the field amplitude’s derivatives with respect to all four space-
time coordinates. If V (xjk) is the neighbor cell of V (xj) in direction xk,
then for the derivative with respect to space coordinate xk
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dφ(t,x)
dxk

∣∣∣∣
x=xj

= d
dxk lim

V→0
φj(t)

= lim
V→0

φjk(t)− φj(t)
V 1/3 ≡ lim

V→0
∆kφj(t) . (3.48)

The field is discretized in position space only, but not in time.

dφ(t,xj)
dt = φ̇(t,xj) = lim

V→0

dφj(t)
dt = lim

V→0
φ̇j(t) (3.49)

Thus the discretized field’s Lagrangian density Lj in cell V (xj) becomes

Lj = Lj
(
φj(t), φ̇j(t),∆1φj(t),∆2φj(t),∆3φj(t), t,xj

)
. (3.50)

The Lagrangian is

L =
∑
j

Lj · V (xj) , (3.51)

?
and thus

L = lim
V→0
L , L = lim

V→0
L ,

∫
d3x = lim

V→0

∑
j

V (xj) . (3.52)

Now we can compute the conjugate momenta explicitly:

pj(t) = ∂L

∂φ̇j(t)
= ∂

∂φ̇j(t)
∑
n

Ln · V (xn) = ∂Lj
∂φ̇j(t)

· V (xj) (3.53)

Taking the limit limV→0 on both sides of the equation, we find

p(t,xj) = ∂L
∂φ̇(t,xj)

· d3xj . (3.54)

This holds for arbitrary j. Thus we get

p(t,x) = ∂L
∂φ̇(t,x)

· d3x . (3.55)

The conjugate momentum density π(t,x) is defined by
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π(t,x)d3x ≡ p(t,x) . (3.56)

Therefore the conjugate momentum density π of the field φ is

π(t,x) = ∂L
∂φ̇(t,x)

. (3.57)

If the Lagrangian depends on several fields φr, then in the same way for
each field the conjugate momentum density πr is computed. If φ is a
vector field with three space components, or a vector field with four space-
time-components respectively, then for each component the correspondent
momentum density component is computed according to (3.57). Note, that
the momentum density, which is conjugate to a covariant field component,
is contravariant, and vice versa:

πµ(t,x) = ∂L
∂φ̇µ(t,x)

(3.58)

The Hamiltonian H of point mechanics was defined in (3.20) by

H
(
q(t), p(t), t

)
≡

n∑
j=1

pj(t)q̇j(t)− L
(
q(t), q̇(t), t

)
. (3.59)

In complete analogy we now define the Hamiltonian H and the Hamiltonian
density H (which usually we will simply call Hamiltonian) of field theory
by

H
(
φ(t,x), π(t,x), t

)
≡
∫

d3xH
(
φ(t,x), π(t,x), t,x

)
H ≡

∑
r

πr(t,x)φ̇r(t,x)− L
(
φ,dµφ, t,x

)
. (3.60a)

In addition we define the physical momentum and the physical momentum
density with the three components
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P j
(
φ(t,x), π(t,x), t

)
≡
∫

d3xPj
(
φ(t,x), π(t,x), t,x

)
Pj ≡

∑
r

πr(t,x)djφr(t,x) with j = 1, 2, 3 . (3.60b)

We postpone the motivation and explication for this definition to section
4.2, equation (4.35).

At this point, a warning may be appropriate: In (3.42) we found, that two
Lagrangians L and L′ = L+dµGµ, which differ only by the four-divergence of
an arbitrary vector function, result into identical field equations. This does
not at all mean, that different Lagrangians are equivalent in the canonical
formalism, as long as their field equations are identical. If the conjugate
momentum density, or the energy density, or the physical momentum density
of fields shall be computed, this adds further constrains to the definition
of the Lagrangian. This becomes immediately obvious by the fact, that a
Lagrangian, if multiplied by a constant factor, leads to an unchanged field
equation, but to a changed conjugate momentum density.
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4 Continuous Symmetries and
Conservation Laws

4.1 Noether’s Theorem

There exists a systematic correlation between the continuous symmetries of
physical systems and their conserved quantities, which was discovered by
E.Noether1, and is called Noether’s theorem.
To derive this correlation, we consider a continuous transformation Γ,

which acts on a scalar field φ(x), and causes some modification of the field.
The modified field is called φ′(x):

φ(x) Γ−→ φ′(x) (4.1)

Besides such active transformations, we also allow for passive transforma-
tions, which change the space-time-coordinates under the field:

φ(x) Γ−→ φ(x′) (4.2)

The transformations of fields and/or space-time-coordinates in general will
also change the Lagrangian:

L Γ−→ L ′ (4.3)

If a transformation Γ leaves the field equation

dρ
∂L

∂(dρφ) −
∂L
∂φ

= 0 (4.4)

invariant, then Γ is called a symmetry of the Lagrangian L. Obviously
1 Emmy (Amalie) Noether, 1882 – 1935
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Γ is a symmetry of L if and only if the variation δS of the action, from
which this field equation was extracted, is not changed by Γ. And δS
will stay unchanged, if and only if Γ modifies the Lagrangian only by the
four-divergence (which may be identical to zero) of an arbitrary vector
function G, because that four-divergence disappears – as shown in (3.42) –
at the action’s variation.

A real parameter W (more precisely, there usually are a finite number of
real parameters) specifies the transformation quantitatively, e.g. the angle’s
value in case of a rotation, or the shift distance in case of a translation, or the
phase angle’s value in case of a phase transformation, etc. In case of W = 0,
the transformation turns into the identity I. This is the transformation,
which leaves unchanged any object, on which it is acting.

All continuous transformations Γ, which we consider in this book, can be
expanded in a Taylor series around the point W = 0:

Γ =
∞∑
n=0

Wn

n!
dnΓ

dWn

∣∣∣∣
W= 0

= I +
∞∑
n=1

Wn

n!
dnΓ

dWn

∣∣∣∣
W= 0

(4.5)

Choosing W infinitesimal small, one gets the infinitesimal small transforma-
tion ΓINF:

w ≡ lim
n→∞

W

n
with n ∈ N (4.6)

With w infinitesimal small, the Taylor series may be ended after the linear
term, and the infinitesimal transformation becomes

ΓINF = I + w
dΓ
dW

∣∣∣∣
W= 0

= I + w
i

~
(−i~) dΓ

dW

∣∣∣∣
W= 0

=ΓINF I + i

~
wγ . (4.7)

The operator

γ ≡ −i~ dΓ
dW

∣∣∣∣
W= 0

(4.8)
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is called the generator of the transformation Γ. The real parameter W
specifies the transformation’s quantity, the generator γ specifies the trans-
formation’s type, whether e.g. it is a phase transformation, or a rotation,
or whatever. The finite transformation Γ is generated by the concatenation
of infinitely many infinitesimal small transformations ΓINF:

Γ = lim
n→∞

(
I+ i

~
w γ

)n
= lim

n→∞

(
I + i

~

W

n
γ

)n
with n ∈ N (4.9)

Γ = exp
{ i
~
Wγ

}
(4.10)

Γ will leave L unchanged (possibly except for the four-divergence of
an arbitrary vector function) if and only if the same holds true for the
infinitesimal transformation (I + i

~w γ):

Γ = lim
n→∞

(
I + i

~
w γ

)n
is a symmetry of φ ⇐⇒

⇐⇒ ∃G : L
I+ i

~
w γ

−−−−−→ L ′ = L+ i

~
w γL = L+ dρGρ

(4.11)

Generally, L is a function of several fields φr, φs, φt, . . ., of the fields deriva-
tives to the space-time-coordinates, and possibly explicitly of the space-
time-coordinates x. The effect of the generator γ on L thus is

γL =
∑
r

∂L
∂φr

γφr +
∑
r

∂L
∂(dρφr)

γ(dρφr) + (∂ρL)γxρ . (4.12)

If L is a function of vector fields with four space-time components, each
component adds a summand to the sums over r, see the lines after (3.37b).
Using the identity γ(dρφ) = dρ(γφ), this equation is modified:
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γL =
∑
r

(
∂L
∂φr
− dρ

∂L
∂(dρφr)

)
︸                          ︷︷                          ︸

= 0 see (3.37b)

γφr+

+ dρ
(∑

r

∂L
∂(dρφr)

γφr

)
+ (∂ρL)γxρ (4.13)

Insertion into the symmetry condition (4.11) yields

i

~
w γL = dρ

(∑
r

∂L
∂(dρφr)

i

~
w γφr

)
+ (∂ρL) i

~
w γxρ = dρGρ

dρ
(∑

r

∂L
∂(dρφr)

wγφr + i~Gρ
)

+ (∂ρL)wγxρ = 0 . (4.14)

For arbitrary x this condition can only be fulfilled, if the second term is
zero. Therefore a necessary symmetry condition can be formulated :

Γ = lim
n→∞

(I + i

~
w γ)n is a symmetry of φ =⇒
=⇒ (∂ρL)wγxρ = 0

(4.15)

This condition is necessary, but not sufficient. (4.11) is the necessary and
sufficient condition for Γ respectively (I+ i

~wγ) to be a symmetry of L. The
necessary condition (4.15) is implicitly included in (4.11). In most cases it’s
simpler at first only to check the necessary condition (4.15) instead of the
sufficient condition. If that criterion already is missed, then one can save
the effort to search for a function G which fulfills the sufficient condition
(4.11).

The necessary condition (4.15) is fulfilled, if either the transformation
does not act on position vectors but only on fields (then wγxρ = 0) and/or
if the system under evaluation is closed, and the Lagrangian therefore does
not explicitly depend on the space-time-coordinates (then ∂ρL = 0). The
case wγxρ = 0 is called an “inner symmetry”, because this symmetry is not
related to the frame of space and time. Inversely, symmetries with wγxρ , 0
(and thus ∂ρL = 0) ar called “outer symmetries”.
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If the sufficient symmetry condition (4.11) is fulfilled, then according to

(4.14) the current density j with the components

jρ ≡ C
(∑

r

∂L
∂(dρφr)

wγφr + i~Gρ
)

(4.16)

is a conserved quantity, for which the equation of continuity

dρjρ = 0 (4.17a)
d
dt

(
j0

c

)
= −∇ · j (4.17b)

is valid. The constant C may be chosen arbitrarily. j0/c is called charge
density, j is called current density. The units of these quantities are

[j] = charge
area · time (4.18a)

[j0/c] = charge
volume . (4.18b)

The notion “charge” is to be interpreted quite general, and not constrained
to an electrical charge. We soon will get to know examples for pretty
different types of charges.
Any equation of continuity is representing a conservation law. This

becomes visible by integration over a finite volume V , and conversion of the
volume integral over the three-dimensional divergence by Gauß’ theorem to
a surface integral over the surface of V :

d
dt

∫
V

d3x
j0

c︸        ︷︷        ︸
Q

= −
∫
V

d3x∇ · j = −
∫

O(V )

df · j (4.19)

The increase of charge Q inside the volume equals the current, which streams
into V through it’s surface O. No charge can emerge from nothing or vanish
into nothing. Generally holds: The three-dimensional volume integral over
a conserved current density’s null-component is a conserved quantity.
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Note, that this quantity is conserved — as evident from (4.16) — for
the sum of all fields contained in the Lagrangian, but not for each single
field. E.g. momentum may be exchanged inbetween two fields (and thus
the momentum of a single field may change), while the system’s overall
momentum is conserved.

4.2 Translations

If the necessary symmetry condition (∂ρL)wγxρ (4.15)= 0 is fulfilled by ∂ρL =
0, but not by wγxρ = 0, this is an “outer” symmetry.

An example is the transformation V , which shifts the coordinates of four-
dimensional space-time relative to the system under evaluation by a distance
A. This is called a passive translation, in contrast to an active translation,
which shifts the contents of the world relatively to the fixed coordinates. A
maximum of a scalar field φ, which has in the shifted coordinate system′
(marked by a prime′) the coordinates x′, has in the unshifted system the
coordinates x+A:

φ(x) V−→ φ(x′) = φ(x+A) (4.20)

To evaluate the symmetry properties, we consider V as the product of
infinitely many concatenated infinitely small transformations. Each in-
finitesimal transformation step shifts the coordinates by a distance

a = lim
n→∞

A

n
with n ∈ N . (4.21)

The effect of an infinitesimal transformation step can be expanded in a
Taylor series, which may be ended after the linear term because of the
infinitesimal small a:

φ(x) VINF−−−→ φ(x′) = φ(x+ a)

= φ(x) + i

~
(−i~)aνgνµdµφ(x) +O(a2) (4.22)

Comparison with the general form of an infinitesimal transformation
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ΓINF
(4.7)= I + i

~
wγ (4.23)

with the generator γ and the real parameter w shows, that −i~(dµ) is the
generator of the coordinate translation with the real parameter a ≡ (aν).
Thus the generator turns out to be the well-known energy-momentum
operator (multiplied by −1)

p0

p1

p2

p3

 =


H/c
p1

p2

p3

 = i~


d0

d1

d2

d3

 = i~


d0
−d1
−d2
−d3

 (4.24)

with the components

p0 = p0 = H/c = i~
1
c

d
dt ,

p1 = ~
i

d
dx1 , p2 = ~

i

d
dx2 , p3 = ~

i

d
dx3 . (4.25)

The energy operator i~ddt thus is (up to the constant factor −1/c) the
generator of a passive translation in time-direction. And the momentum
operator’s k-component ~i

d
dxk is (up to the constant factor −1) the generator

of a passive translation in space-direction xk.
The necessary symmetry condition (4.15)

(∂ρL)wγxρ = −(∂ρL)aνi~dνxρ = −(∂ρL)aρi~ = 0 (4.26)

is fulfilled if and only if the Lagrangian at least does not explicitly depend
of those space-time-directions, into which the coordinates system is being
shifted (i.e. those directions, for which aρ , 0), because then for these
directions ∂ρL = 0 .

A vector function G, with which the sufficient symmetry condition (4.11)
is fulfilled, can be found by applying the infinitesimal transformation to the
Lagrangian:
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L
I+ i

~
wγ

−−−−→ L′ = L+ i

~
aρgρσ(−i~)dσL = L+ aρdρL = L+ dρGρ (4.27)

As a is constant, this condition can be met for arbitrary Lagrangians L by
choosing

Gρ ≡ aρL . (4.28)

The conserved current density’s components follow from

jρ
(4.16)
≡ C

(∑
r

∂L
∂(dρφr)

wγφr + i~Gρ
)
. (4.29)

Inserting w = (aν), γ = −i~(dµ), and Gρ = aρL, one finds

jρ = Caν
(
−
∑
r

∂L
∂(dρφr)

i~gνµdµφr + i~gρνL
)
. (4.30)

As the four components of the coordinate translation a are independent
from another, there are four conserved current densities. Thus we may
choose the constant

Caν ≡ − g
σν

i~
with σ = 0, 1, 2, 3 , (4.31)

and the four conserved current densities become

jρ =
∑
r

∂L
∂(dρφr)

dσφr − gρσL ≡ T ρσ with σ = 0, 1, 2, 3 . (4.32)

Each of the four current densities fulfills the continuity equation

dρjρ = dρT ρσ = 0 with σ = 0, 1, 2, 3 . (4.33)

For reasons, which will become clear immediately, the tensor T is called
energydensity-stress-tensor, or simply energy-stress-tensor for brevity, or
even shorter ES-tensor. Special names are used for this tensor’s elements,
which also will be explained immediately.
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(T ρσ) =


H cP1 cP2 cP3

SE1/c SP11 SP21 SP31

SE2/c SP12 SP22 SP32

SE3/c SP13 SP23 SP33

 (4.34)

The four continuity equations are:

d
dt

(∑
r

∂L
∂(d0φr)

d0φr − L︸                          ︷︷                          ︸
H

)
= −d

dxj
(∑

r

∂L
∂(djφr)

cd0φr︸                      ︷︷                      ︸
SEj

)
(4.35a)

d
dt

(∑
r

∂L
∂(cd0φr)

d1φr︸                      ︷︷                      ︸
P1

)
= −d

dxj
(∑

r

∂L
∂(djφr)

d1φr − gj1L︸                               ︷︷                               ︸
SP1j

)
(4.35b)

d
dt

(∑
r

∂L
∂(cd0φr)

d2φr︸                      ︷︷                      ︸
P2

)
= −d

dxj
(∑

r

∂L
∂(djφr)

d2φr − gj2L︸                               ︷︷                               ︸
SP2j

)
(4.35c)

d
dt

(∑
r

∂L
∂(cd0φr)

d3φr︸                      ︷︷                      ︸
P3

)
= −d

dxj
(∑

r

∂L
∂(djφr)

d3φr − gj3L︸                               ︷︷                               ︸
SP3j

)
(4.35d)

In the continuity equation (4.35a), which follows from the field’s symmetry
under translation along the time axis, we recognize the energy density
(=Hamiltonian) H of equation (3.60a):

∑
r

∂L
∂φ̇r

φ̇r − L =
∑
r

πrφ̇r − L = H (4.36)

The decrease of energy density H of the fields φr at any point of space-time
equals the the three-dimensional divergence of the energy current density at
the same point. Thus energy is the “charge” of the fields, which is conserved
due to their symmetry under time-like translations.
Alternatively we could have proceeded in reverse direction: Instead of

tediously deriving in section 3.2.2 the canonically conjugate momentum
density and the Hamiltonian by discretization of the fields, one can immedi-
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ately write down equation (4.35) and postulate that the the null-component
of the current density, which is conserved due to invariance of the fields
under translation along the time-like coordinates axis, must be – up to a
possible constant factor f – the fields energy density.

f ·
∫

d3x

(
1
c

∑
r

∂L
∂(d0φr)

d0φr −
L
c

)
=
∫

d3xH (4.37)

The space integral over the energy density must correspond to the Hamilton
function (3.20) of point mechanics:

H =
n∑
j=1

pj q̇j − L (4.38)

Thus for the fields ∫
d3xH =

∫
d3x

(∑
r

πrφ̇r − L
)

(4.39)

must hold. From comparison of (4.37) and (4.39) follows

f = c and πr = ∂L
∂φ̇r

. (4.40)

The “charge”, wich is conserved due to translation symmetry of the fields
in space-like xk-direction, is by definition their momentum in k-direction.
The decrease of momentum density Pk equals the divergence of momentum
current density SPk. The meaning of these definitions becomes more clear,
when (4.35) is integrated over the space volume V , and the volume integral
over the divergence is according to Gauß’ theorem converted into an integral
over the surface of V :

− d
dt

∫
V

d3xH =
∫

O(V )

dfj SEj (4.41a)
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− d
dt

∫
V

d3xPk =
∫

O(V )

dfj SPkj (4.41b)

The decrease of energy within the volume V equals the amount of energy,
which streams out through the surface O(V ). Thus SEj is the density of
the energy stream, which flows in space direction xj . Respectively SPkj is
the density of the k-component of the momentum flowing in xj-direction.
Different from energy density

H (4.35)=
∑
r

∂L
∂(d0φr)

d0φr − L , (4.42)

the total momentum density

Pj (4.35)=
∑
r

1
c

∂L
∂(d0φr)

djφr ≡
∑
r

Pjr (4.43)

can be written as the sum of the momentum densities Pjr of the single fields.
But only the sum of the momentum densities is a conserved quantity, not
the momentum density of a single field.
The ES-tensor’s dimension is[

(T ρσ)
]

= energy
volume . (4.44)

Thus the dimension of the momentum flow densities is[
SPkj

]
= energy

volume = force
area .

In the surface integral on the right-hand side of (4.41b), in case k = i
the integrand refers to the pressure, which the field is exerting onto the
volume’s surface. In case k , i it refers to the shear forces, which the
field is exerting tangentially to the surface of V . For this reason, (T ρσ) is
called energydensity-stress-tensor. We want to introduce a notation, which
clearly discriminates between shear forces and pressure. We define the mean
pressure
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P ≡ 1
3
(
SP11 + SP22 + SP33

)
(4.45a)

(not to be confused with momentum density P !), and the stress tensor with
the 9 components

σkj ≡ SPkj + gkjP . (4.45b)

With these definitions, the ES-tensor can be written in the form

(T ρσ) = (4.34) =
(
H cPj
SEk/c (σkj − gkjP)

)
. (4.46)

In case of isotropic field we get:

Isotropy =⇒ Pj = SEj = σkj = 0
SP11 = SP22 = SP33 = P (4.47)

Assuming isotropy when averaging over very large space scales, thus the ES-
tensor of arbitrary fields becomes a diagonal matrix:

Isotropy =⇒ (T ρσ) =
(
H 0
0 −gkjP

)

(−Pgρσ) with constant P obviously is a Lorentz-tensor, as we know for sure
that (gρσ) is a Lorentz-tensor. (T ρσ) could not be a Lorentz-tensor if it was
identical with (−Pgρσ) in all components except for (T 00) , (−Pg00). Thus
Lorentz-invariance implies

Isotropy =⇒ (T ρσ) =
(
H 0
0 −gkjP

)
= (−gρσP) . (4.48)

Final remark: The the momentum density Pjr of a field φr must not be
confused with its canonically conjugate momentum density

πr
(3.57)
≡ ∂L

∂φ̇r
= 1
c

∂L
∂(d0φr)

. (4.49)
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For the components of the physical momentum,

Pkr
(4.35)= 1

c

∂L
∂(d0φr)

dkφr
(3.57)= πrdkφr . (4.50)

The physical momentum density P is defined by its correlation with the
space-like translation symmetry of the field, same as energy density H is
defined by its correlation with the time-like translation symmetry of the field.
The canonically conjugate momentum density πr is a construct of Hamilton-
formalism, and is defined by its correlation to the field’s amplitude. It even
may have a dimension different from momentum/volume. The product πrφr
of canonically conjugate momentum density and field amplitude always
has the dimension action/volume. Thus the conjugate momentum density
has the dimension momentum/volume if and only if the field’s amplitude
has the dimension length. We often will investigate fields, which have the
dimension 1/

√
volume. Their canonically conjugate momentum density has

the dimension action/
√
volume. The physical momentum is canonically

conjugate to the position vector x. Thus both have three components. πr(x)
has, same as the scalar field φr(x), only one component. In the case of
vector fields or spinor fields, for each field component one component of its
canonically conjugate momentum density is defined according to (4.49).

4.3 Rotations

After we got to know the four-dimensional momentum operator (multiplied
by -1) as generator of passive translations of scalar fields, it is plausible to
guess, that the four-dimensional angular momentum operator (multiplied
by -1) might be the generator of passive rotations of scalar fields. But it
will turn out immediately, that the positive angular momentum operator is
that generator. This holds true at least if the coordinate axes are defined
as usual as a right-handed system, and rotation angles are counted counter-
clockwise.

There are six mutually orthogonal planes in four-dimensional space-time:
The space-time planes 10 = xct, 20 = yct, 30 = zct, and the space-space
planes 23 = yz, 31 = zx, 12 = xy. Suppose that a primed coordinates
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system K ′ is rotated relatively to the unprimed coordinates system K in
12-plane by an infinitesimal small positive angle ω12 as depicted in figure
4.1. At space-time point A, a maximum of a scalar field φ(x) is located:

φmax = φ


0′
A′
0′
0′

 = φ


0
A

ω12 A
0

 . (4.51)

A minimum of the field is located at space-time point B:

φmin = φ


0′
0′
B′
0′

 = φ


0

−ω12 B
B
0

 . (4.52)

Apparently the general relation is

φ


x′0

x′1

x′2

x′3

 = φ


x0

x1 − ω12 x2

x2 + ω12 x1

x3

 = φ(x) +
(
ω12x1d2 − ω12x2d1

)
φ(x) . (4.53)

The Taylor series may be ended after the linear term because of the infinites-
imal small angle ω12. We insert the factor 1 = −g11 = −g22 two times, and

A

B

x2
x′

2

x1

ω12

x′
1

Fig. 4.1 : coordinate rotation
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pull up the indices of d2 and of d1:

φ(x′) = φ(x)− ω12
(
g11x

1d2 − g22x
2d1
)
φ(x)

= φ(x)− ωαβ
(
gα1x

1gβ2d2 − gβ2x
2gα1d1

)
φ(x)

φ(x′) = φ(x)− ωστgσαgτβ
(
gα1x

1gβ2d2 − gβ2x
2gα1d1

)
φ(x)

= φ(x)− ωστ
(
gσ1x

1gτ 2d2 − gτ 2x
2gσ1d1

)
φ(x) (4.54)

This can be generalized to an arbitrary coordinates plane: Any infinitesimal
rotation of coordinates can be achieved by linear combination of the rotation
angles Ω10,Ω20,Ω30,Ω23,Ω31,Ω12 in the six space-time planes. The angles are
anti-symmetric under index permutations: Ωστ = −Ωτσ. We arrange them
in a skew-symmetric matrix:

Ω = (Ωστ ) ≡


0 −Ω10 −Ω20 −Ω30

Ω10 0 Ω12 −Ω31

Ω20 −Ω12 0 Ω23

Ω30 Ω31 −Ω23 0

 (4.55)

Because of g00 = −g11 = −g22 = −g33 = +1, space-time-angles change sign,
if the indices are pulled to the covariant (bottom) position, while the sign
of space-time-angles remains unchanged. Normally we don’t need to take
care of that, as our formulas “automatically” account for it.
We replace the indices 1 and 2 in (4.54) by the general indices κ and µ.

Furthermore a factor 1
2 is inserted, which will be justified immediately. The

coordinates rotations are named R:

φ(x′)=RINFφ(x)=
(
I − 1

2ωστ (gσκxκgτ µdµ − gτ νxνgσρdρ)
)
φ(x)

=
(
I + i

2~ωστ i~(x
σdτ − xτdσ)

)
φ(x)

φ(x′) = RINFφ(x) =
(
I + i

2~ωστJ
στ
)
φ(x) (4.56)
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Thus

Jστ ≡ i~(xσdτ − xτdσ) (4.57)

= i~(xσgτµ − xτgσµ)dµ (4.58)

is the generator of an infinitesimal passive rotation

RINF = I + i

2~ωστJ
στ (4.59)

of the scalar field φ(x).

Jτσ = −Jστ (4.60)

is evident from (4.57). As the diagonal elements of Ω are zero, the summation
over σ = 0, 1, 2, 3 and τ = 0, 1, 2, 3 results in the product

1
2ΩστJ

στ = 1
2(Ω10J

10 + Ω20J
20 + Ω30J

30 + Ω10J
10 +

+ Ω12J
12 + Ω31J

31 + Ω20J
20 + Ω12J

12 +
+ Ω23J

23 + Ω30J
30 + Ω31J

31 + Ω23J
23) =

= Ω10J
10 + Ω20J

20 + Ω30J
30+

+ Ω23J
23 + Ω31J

31 + Ω12J
12 . (4.61)

This is just the correct sum over the products of the six parameters and the
six generators, and elucidates, why in (4.56) the factor 1

2 had to be inserted.
We now will demonstrate that the generator J = (4.57) is nothing other

than the four-dimensional angular momentum operator. The angular mo-
mentum in three-dimensional position space can be written by means of the
cross productLxLy

Lz

 = L = x× p =

ypz − zpyzpx − xpz
xpy − ypz

 =

x2p3 − x3p2

x3p1 − x1p3

x1p2 − x2p1

 ≡
J23

J31

J12

 .
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In the syntax J jk, the indices jk specify a rotation in the xjxk-plane. The
generalization to angular momenta in four-dimensional space-time is evident:

Jστ ≡ xσpτ − xτpσ with
{ σ = 0, 1, 2, 3
τ = 0, 1, 2, 3 (4.62)

The angular momentum operator Jστ can be found by replacing the
components pν of four-dimensional momentum by the components i~dν of the
four-dimensional momentum operator. This directly leads to equation (4.57).
As usual, we use identical letters for operators and for their Eigenvalues, i.e.
we (usually) don’t mark operators by ĥats, but leave the discrimination to
the reader’s attention.

The angles Ωστ of finite coordinates rotations are related to infinitesimal
rotation angles by

ωστ ≡ lim
n→∞

1
n

Ωστ with n ∈ N . (4.63)

Finite passive rotations of scalar fields are achieved by concatenating in-
finitely many infinitesimal transformations:

R = lim
n→∞

(
I + 1

n

i

2~ Ωστ J
στ
)n

with n ∈ N

R = exp
{ i

2~ Ωστ J
στ
}

(4.64)

Under which conditions are rotations of the four-dimensional space-time-
coordinates symmetries of scalar fields φr(x), and which conservation laws
correlate with these symmetries? The equations of the fields φr are derived
from the Lagrangian L. According to (4.15), the necessary (but not sufficient)
condition for a transformation Γ with generator γ to be a symmetry of φ is
given by

(∂ρL)wγxρ = 0 . (4.65)

Insertion of 1
2ωστJ

στ for wγ with Jστ (4.58)= i~(xσgτµ − xτgσµ)dµ results in
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0 = (∂ρL)1
2ωστ i~(x

σgτµ − xτgσµ)dµxρ

= (∂ρL)1
2ωστ i~(x

σgτρ − xτgσρ) . (4.66)

(xσgτρ − xτgσρ) can only be different from zero, if ρ = σ or ρ = τ . Thus
the condition is met, if the Lagrangian at least does not explicitly depend
on the space-time directions σ and τ , in which the rotation takes place,
because then ∂σL = ∂τL = 0 .
The sufficient symmetry condition (4.11)

∃G : L
I+ i

~
w γ

−−−−−→ L ′ = L+ i

~
w γL = L+ dρGρ

results by insertion of 1
2ωστJ

στ for wγ into

i

~
w γL = dρGρ = i

~

1
2ωστJ

στL

=(4.58) i

~

1
2ωστ i~(x

σgτρ − xτgσρ)dρL

= −dρ
1
2ωστ (xσgτρ − xτgσρ)L . (4.67)

We check the last step:

dρ(xσgτρ − xτgσρ)L =
= (gσρgτρ − gτ ρgσρ︸                   ︷︷                   ︸

0

)L+ (xσgτρ − xτgσρ)dρL

The first summand in fact is zero, therefore in (4.67) the differential operator
may be pulled left, and one finds the vector function

Gρ ≡ − 1
2ωστ (xσgτρ − xτgσρ)L , (4.68)

which fulfills the sufficient symmetry condition. Into the conserved current
density formula
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jρ
(4.16)= C

(∑
r

∂L
∂(dρφr)

wγφr + i~Gρ
)

we insert 1
2ωστJ

στ for wγ and (4.68) for Gρ:

jρ = C

(∑
r

∂L
∂(dρφr)

1
2ωστJ

στφr − i~
1
2ωστ (xσgτρ − xτgσρ)L

)
=

∑
στ=10,20,30,23,31,12

Ci~ωστ ·

·
(∑

r

∂L
∂(dρφr)

(xσdτ − xτdσ)φr − (xσgτρ − xτgσρ)L
)

Here the summation is restricted to the six linearly independent components
of the skew-symmetric tensor ωστ . Therefore the factor 1/2 was dropped.
As the six ωστ are independent, a separate equation of continuity holds for
each of them. Choosing the constant

C ≡ 1
ci~ωστ

with στ = 10, 20, 30, 23, 31, 12 , (4.69)

we find the components of the six conserved current densities

jρ = xσ
(1
c

∑
r

∂L
∂(dρφr)

dτφr − gτρ
L
c

)
− xτ

(1
c

∑
r

∂L
∂(dρφr)

dσφr − gσρ
L
c

)
=(4.32)

xσ
T ρτ

c
− xτ T

ρσ

c
with στ = 10, 20, 30, 23, 31, 12 . (4.70)

Here the energydensity-stress tensor T reappears, which was defined in
(4.32). The conserved current densities can be combined to the angular-mo-
mentum tensor (strictly speaking: the angular-momentum-density tensor).
It’s components are

Mρστ ≡ xσ T
ρτ

c
− xτ T

ρσ

c
. (4.71)

The angular-momentum tensor’s dimension is
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[Mρστ ] = length · energy · time
volume · length = action

volume . (4.72)

M fulfills the six linearly independent equations of continuity

dρMρστ = 0 for στ = 10, 20, 30, 23, 31, 12 . (4.73)

The six conserved angular momenta are the volume integrals over the
null-components of the conserved current densities:

Mστ ≡
∫

d3xM0στ for στ = 10, 20, 30, 23, 31, 12 (4.74)

The purely space-like angular momenta M23, M31, M12 are well known.
They are of the form

M jk =
∫

d3x
(
xjPk(x)− xkPj(x)

)
, (4.75)

with (Pj) (4.34)= (T 0j/c) being the fields momentum densities. In contrast, a
pictorial interpretation of the space-time-like angular momenta M10, M20,
M30 is difficult:

M j0 =
∫

d3x
(
xj
H(x)
c
− c tPj(x)

)
(4.76)

H is the fields energy density. M j0 can have the unhandy feature to be
the small difference of two large numbers, respectively it certainly will get
this feature in course of time. M j0 is the curiosity of a conserved quantity,
which explicitly depends on time. Formally, the space-time-like angular
momenta are acceptable conserved quantities, but – being the difference
of diverging numbers – they are hardly seizable by measurements, and
therefore irrelevant to the experimentalist.
There is a further reason to ignore the M j0: In the second part of this

book, we will quantize energy density, momentum density, and the position
vector. But a hermitian time operator is unknown to quantum theory.
Therefore (4.76) anyway is useless for quantum field theory, and we will
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only consider the purely space-like angular momenta M23, M31, M12 in the
following chapters.

In this section, we restricted our considerations to the angular momentum
of scalar fields. In section 5.7, we will extend the theory to the angular
momentum of vector fields, and in section 6.4 to the angular momentum of
spinor fields.

4.4 Global Phase Transformations

In case of an inner symmetry, the necessary (but not sufficient) symmetry
condition

(∂ρL)wγxρ (4.15)= 0

is fulfilled by wγxρ = 0.
We will investigate a global phase transformation U , which rotates the

phase of a field φ(x) in all points x of space-time by the angle Kq/~:

φ(x) U−→ φ′(x) = e
i
~
Kqφ(x) with K, q ∈ R (4.77)

This should be compared to the general form (4.9) and (4.10)! The generator
q in this case is a constant, real quantity, which is called the charge of the
field φ. The charge could be an electrical charge, or any other additive
quantity which is characteristic for this field. For a real field, this transfor-
mation would be meaningless. Only complex fields can have a conserved
charge, which is based on the invariance of the field equation under phase
transformations. The phase transformation (4.77) is called “global”, because
the real parameter K is identical at all points of space-time. As the exponent
must be dimension-less, the dimension of K is action/charge.
The space-time coordinates are not affected by the transformation U .

Therefore the necessary symmetry condition (4.15)

(∂ρL)wγxρ︸   ︷︷   ︸
=0

= 0 (4.78)

is fulfilled for any field. To find out whether there exists a G, with which
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also the sufficient symmetry condition (4.11)

∃G : L
I+ i

~
wγ

−−−−→ L ′ = L+ i

~
wγL = L+ dρGρ (4.79)

can be fulfilled, we consider the infinitesimal transformation. Because of

e
i
~
Kq = lim

n→∞

(
1 + i

~

K

n︸︷︷︸
≡k

q

)n
with n ∈ N , (4.80)

the condition in this case is

φ(x)
I+ i

~
wγ

−−−−→ φ′(x) = φ(x) + i

~
kqφ(x) . (4.81)

Without detailed informations on L, it’s impossible to check the symmetry
condition (4.79). We must restrict the evaluation to a certain Lagrangian,
and choose the Dirac-field for this purpose. It’s field equation can be derived
from the Lagrangian

L = φ†γ0(i~cγρdρ −mc2)φ . (4.82)

We will discuss the Dirac-field thoroughly in chapter 8. Here we merely
mention, that φ is a four-spinor, i.e. a field with four components in an
abstract four-dimensional spinor-space, which is a space completely different
from four-dimensional position-time space. φ† is the spinor, which is adjunct
to φ, i.e. it is the transposed complex-conjugate form of φ. The factors γµ
are 4× 4 matrices in spinor space with constant, complex elements.
The transformed adjunct spinor is

φ†′(x) = φ†(x)− i

~
kqφ†(x) . (4.83)

Note the minus sign. Now we can compute the effect of the infinitesimal
transformation on L (terms O(k2) can be neglected):
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L
I+ i

~
wγ

−−−−→ L′ = (φ† − i

~
kqφ†)γ0(i~cγρdρ −mc2)(φ+ i

~
kqφ)

= L+ φ†γ0(i~cγρdρ −mc2) i
~
kqφ+

− i

~
kqφ†γ0(i~cγρdρ −mc2)φ+O(k2)

= L (4.84)

The sufficient symmetry condition (4.79) is fulfilled by

dρGρ = 0 ⇐⇒ G = constant . (4.85)

We can avoid unnecessary paperwork by choosing G ≡ 0. Then the compo-
nents of the conserved current density are

jρ =(4.16)
C
∑
r

∂L
∂(dρφr)

wγφr

= C

(
∂L

∂(dρφ)kqφ− φ
† ∂L
∂(dρφ†)

kq

)
(4.86)

= C
(
φ†γ0i~cγρkqφ− 0

)
,

from which with C ≡ 1/(i~k) follows

jρ = qφ†γ0cγρφ . (4.87)

In (4.86) we changed the sequence of factors in the second term, to make
sure that both terms are numbers, but not spinor matrices. For j holds the
continuity equation

dρjρ = 0 (4.88a)
d
dt
j0

c
= −dkjk

d
dtqφ

†γ0γ0φ = −dkqφ†γ0cγkφ . (4.88b)

Integration over the volume V and application of Gauß’ theorem results
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into

d
dt

∫
V

d3x qφ†γ0γ0φ

︸                  ︷︷                  ︸
Q(V )

= −
∫

O(V )

dfk qφ†γ0cγkφ︸          ︷︷          ︸
jk

. (4.89)

The increase of the charge Q(V ) contained within V equals the current,
which is flowing into the volume through it’s surface. No charge can emerge
out of nothing or vanish into nothing.

4.5 Gauge Transformations

In section 4.4 we explored a phase transformation, whose real parameter K
was a constant. The field’s phase shift therefore was identical in all points
of space. That is called a “global” phase transformation.
Now we will investigate a transformation U(x), which rotates the phase

of the field φ(x) at space-time point x by the angle 1
~K(x)q:

φ(x) U(x)−→ φ′(x) = e
i
~
K(x)qφ(x) with K(x), q ∈ R (4.90)

The generator q is – same as for the global transformation – a charge of the
field φ, i. e. a constant, real quantity, which is characteristic for the field. In
contrast the real parameter K (whose dimension is action/charge) now is a
function of x, and can have different values at different points of space and
time. We only fix the restriction, that the function K(x) must be analytic,
i. e. it must be differentiable to all four space-time coordinates, and the
equation

dρdνK = dνdρK for ν, ρ = 0, 1, 2, 3 (4.91)

must hold. As the space-time coordinates are not affected by the phase
transformation, the necessary symmetry condition (4.15)

(∂ρL)wγxρ︸   ︷︷   ︸
=0

= 0 (4.92)



4.5 Gauge Transformations 71
is fulfilled for any field. Because of wγxρ = 0, the invariance under the
phase transformation is an “inner” symmetry. To find out whether a G
exists, with which also the sufficient symmetry condition (4.11)

∃G : L
I+ i

~
wγ

−−−−→ L ′ = L+ i

~
wγL = L+ dρGρ

can be fulfilled, we consider the infinitesimal transformation. Because of

e
i
~
K(x)q = lim

n→∞

(
1 + i

~

K(x)
n︸   ︷︷   ︸

≡ k(x)

q

)n
with n ∈ N (4.93)

it has the form

φ(x)
I+ i

~
wγ

−−−−→ φ′(x) = φ(x) + i

~
k(x)qφ(x) . (4.94)

For definiteness, we again choose the Dirac field with the Lagrangian

L = φ†γ0(i~cγρdρ −mc2)φ . (4.95)

As k(x) is a function of the space-time coordinates, now an additional term
shows up in the transformation of L:

L
I+ i

~
wγ

−−−−→ L′ = (φ† − i

~
kqφ+)γ0(i~cγρdρ −mc2)(φ+ i

~
kqφ) =

= L+ φ†γ0i~cγρ
i

~
(dρk)qφ+ φ†γ0k(i~cγρdρ −mc2) i

~
qφ−

− i

~
kqφ†γ0(i~cγρdρ −mc2)φ+O(k2) = L − φ†γ0cγρ(dρk)qφ (4.96)

The local phase transformation U(x) is a symmetry of the Dirac field if and
only if there is a vector function G, which fulfills the equation

dρGρ(x) = −φ†(x)γ0cγρ
(
dρk(x)

)
qφ(x) . (4.97)

Such function does not exist. Therefore the local phase transformation U(x)
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is not a symmetry of the Dirac field.
Instead of being satisfied by this result, we now will extend the local

phase transformation to a gauge transformation, and we will postulate the
invariance under gauge transformations as a law of nature, with which all
charged fields must comply.

The local phase transformation is missing the symmetry criterion due to
the term with dρk in equation (4.96). As we demand k to be a function
of the space-time coordinates, but not a constant, such kind of term can
not be avoided as long as there are differential operators in the Lagrangian.
On the other hand, we cannot do without differential operators, because a
Lagrangian without differential operators can only lead to static, but not to
dynamic field equations.

Actually it is possible, to make the Dirac field invariant under local phase
transformations without having to sacrifice the differential operators in
the Lagrangian. The solution is to replace the differential operators dρ by
“phase-transformation-adapted” differential operators Dρ, which have the
transformation properties

Dρ φ
U(x)−→ D′ρ φ′ = D′ρ e

i
~
K(x)qφ = D′ρ U(x)φ

= e
i
~
K(x)q Dρ φ = U(x) Dρ φ (4.98)

instead of

dρφ(x) U(x)−→ dρφ′(x) = dρe
i
~
K(x)qφ = e

i
~
K(x)q

(
dρ + i

~
(dρK)q

)
φ (4.99)

with the annoying second term. Different from the always and everywhere
identical normal differential operators dρ, the operators Dρ(x) are modified
locally by the transformation, with the result that

(4.98) =⇒ D′ρ(x) = U(x) Dρ(x)U †(x) . (4.100)

holds. Therefore they are named covariant differential operators, and we
wrote D′ρ in (4.98). We multiply the time- and space-depending difference
between the two types of differential operators by ~

iq , and give it the name
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Aρ(x) ≡ ~
iq

(
Dρ(x)− dρ

)
. (4.101)

Thus the covariant differential operator is

Dρ(x) ≡ dρ + i

~
qAρ(x) . (4.102)

The covariant differential quotient Dρ φ is transformed as follows:

(dρ+
i

~
qAρ)φ

U(x)−→ (dρ + i

~
qAρ

′)φ′ = (dρ + i

~
qA′ρ)φe

i
~
Kq =

= e
i
~
Kq( i
~

(dρK)qφ+ dρφ+ i

~
qAρ

′φ) . (4.103)

According to (4.98), this must equal

(dρ + i

~
qAρ

′)φ′ = e
i
~
Kq(dρ + i

~
qAρ)φ , (4.104)

from which

Aρ(x) U(x)−→ Aρ
′(x) = Aρ(x)− dρK(x) (4.105)

follows. As the dimension of K(x) is action/charge, the dimension of A(x)
is [

A(x)
]

= momentum/charge . (4.106)

The effect of U(x) upon A is not linear, and the transformed field A′(x)
is not proportional toA(x). Thereby this transformation goes beyond the
scope of Noether’s theorem, and it is not possible to derive a conserved
current density by following method (4.16).
Both differential operators
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dρφ(x) = lim
∆xρ→0

φ(x+ ∆xρ)− φ(x)
∆xρ (4.107a)

and Dρ φ(x) = lim
∆xρ→0

φ(x+ ∆xρ)− φ(x)
∆xρ + i

~
q Aρ(x)

≡ lim
∆Xρ→0

φ(x+ ∆Xρ)− φ(x)
∆Xρ

(4.107b)

compare the fields value at two points with same infinitesimal distance ∆xρ.
But the presence of A has the same effect, as if Dρ would apply instead of
measure ∆xρ a differently gauged measure ∆Xρ. Therefore A(x) is called a
gauge field.

“Presence of A” is to be understood literally. We postulate, that the field
A(x) is as real as electrons, stars, or black holes, and that it’s interaction
with the Dirac field is described correctly, if in the Lagrangian the normal
differential operator dρ is replaced by the covariant differential operator
Dρ(x) = dρ + i

~qAρ(x):

L = φ†γ0
(
i~cγρ(dρ + i

~
qAρ)−mc2

)
φ (4.108)

We combine the phase transformation of the field φ and the corresponding
transformation (4.105) of the gauge field A to the

gauge transformation:

φ(x) U(x)−→ φ′(x) = φ(x)e
i
~
K(x)q

Aρ(x) U(x)−→ A′ρ(x) = Aρ(x)− dρK(x)
with K(x) ∈ R , q ∈ R constant

, (4.109)

and check the effect of an infinitesimal gauge transformation onto the
Lagrangian (4.108):
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L
I+ i

~
wγ

−−−−→ L′ =
(
φ† − i

~
kqφ†

)
γ0 ·

(
i~cγρ

(
dρ + i

~
q(Aρ − dρk)

)
−mc2

)
·

·
(
φ+ i

~
kqφ

)
= (4.96) + φ†γ0cγρ(dρk)qφ+O(k2) = L (4.110)

L = (4.108) is in fact gauge invariant, i.e. the gauge transformation (4.109)
is a symmetry of the combination of Dirac-field φ(x) and gauge-field A(x).
The invariance of charged fields under gauge transformations – briefly

called gauge invariance – can not be derived from the theory. It is an
experimental fact, found by guessing, i.e. a law of nature. As any law of
nature, it can be justified only by the fact, that the conclusions, which can
be drawn from it, coincide with all experimatal observations. In search for
the field theories of the electro-weak and strong interactions, the natural
law of gauge invariance was an important guideline.
To evaluate the properties of the gauge field in more detail, we derive

from the Lagrangian (4.108) the field equations

dν
∂L

∂(dνφr)
− ∂L
∂φr

(3.37b)= 0 . (4.111)

According to the statements in the lines after (3.37b), φ, φ†, and the four
components of A must be considered independent variables of L. Therefore
we find six field equations. φr = φ† results in the Dirac equation(

i~cγρ(dρ + i

~
qAρ)−mc2

)
φ = 0 , (4.112)

which will be investigated in detail in section 8.1. With φr = φ one finds
the equation adjunct to (4.112). We will demonstrate the derivation of this
equation only when we will be familiar with the commutator properties of
the γ-matrices.
The equation for the gauge field’s µ-component follows with φr = Aµ as
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−φ†γ0i~cγρ
i

~
q
∂Aρ
∂Aµ

φ = φ†γ0cγµqφ = 0 (4.87)= jµ (4.113)

with µ = 0, 1, 2, 3 .

jµ is the µ-component of the conserved current density. It’s interesting
to note, that the current density shows up in the field equation of A(x),
but why is it zero? And why is the field A(x) itself not visible at all
in this equation? Apparently, some important terms still are missing in
the Lagrangian. Particularly there should be derivatives of A(x) in the
Lagrangian, in order that we will get a dynamic field equation.

When amending L we must be careful not to destroy the just established
gauge invariance. This can be achieved if the additional terms have the
form of a four-dimensional rotation of A(x). In the gauge transformation
(4.109), the four-dimensional gradient dρK(x) shows up as a summand of
A(x), and rotation terms of the form

Fρν ≡ dρAν − dνAρ (4.114)

in the Lagrangian are because of

dρ(Aν − dνK)− dν(Aρ − dρK) =
= dρAν − dνAρ−dρdνK + dνdρK︸                      ︷︷                      ︸

(4.91)
= 0

(4.115)

harmless with respect to gauge invariance. Furthermore, the rotation terms
should occur minimum quadratically in the Lagrangian, to make sure that
by computing ∂L

∂(dνA) , the result will not be a field equation like (4.113),
in which A itself doesn’t exist any more. Therefore the most simple and
self-evident strategy is, to insert into the Lagrangian a summand vFρνF ρν
with rotation terms Fρν according to (4.114) and some constant v, which
will be specified immediately.

Lets consider the dimension of the constant v. The dimension of A is mo-
mentum/charge. Thus the dimension of Fρν is momentum/(charge·length).
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[vFρνF ρν ] = [v] · momentum2

charge2 · length2 = [L] = energy
volume

[v] = energy
volume ·

charge2 · length2

momentum2 = charge2

force · time2 (4.116)

At this point, we cannot proceed any further with the general notion “charge”.
We must restrict our discussion to some certain type of charge. We define q
as an electrical charge, because this charge is better known to us than any
other thype of charge. Then a physical constant with appropriate dimension
is already known, i.e. the

magnetic field constant = µ0 = 4π · 10−7N · s2

C2 . (4.117)

Thus we set

v = u

µ0
with u ∈ R dimension-less , (4.118)

and find the Lagrangian

L = φ†γ0
(
i~cγρ(dρ + i

~
qAρ)−mc2

)
φ+ u

µ0
FστF

στ . (4.119)

As real number u, we insert u = −1/4, because only with this value – as
will be checked at the end of this section – Maxwell’s well-known equations
of classical electrodynamics can be derived from the Lagrangian (4.120).
Choosing a different value for u would result in a re-definition of the magnetic
field constant µ0. This would not be “wrong”, but we have no reason to
re-define µ0.
u = −1/4 results into the Lagrangian:

L = φ†γ0
(
i~cγρ(dρ + i

~
qAρ)−mc2

)
φ− 1

4µ0
FστF

στ . (4.120)

The field equation for the µ-component of the gauge field A becomes
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dν
∂L

∂(dνAµ) −
∂L
∂Aµ︸    ︷︷    ︸

(4.113)

=

= − 1
4µ0

dν
∂FστF

στ

∂(dνAµ) + φ†γ0cγµqφ︸          ︷︷          ︸
jµ

= 0 . (4.121)

Using

FστF
στ = F νρgσνgτρF

στ = F νρFνρ = F στFστ (4.122)

we find

∂FστF
στ

∂(dνAµ) = ∂Fστ
∂(dνAµ)F

στ + F στ
∂Fστ

∂(dνAµ) = 2 ∂Fστ
∂(dνAµ)F

στ =

= 2(gνσgµτ − gντgµσ)F στ = 2(F νµ − Fµν) = 4F νµ . (4.123)

This is inserted into (4.121):

− 1
µ0

dνF νµ + φ†γ0cγµqφ︸          ︷︷          ︸
jµ

= 0 (4.124)

These equations must hold for µ = 0, 1, 2, 3:

dνF νµ = µ0φ
†γ0cγµqφ = µ0j

µ with µ = 0, 1, 2, 3 (4.125)

The jµ in this equation is a component of the invariant current density
of the global phase transformation, which we found in equation (4.87). In
the lines after (4.105) we already pointed out, that no conserved current
corresponds to gauge invariance. The benefit of gauge symmetry rather is
the fact, that it
1. predicts for any charged field the existence of a gauge field,
2. supplies a clear and unique rule, how to connect a field and its gauge field,

i.e. the replacement of the normal derivative by the covariant derivative,
3. to a very large extend fixes the gauge field’s properties and it’s field

equations.
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In conclusion of this section we will delve a little bit more into the third
point. We have inserted the gauge field into the Lagrangian (4.120) as two
terms: Firstly as covariant derivative, due to which gauge invariance was
achieved. Secondly as the term − 1

4µ0
FστF

στ , which is – apart from the
factor −1

4 , which we tuned with regard to the Maxwell equations – the
simplest method to get a dynamical equation for the gauge field without
disturbing gauge invariance. Now we want to verify, that this Lagrangian
really determines all four Maxwell equations, and thus the complete classical
theory of electrodynamics.
To this purpose we write the gauge field in the usual form

A = (Aρ) =
(

Φ/c
A

)
(4.126)

with the scalar electric potential Φ and the magnetic vector potential A,
and use for the components of the field strength tensor (4.114) the usual
nomenclature

Ek/c ≡ F k0 = −F 0k = dkA0 − d0Ak = −dkA0 − d0A
k (4.127a)

B1 ≡ −F 23 = F 32 = d3A2 − d2A3 = −d3A
2 + d2A

3 (4.127b)
B2 ≡ −F 31 = F 13 = d1A3 − d3A1 = −d1A

3 + d3A
1 (4.127c)

B3 ≡ −F 12 = F 21 = d2A1 − d1A2 = −d2A
1 + d1A

2 (4.127d)
0 = F ρρ = dρAρ − dρAρ . (4.127e)

This is equivalent to the vector equations

electrical field strength: (Ek) = E ≡ −∇Φ− dA
dt (4.128a)

magnetic field strength: (Bk) = B ≡∇×A . (4.128b)

With these definitions, the four-dimensional field equation

(dνF νρ) = µ0φ
†γ0c

(
γ0

γ

)
qφ = µ0

(
j0

j

)
(4.125)
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becomes 
dνF ν0

dνF ν1

dνF ν2

dνF ν3

 =


dkEk/c

−d0E
1/c+ d2B

3 − d3B
2

−d0E
2/c− d1B

3 + d3B
1

−d0E
3/c+ d1B

2 − d2B
1

 =

=

 ∇ ·E/c

− 1
c2

dE
dt +∇×B

 = µ0

(
j0

j

)
. (4.129)

It’s useful to define the

electrical field constant: ε0 ≡
1

c2µ0
, (4.130)

with which eventually the two Maxwell equations for the divergence of E
and for the rotation of B follow:

ε0∇ ·E = j0

c
(4.131a)

1
µ0
∇×B = j + ε0

dE
dt (4.131b)

These two equations relate the fields strength to their sources. The two
remaining Maxwell equations for the divergence of B and the rotation of E
don’t depend on j, and therefore are called inner field equations. They are
implicitly already fixed by the fact, that the field strength tensor

Fστ
(4.114)
≡ dσAτ − dτAσ

was defined due to rotation terms, and thus

dρFστ + dτFρσ + dσFτρ =
= dρdσAτ − dρdτAσ + dτdρAσ − dτdσAρ +

+ dσdτAρ − dσdρAτ = 0 . (4.132)

As each index can have one out of four values, these are 43 = 64 equations.
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But all equations with two – or even three – identical indices are because of

dσFστ + dτ Fσσ︸︷︷︸
= 0

+ dσFτσ︸︷︷︸
=−Fστ

= 0 (4.133)

trivial (namely 0 = 0). Thus only 4 ! = 24 non-trivial equations with
ρ , σ , τ , ρ remain. If the first term in (4.132) instead of dρFστ is chosen
as dτFρσ or as dσFτρ, then only the sequence of the three terms changes, but
the equations are identical. For this reason there are only 24/3 = 8 different
non-trivial equations. Because of Fστ = −Fτσ, half of these equations differ
only by a factor of (-1) from the rest, and there are only 8/2 = 4 linear
independent non-trivial equations. With the definitions from (4.127), these
equations are

d1F23 + d3F12 + d2F31 =
= −d1B

1 − d3B
3 − d2B

2 = 0 (4.134a)
d2F30 + d0F23 + d3F02 =

= −d2E
3/c− d0B

1 + d3E
2/c = 0 (4.134b)

d3F01 + d1F30 + d0F13 =
= d3E

1/c− d1E
3/c+ d0B

2 = 0 (4.134c)
d0F12 + d2F01 + d1F20 =

= −d0B
3 + d2E

1/c− d1E
2/c = 0 , (4.134d)

from which by a little re-arrangement

d1B
1 + d2B

2 + d3B
3 = 0 (4.135a)

d2E
3 − d3E

2 = −cd0B
1 (4.135b)

d3E
1 − d1E

3 = −cd0B
2 (4.135c)

d1E
2 − d2E

1 = −cd0B
3 (4.135d)

respectively in vector notation
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∇ ·B = 0 (4.136a)

∇× E = −dB
dt (4.136b)

follows. Thus all four Maxwell’s equations (4.131) and (4.136) result from the
postulate, that the Dirac field shall be gauge-invariant. A very remarkable
fact !
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5 The Lorentz Group

In chapter 4, we found out by clever guessing how scalar fields are trans-
formed under translations (section 4.2) or rotations (section 4.3) of the
space-time coordinates. In the following chapters we also will need to know
the transformations of vectors respectively vector fields, and of spinors
respectively spinor fields under modifications of the space-time coordinates.
We will proceed more easily in deriving those transformations, if we adopt
more systematic methods than before.
The transformations of scalar fields, of vectors resp. vector fields, and of

spinors resp. spinor fields under coordinate rotations and translations are
representations of certain groups. And the scalar fields, vectors, and spinors
are the bases of those representations. In this chapter, we explicate this
group-theoretical point of view, acquire a lot of most useful tools, and quote
explicitly two transformations, which are representations of the Lorentz
group. The transformations of spinors will be treated in chapter 6 .

5.1 The Homogeneous Proper Lorentz Group {`}

The inhomogeneous Lorentz group (sometimes named Poincaré group)
contains translations (these are shifts of the coordinate system’s origin,
which leave unchanged the coordinate axes directions), proper and improper
rotations (these are changes of the direction of one or several coordinate
axes, while the system’s origin remains unchanged), and combinations of
translations and rotations. Any combination can be considered as the
concatenation of pure rotations and pure translations. Therefore there are
no benefits but only unnecessary complications, if translations and rotations
are treated in combination. The analysis of translations can be completely
separated from the analysis of rotations.
The transformation of scalar fields under translations of the coordinate
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system has already been delineated in section 4.2. Vectors (with the excep-
tion of the position vector) and spinors don’t change at all under translations.
Position vectors, vector fields, and spinor fields are transformed under co-
ordinate translations exactly like scalar fields, i.e. by merely adding the
translation to the position vector resp. to the field’s argument. Therefore
no further investigation of translations is needed, and we will focus in this
chapter exclusively on rotations.
Proper rotations can be considered as concatenations of infinitely many

rotations with infinitely small rotation angles.
Improper rotations are combinations of proper rotations with the inversion

of one or several coordinate axes. In practice, one uses the time inversion T ,
which inverts (mirrors) the x0 axis, and the parity transformation P , which
mirrors the three x1, x2, x3 axes. The inversion of any single axis or of any
combination of axes can be achieved by appropriate combinations of T , P ,
and proper rotations.
In this book, we will use the simple notion “Lorentz group” for the

homogeneous proper Lorentz group, i.e. the group of coordinate rotations of
four-dimensional spacetime, which can be composed of infinitesimal small
rotations, and leave unchanged the coordinate system’s origin. Attention:
The literature is not uniform regarding this naming convention.

5.2 Groups and their Representations

We refered to the set of all proper coordinate rotations as a “group”, without
precisely stating until now, what is meant by this notion. We close this gap
due to the following

Definition: A set G = {g, h, j, . . .} with a group operation
◦, which is uniquely defined for any pair of elements, is a
group, if the following 4 conditions are met:
(1) Closure: ∀g, h ∈ G : g ◦ h ∈ G
(2) Associative law: ∀g, h, j ∈ G : (g ◦ h) ◦ j = g ◦ (h ◦ j)
(3) Unit element: ∃ e ∈ G : g ◦ e = e ◦ g = g ∀g ∈ G
(4) Inverse element:
∀g ∈ G ∃g-1 ∈ G : g ◦ g-1 = g-1 ◦ g = e

(5.1)
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To explain the symbols ∃, ∈, :, ∀, we repeat the four conditions verbally:
(1) Closure: For all g, h in G holds: The product g ◦ h is again an element

in G.
(2) Associative law: For all g, h, j in G holds: The group operation of g ◦ h

with j equals the group operation of g with h ◦ j.
(3) Unit element: There is an element e in G with the property: For all g in

G holds g ◦ e = e ◦ g = g. The element e is called identity of the group G.
(4) Inverse element: For each element g in the group G there is in G an

element g-1 with the property: g ◦ g-1 = g-1 ◦ g = e. The element g-1 is
called inverse element of g.

The group operation mostly is called product, but it does not necessarily
need to be the algebraic product of two numbers. In case of the Lorentz
group, the group operation resp. the product is the concatenation of two
coordinate rotations. The sign ◦ frequently is not written explicitly. Instead
we define

hg ≡ h ◦ g .

The product does not need to be commutative. For example the product of
rotations generally depends on whether we first rotate around axis a and
then around axis b, or first rotate around axis b and then around axis a.

Definition: A map A from a set G into a set D is an
instruction with the following two properties:
(1) To each element in G uniquely one element in D is
assigned:

A : G −→ D

∀g ∈ G : g A−→ d(g) ∈ D

(2) Minimum one element in g ∈ G is mapped onto each
element d ∈ D.

(5.2)

Maps with the property (2) are called “surjective”. As in this book we will
exclusively be concerned with surjective maps, we integrated this property
into the map’s definition. The map must be unique, but it does not need to
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be reversibly unique (=bijective). Several different elements in G may be
mapped onto the same element in D.

Definition: Suppose that the elements in a group D are
transformations acting on a vector space spanned by the
vectors v1, v2, v3, . . .. D is called a representation of a group
G, if a map A : G −→ D exists, which is conserving the
group’s structure:

∀g, h ∈ G : d(h ◦ g) = d(h)d(g)
The vector space V is called representation space. The vectors
v1, v2, v3, . . . ∈ V spanning the representation space are called
the basis of the representation D.

(5.3)

If the map A is reversibly unique (another word for this is bijective), then D
and G are called isomorph. If the map A is merely unique, but not reversibly
unique, that is if there are elements d ∈ D, onto which several elements
g ∈ G are mapped, then the group D is homomorph to the group G. The
definition of representation merely requires D to be homomorph to G. If in
additon the groups are isomorph, then D is called a true representation of
G.

Attention: Some authors define the notion “map” differently. They don’t
require the map to be unique, but admit also ambivalent maps. Consequently
also their representations are not unique. Instead they define “multi-valued
representations”. For example they refer to the matrix group SU(2) as a
double-valued representation of the rotation group {

_
` } of three-dimensional

position space. We will come back to that at the end of section 6.1.3. In this
book, we stick consistently to the definition, that maps and representations
must be unique.

Attention: Some authors apply for the notion “representation” a definition,
which is more restrictive than (5.3): Their representations exclusively are
groups of n×n-dimensional matrices, and the bases of their representations
are n-component column vectors. Even if n =∞ is admitted, we consider
that restriction counterproductive. According to our definition, represen-
tations may be groups of matrices or not. We also need representations,
which are transformation groups, but no matrix groups. Therefore we stick
to the more general definition (5.3). In section 5.4 we will get back to this
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point.
Representations are groups, whose elements are transformations. The

transformations transform the representation’s basis vectors. Abstract
groups are defined solely by their group operation ◦, their elements are
not acting onto anything outside the group. There are groups, with which
we usually become acquainted directly as transformation groups, not as
abstract groups. Four important examples: The group {Λ} of Lorentz
transformations consists of 4 × 4-dimensional matrices, which transform
vectors with four space-time components. The matrix group SO(3) consists
of 3× 3-dimensional matrices, which transform vectors with three position-
space components. The elements of the matrix groups SU(2) and SL(2,C)
are 2× 2-dimensional matrices, which transform two-dimensional spinors.
We consider these transformation groups as representations of abstract
groups (abstract groups=groups, which are solely defined by their group
structure):

Abstract Group Representation
Lorentz group { `} {Λ}

3-D space group {
_
` } SO(3)

{
_
B} SU(2)

{B} SL(2,C)

The four mentioned representations are but examples for infinitely many,
because for any abstract group, infinitely many different representations
can be constructed.
We write the Lorentz group as {`}. For it’s elements – the rotations of

space-time coordinates – we write `B, `C , `D, . . . (The letter A is spared for
a different purpose). To construct a representation of the Lorentz group,
we consider a vector space V with vectors vj , vk, vl,. . . . The rotation `B of
space-time coordinates will transform the vector vj ∈ V into an element
vp ∈ V of the same vector space:

vj
`B−→ d(`B)vj = vp with vj , vp ∈ V (5.4)

The transformations d transform the elements v ∈ V into other (or poten-
tially in some cases into the same) elements v ∈ V . These transformations
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are reversible, as vj = d(`B -1)vp = d-1(`B)vp . With the concatenation of
transformations as group operation, and with the identical transformation I
as unit element (= identity), the set D of the transformations d constitutes
a group, as it meets all conditions of definition (5.1).
From (5.4) a map

A : {`} −→ D (5.5)

can be extracted, which maps the Lorentz group onto the set D of invertible
transformations d, which are defined on the vector space V :

`B
A−→ d(`B)

is defined by
vj

`B−→ d(`B)vj ∀vj ∈ V
(5.6)

With the just defined map A, the group D becomes a representation of the
Lorentz group {`}, as D is conserving – as requested by definition (5.3) –
the group structure of the Lorentz group:

∀`B, `C ∈ {`} : d(`C`B) = d(`C)d(`B)

The representation D may be a true representation, or not. For example
one gets a representation of the Lorentz group, which is no true represen-
tation, if V is a one-dimensional vector space, which is spanned by the
basis vector (1). The representation D then is consisting of the one element
d = (1), and A is mapping all elements `B, `C , `D, . . . ∈ {`} onto the element
(1) ∈ D. This is a one-dimensional representation according to the following

Definition: The dimension of a representation D equals the
dimension of the vector space V , on which the transforma-
tions d ∈ D are defined. The dimension of the vector space
V again equals the number of linearly independent vectors
v ∈ V , which are spanning the vector space.

(5.7)

Summary of this section: If we want to find out, how certain mathematical
objects are transformed under a rotation of the coordinate system, then we
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look for a group of transformations, which are defined on the vector space of
these mathematical objects, and which form a representation of the Lorentz
group. By re-phrasing the question like that, we have not yet found the
wanted transformations. But this new perspective will turn out to be quite
helpful for the explicit construction of the wanted transformations.

5.3 Lie Groups

Marius Sophus Lie (1842 - 1899) did pioneer work in research of continuous
groups. A class of continuous groups with analytic parameter-manifold is
named in his honor. Among the Lie groups is also the Lorentz group. A Lie
group is uniquely defined by it’s parameter manifold and it’s Lie algebra.
In this section, we will explicate these two notions, and in particular we will
specify the Lorentz group’s parameter manifold and Lie algebra.

5.3.1 Parameter Manifold

Any element of a Lie group is parameterized by k real numbers Ω =
(Ω1, . . . ,Ωk). In the specific case of the Lorentz group there are six real
parameters: The rotation angles Ω10,Ω20,Ω30 in the three space-time planes
10, 20, 30, and the rotation angles Ω23,Ω31,Ω12 in the purely space-like planes
23, 31, 12 of four-dimensional spacetime. The k real parameters of arbitrary
Lie groups may be considered as points in a k-dimensional parameter space.
Each point in the parameter space corresponds to a parameter multiplet,
and thus to a certain element of the Lie group. There is a topological
relation in between the parameter points, as the distance between the points
A and B, which are representing the parameter multiplets ΩA and ΩB, can
be defined by

distance(A,B) ≡ +
√

(ΩA
1 − ΩB

1 )2 + . . .+ (ΩA
k − ΩB

k )2 . (5.8)

It may happen that several different parameter multiplets are representing
the same element. In case of the Lorentz group, a rotation of the three purely
space-like coordinate axes by an angle Ω with unchanged time axes is defined
by the infinitely many different parameters Ω + z · 2πΩ/|Ω| with arbitrary
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integer z ∈ Z. No such redundancy does exist for space-time-rotations.
In the Lorentz group’s parameter multiplet (Ω10,Ω20,Ω30,Ω23,Ω31,Ω12), the
first three components uniquely define one group element, but the last three
components are periodical with 2π, and thus infinitely redundant.
We would like to get rid of the ballast of infinitely many redundant

parameters in the parameter manifold. Therefore we define, that out of
all points in parameter space, which parameterize the same element of the
group, only that one is belonging to the parameter manifold, which has the
shortest distance to the parameter multiplet of the group’s identity (=unit
element). By that definition, in case of the Lorentz group the manifold of
parameters Ω23,Ω31,Ω12 is constrained to the three-dimensional sphere with
radius π and center point Ω = (0, 0, 0, 0, 0, 0). Any purely space-like rotation
now is represented by exactly one point in the parameter manifold, except for
rotations with the angles ±πΩ/|Ω|. Because of `(+πΩ/|Ω|) = `(−πΩ/|Ω|),
each π-rotation is defined by two parameter points with diametral opposite
positions on the parameter sphere’s surface. It is common practice to count
both of these points to the parameter manifold, but to consider them as
just one single topological point of the manifold.

By the way (as this detail is of no relevance for our further considerations)
we note, that this definition of the parameter manifold calls for a more precise
definition of the distance between two points in the manifold. For example:
What is the distance between the topological point +0.5πΩ/|Ω| and the
topological point ±πΩ/|Ω| in the three purely space-like components of
the Lorentz group’s parameter manifold ? Is the distance 0.5π or 1.5π ? We
define the distance between topological points to be always the smallest of
all possible values.
After these preparations, we can formulate the parameter manifold’s

definition:
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Definition: Each multiplet of the k real parameters of a
Lie group is represented by a point in a k-dimensional space.
The set of these points is called the Lie group’s topological
parameter manifold.
If different parameter multiplets are specifying one and the
same element of the Lie group, then only that point is belonging
to the parameter manifold, which has the smallest distance to
the parameter multiplet of the group’s unit element. If several
euclidean points meet this criterion of minimal distance, then
all of them are belonging to the parameter manifold, but they
are considered as being one single topological point.

(5.9)

The parameter manifold {Ω10,Ω20,Ω30,Ω23,Ω31,Ω12} of the Lorentz group is
infinite in its first three components, i.e. −∞ ≤ Ωj0 ≤ +∞. In the other
three components it is a sphere with radius π around the origin. Any two
diametral euclidean points on the sphere’s surface constitute one single
topological point, as they are parameterizing the identical element of the
Lorentz group.

5.3.2 Lie Algebra

It is one of the defining properties of Lie groups, that their parameter
manifold is analytic. This implies, that any group element `(Ω), which
is specified by the parameter multiplet Ω, can be expanded in a Taylor
series around the unit element `(0). If we constrain to infinitesimal small
parameters

ωk ≡ lim
n→∞

Ωk

n
with n ∈ N , (5.10)

then the series may be ended after the linear term:

`INF(ω) = `(0) + ωk
d`(Ω)
dΩk

∣∣∣
Ω=0

= `(0) + i

~
ωkl

k (5.11)

lk ≡ −i~d`(Ω)
dΩk

∣∣∣
Ω=0

(5.12)
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The k operators lk are called generators of the Lie group. We already
encountered this definition in (4.8). A finite transformation is achieved by
concatenating infinitely many infinitesimal small transformations:

`(Ω) = lim
n→∞

(
`(0) + i

~

Ωk

n
lk
)n

= exp
{ i
~

Ωkl
k
}

(5.13)

In case of the Lorentz group it’s convenient to arrange the six real parameters
in a skew-symmetric matrix:

(Ωστ ) =


0 −Ω10 −Ω20 −Ω30

Ω10 0 Ω12 −Ω31

Ω20 −Ω12 0 Ω23

Ω30 Ω31 −Ω23 0

 (5.14)

We attach the same double indices to the six generators l, and arrange them
as well in a skew-symmetric matrix:

(lστ ) =


0 −l10 −l20 −l30

l10 0 l12 −l31

l20 −l12 0 l23

l30 l31 −l23 0

 (5.15)

Thus in the sum Ωστ l
στ each parameter and each generator show’s up twice.

Therefore a factor 1/2 must be inserted, when the Lorentz group’s elements
are written in the exponential form (5.13):

`(Ω) = exp
{ i

2~Ωστ l
στ
}

(5.16)

Note the factor -1 in the product Ωστ l
στ = Ωαβgασgβτ l

στ with the space-time
index combinations j0 and 0j, which does not exist with the space-spaces
indices jj.

Some care is needed if finite elements of Lie groups are to be concatenated.
The obvious assumption
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`(ΩC) ≡ `(ΩB) `(ΩA) = exp
{ i

2~ ΩB
γδ l

γδ
}

exp
{ i

2~ ΩA
αβ l

αβ
}

=?? exp
{ i

2~(ΩB
στ + ΩA

στ ) lστ
}

is wrong ! (5.17)

Here the contracted indices in the products ΩB
γδ l

γδ and ΩA
αβ l

αβ have
been re-named to στ . In the following derivations, we will often exercise
the option of re-naming contracted indices. The failure in (5.17) can best
be understood and corrected by considering the infinitesimal element:

`INF(ωC) =(5.11) (`(0) + i

2~ ω
B
γδ l

γδ)(`(0) + i

2~ ω
A
αβ l

αβ) (5.18)

= `(0) + i

2~(ωAστ + ωBστ )lστ − 1
4~2 ω

B
γδ ω

A
αβ l

γδlαβ

The product ωBωA in the last term does not show up in the exponential
form (5.17), and exactly this is the failure. ωBωA is not necessarily of
magnitude O(ω2), but very well might be O(ω). If for example ωA and
ωB are the rotation angles around to mutually orthogonal axes, then the
resulting “diagonal” total rotation is of same order as the two rotation
components. Terms with ωBωA therefore must not be generally ignored –
in contrast to the terms ωAωA or ωBωB, which are O(ω2) in any case.
For this reason, in the exponent of (5.17) there must show up a term

with ωBωA. For this purpose we make the ansatz

ωCστ = ωBστ + ωAστ + 1
2 ω

B
γδ

1
2 ω

A
αβ

i

~
fγδαβστ (5.19)

with for the time being unknown structure constants fγδαβστ . The two
factors 1

2 are inserted again, because in the summation over γ, δ, α, β each
of the six parameters ωB and each of the six parameters ωA does show
up twice. Remark: Mathematically oriented authors usually define – in
contrast to us – the generator (5.12) without the factor ~. Consequentially
they then – again in contrast to us – don’t factor out 1/~ from the structure
constants in the ansatz (5.19).

An infinitesimal small element `INF(ω) of the Lorentz group is created, if
in the Taylor series expansion around the element `(0) only those terms are
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kept, which are linear in the real parameter ω. In the case of `CINF, the series
must be continued including the quadratic term, because in our ansatz there
are terms of the type ωB ωA within ωC 2, which may be O(ω):

`INF(ωC) = `(0) + i

2~ ω
C
στ l

στ − 1
8~2 ω

C
στ ω

C
µν l

στ lµν =

= `(0) + i

2~(ωBστ + ωAστ + ωBγδ ω
A
αβ

i

4~f
γδαβ

στ )lστ

− 1
8~2 (ωBστ ωAµν + ωAστ ω

B
µν)lστ lµν (5.20)

Terms containing ωB 2 or ωA 2 clearly always are O(ω2) and could be
neglected. For the same reason, the series expansion up to the linear term
is sufficient for `AINF and for `BINF – but not for `CINF.

The factor ωBγδ ωAαβ lγδlαβ in the last term of (5.18) can be modified as
follows:

ωBγδ ω
A
αβ l

γδlαβ = 1
2
(
ωBγδ ω

A
αβ l

γδlαβ + ωBγδ ω
A
αβ l

γδlαβ

− ωBγδ ωAαβ lαβlγδ + ωBγδ ω
A
αβ l

αβlγδ
)

= 1
2
(
ωBγδ ω

A
αβ [lγδlαβ, lαβlγδ]

+ (ωBγδ ωAαβ + ωBαβ ω
A
γδ )lγδlαβ

)
(5.21)

This is inserted into the last term of (5.18):

`INF(ωC) = `(0) + i

2~(ωAστ + ωBστ )lστ

− 1
8~2

(
ωBγδ ω

A
αβ [lγδlαβ, lαβlγδ]

+ (ωBγδ ωAαβ + ωBαβ ω
A
γδ )lγδlαβ

)
(5.22)

This result is compatible with (5.20) if and only if
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[lγδlαβ, lαβlγδ] = fγδαβστ l

στ . (5.23a)

Now we are in a position to write (5.17) correctly by inserting ΩC = (5.19):

`(ΩB)`(ΩA) = exp
{ i

2~ ΩB
βγ l

βγ
}

exp
{ i

2~ ΩA
αβ l

αβ
}

= exp
{ i

2~(ΩB
στ + ΩA

στ + ΩB
γδΩA

αβ
i

4~f
γδαβ

στ )lστ
}

= `(ΩB + ΩA + ΩB
γδΩA

αβ
i

4~f
γδαβ)

with fγδαβστ resp. fγδαβ ≡ (fγδαβστ ) acc. (5.23a)

(5.23b)

In this equation, ΩBΩA appears with the weighing factor — i.e. it is
considered a term linear in Ω to the extend — that the generator of the
respective generators differs from zero. Therefore in the commutators, resp.
in the structure constants f built from the commutators according to (5.23a),
the information on the structural properties of a Lie group is enclosed.
(5.23) is the Lie-Algebra’s fundamental equation system. In its derivation

we nowhere made use of any special property of the Lorentz group. Thus
(5.23) is generally valid for arbitrary Lie groups.

For the Lorentz group { `} we fix the structure constants by definition as
follows:

structure constants of the Lorentz group:
fαβγδστ ≡ i~(gβγgασgδτ − gβδgασgγτ

− gαγgβσgδτ + gαδgβσg
γ
τ )

(5.24a)

From this follows the

Lie algebra of the Lorentz group:
[lαβ, lγδ] = fαβγδστ l

στ

= i~(gβγlαδ − gβδlαγ − gαγlβδ + gαδlβγ)
(5.24b)

Clearly this quite complex definition does not come out of the blue. Actually
(5.24) is the Lie algebra of the Lorentz transformations {Λ}. Therefore it
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will be no surprise, when in section 5.5 we will find out, that the Lorentz
transformations have the same Lie algebra as the Lorentz group. Still we
want to stick to our systematic point of view, which consistently discriminates
abstract groups from their representations. Therefore the Lie algebra
(5.24) of the abstract Lorentz group was defined without reference to any
representation.

Any representation D of the Lorentz group with element d ∈ D according
to (5.3) must conserve the group structure, i.e. must be homomorph to the
Lorentz group { `}:

∀`(ΩA), `(ΩB) ∈ {`} :

d
(
`(ΩB)

)
d
(
`(ΩA)

)
= d

(
`(ΩB)`(ΩA)

)
=(5.23b)

d
(
`(ΩB + ΩA + ΩB

γδΩA
αβ

i

4~f
γδαβ)

)
with fγδαβ ≡ (fγδαβστ ) according to (5.24a) (5.25)

As the map { `} → D is defined by the real parameters Ω in the form
`(ΩB)→ d(ΩB), this can be written more compactly:

∀ΩA,ΩB ∈ the parameter manifold of {`} :

d(ΩB)d(ΩA) = d(ΩB + ΩA + ΩB
γδΩA

αβ
i

4~f
γδαβ)

with fγδαβ ≡ (fγδαβστ ) acc. (5.24a) (5.26)

In plain words:

Theorem: A transformation group D is a representation of
the Lorentz group, if and only if there exists an unique map
{`} → D, and D has the same Lie algebra as the Lorentz
group.

(5.27)

In this theorem, the condition in definition (5.3), that a representation
must conserve the group’s structure, is replaced by the condition that the
representation must have the group’s Lie algebra. As for groups with an
uncountably infinite number of elements the proof of structure conservation
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would be quite difficult, this theorem will turn out to be most helpful to
identify representations of the Lorentz group.

5.4 A Finite-Dimensional Representation

The elements `(ΩB) of the Lorentz group {`} are coordinate rotations with
certain rotation angles ΩB. All six parameters of the rotation are determined
by the skew-symmetric tensor ΩB. In section 4.3 we described – without
using the notion “representation” – a representation {R} of the Lorentz
group, whose basis is a scalar field φ(x):

R(ΩB)φ(x) (4.64)= exp
{
− i

2~ ΩB
στ J

στ
}
φ(x) (5.28)

To prove that the group of transformations {R} in fact is a representation of
{`}, according to (5.27) we must check firstly, whether there exists a unique
map {`} → {R}, and secondly, whether {R} has the same Lie algebra as
the Lorentz group {`}.

The first criterion is fulfilled, as the elements of {R} are specified by the
identical six parameters Ω as the elements of {`}. Due to this fact, the
map `(Ω)↔ R(Ω) in between the elements of both groups even is bijective.
Thus {R} actually is a true representation of the Lorentz group, provided
that the second criterion is met as well.

To check the second criterion, we compute the commutators of the gener-
ators of {R}, i.e. the angular momentum operators:

[Jαβ, Jγδ] (4.58)= (i~)2
(
(xαgβµ − xβgαµ)dµ(xγgδκ − xδgγκ)dκ

− (xγgδκ − xδgγκ)dκ(xαgβµ − xβgαµ)dµ
)

= (i~)2
(
(xαgβγgδκ − xαgβδgγκ − xβgαγgδκ + xβgαδgγκ)dκ

− (xγgδαgβµ − xγgδβgαµ − xδgγαgβµ + xδgγβgαµ)dµ
)
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= (i~)2
(
gβγ(xαgδµ − xδgαµ)dµ − gβδ(xαgγµ − xγgαµ)dµ

− gαγ(xβgδµ − xδgβµ)dµ + gαδ(xβgγµ − xγgβµ)dµ
)

= i~(gβγJαδ − gβδJαγ − gαγJβδ + gαδJβγ) (5.29)

This complies with (5.24b). Therefore {R} is a true representation of the
Lorentz group.

The representation {R} is uncountably infinite dimensional. It’s generator
J contains differential operators, which scan φ(x) not only at the point x,
but also in an infinitesimal small neighborhood around this point. Within
that infinitesimal neighborhood there are uncountable infinitely many space-
time points, and the totality of all φ(x) at these uncountable infinitely many
space-time points is spanning the vector space, on which the transformations
{R} are defined.
Subsequent to the definition (5.3) of representations we mentioned, that

some authors acknowledge only groups of n× n-dimensional matrices (with
possibly n =∞) as representations. According to those authors, the group
of transformations {R} wouldn’t be a representation of the Lorentz group.
We stick to the definition, according to which representations must be groups
of transformations, but not necessarily groups of matrix transformations.
The uncountably infinite-dimensional representation {R} of the Lorentz
group is as “good” and important as the matrix representations, which we
will get to know in the following sections.

5.5 A Four-Dimensional Representation

We now want to construct the Lorentz transformations {Λ} as a four-
dimensional representation of the Lorentz group {`}.

5.5.1 Generators

As basis for the sought representation we will use the four-vectors (Pµ), and
make for an infinitesimal Lorentz transformation ΛINF the ansatz
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P ′µ = ΛINF

µ
νP

ν = (gµν − ωµν)P ν (5.30)

with infinitesimal small angle ωµν . We attached a minus sign to ωµν from
start on, as we want to describe a passive rotation, and a coordinates
rotation by a positive angle is correlated to a rotation of the vectors P by
a negative angle. It’s the central postulate of relativity theory, that the
square of four-vectors is invariant under this transformation:

PνP
ν = P ′µP

′µ = P ′σgσµP
′µ

= (gστ − ωστ )P τgσµ(gµν − ωµν)P ν

= gστP
τgσµg

µ
νP

ν − gστP τgσµωµνP ν

− ωστP τgσµgµνP ν +O(ω2)
= PνP

ν − P τωτ νP ν − ωντP τP ν

=⇒ ωτ ν = −ωντ (5.31)

It will be useful to make the skew symmetry of the angle matrix ωτ ν
explicitly visible in the ansatz for ΛINF:

ΛINF
µ
ν = gµν − ωµν = gµν − gµκωκν

= gµν − gµκ
1
2ωστ (gσκgτ ν − gτ κgσν)

= gµν + i

2~ωστ i~(g
σµgτ ν − gτ µgσν)

= gµν + i

2~ωστB
στ µ

ν (5.32)

Here we defined

Bστµ
ν ≡ i~(gσµgτ ν − gτ µgσν) (5.33)

as generator of the Lorentz transformations. (5.32) contains the 4 × 4-
dimensional matrices (ΛINF

µ
ν) and (gµν) with row index µ and column

index ν. Therefore we consider as well the four-fold indexed tensor (Bστµ
ν)

as a 4× 4 matrix with row index µ, column index ν, and “name” στ . The
infinitesimal Lorentz transformation is
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(ΛINF
µ
ν) ≡ (gµν) + i

2~ ωστ (Bστµ
ν) . (5.34)

Due to concatenation of infinitely many infinitesimal small transformations
we get the finite Lorentz transformations

(Λµν) ≡ exp
{ i

2~ Ωστ (Bστµ
ν)
}

. (5.35)

The group {Λ} of Lorentz transformations is a representation of the Lorentz
group, if and only if there firstly exists a unique map from the Lorentz
group {`} onto the group {Λ}, and if secondly the Lie algebra of {Λ} is
identical to the Lie algebra of the Lorentz group. The first condition is
evidently met, as both groups are parameterized by the same angle matrix
Ω. To check point two, the commutation relations of the generators Bστ

must be evaluated.

[Bαβ, Bγδ]µν = Bαβµ
κB

γδκ
ν −Bγδµ

κB
αβκ

ν

=(5.33) (i~)2
(
(gαµgβκ − gβµgακ)(gγκgδν − gδκgγν)

− (gγµgδκ − gδµgγκ)(gακgβν − gβκgαν)
)

= (i~)2
(
gαµgβγgδν − gαµgβδgγν − gβµgαγgδν + gβµgαδgγν

− gγµgδαgβν + gγµgδβgαν + gδµgγαgβν − gδµgγβgαν
)

= (i~)2
(
gβγ(gαµgδν − gδµgαν)− gβδ(gαµgγν − gγµgαν)

− gαγ(gβµgδν − gδµgβν) + gαδ(gβµgγν − gγµgβν)
)

=(5.33)
i~(gβγBαδ − gβδBαγ − gαγBβδ + gαδBβγ)µν (5.36)

These commutation relations comply with (5.24b).
The group {Λ} of Lorentz transformations is a four-dimensional (true)

representation of the Lorentz group, as the Lorentz transformations are
defined on basis of the vectors (Pµ), which are spanning a four-dimensional
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vector space.

The coordinate rotations, which are generated by Bk0 in the planes
10, 20, 30 of four-dimensional spacetime, are called passive “Lorentz boosts”
in k-direction. No special name exists for the coordinate rotations in the
spacetime planes 23, 31, 12. By means of

Bστµ
ν
(5.33)
≡ i~(gσµgτ ν − gτµgσν) , (5.37)

it’s not difficult to compute the generators of the six linearly independent
transformations.

Boost along the x1 axis:

K1 ≡ B10 = (B10µ
ν) = −B01 = −i~


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 (5.38a)

Boost along the x2 axis:

K2 ≡ B20 = (B20µ
ν) = −B02 = −i~


0 0 1 0
0 0 0 0
1 0 0 0
0 0 0 0

 (5.38b)

Boost along the x3 axis:

K3 ≡ B30 = (B30µ
ν) = −B03 = −i~


0 0 0 1
0 0 0 0
0 0 0 0
1 0 0 0

 (5.38c)

Rotation in the x2-x3 plane:

L1 ≡ B23 = (B23µ
ν) = −B32 = −i~


0 0 0 0
0 0 0 0
0 0 0 1
0 0 −1 0

 (5.38d)

Rotation in the x3-x1 plane:

L2 ≡ B31 = (B31µ
ν) = −B13 = −i~


0 0 0 0
0 0 0 −1
0 0 0 0
0 1 0 0

 (5.38e)
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Rotation in the x1-x2 plane:

L3 ≡ B12 = (B12µ
ν) = −B21 = −i~


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 (5.38f)

The generators Bjk of purely space-like rotations are hermitean operators
(they are identical to the transposed complex-conjugated operators), while
the boost generators Bk0 are not. In the formalism of quantum theory, only
the generators Bjk of space-like rotations, but not the generators Bk0 of
boosts are representing observable quantities, as only hermitean operators
have real eigenvalues.

5.5.2 Lorentz Transformations

To derive the finite Lorentz transformations explicitly, we make use of the
series expansion of the exponential function:

(Λµν) =(5.35) exp
{ i

2~ Ωστ (Bστµ
ν)
}

(5.39)

=
∞∑

n=0,1,2,...

1
n!
( i

2~ Ωστ (Bστµ
ν)
)n

(5.40)

At a coordinate rotation in 10 plane, there is Ω10 = −Ω01 , 0, Ωστ = 0 for
10 , στ , 01, and Ω10 = gα1gβ0Ωαβ = −Ω10.

( i
2~ Ωστ (Bστµ

ν)
)n (5.38a)= (−Ω10)n


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 for
n = 1, 3, 5, . . .

( i
2~ Ωστ (Bστµ

ν)
)n (5.38a)= (−Ω10)n


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 for
n = 2, 4, 6, . . .
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1
0!
( i

2~ Ωστ (Bστµ
ν)
)0

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.41)

Thus the Lorentz transformation related to a coordinate rotation by the
angle Ω10 in the 10 plane is

Λ (5.40)=


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1

+


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 ·
∞∑

n=0,2,4,...

1
n!Ω

10n

−


0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 ·
∞∑

n=1,3,5,...

1
n!Ω

10n .

These are the series expansions of the hyperbola functions cosh and sinh,
i.e. we get the Lorentz transformation for the

Boost 10 :
Λ =


cosh Ω10 − sinh Ω10 0 0
− sinh Ω10 cosh Ω10 0 0

0 0 1 0
0 0 0 1

 (5.42a)

The Lorentz transformations of boosts in other space directions are con-
structed in complete analogy:

Boost 20 :
Λ =


cosh Ω20 0 − sinh Ω20 0

0 1 0 0
− sinh Ω20 0 cosh Ω20 0

0 0 0 1

 (5.42b)
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Boost 30 :
Λ =


cosh Ω30 0 0 − sinh Ω30

0 1 0 0
0 0 1 0

− sinh Ω30 0 0 cosh Ω30

 (5.42c)

Boosts in arbitrary directions are described by appropriate combinations
of (5.42). The rotation angle Ωk0 of a boost is called rapidity. For unique
specification of a boost, three linearly independent real parameters must be
fixed, namely the rapidities Ω10,Ω20,Ω30 .

The boost 10 is a transformation of a vector from one reference system to
another with parallel axes directions, whose’s origin is moving with velocity
v along the x1 axis of the first system. The functional dependence of velocity
v and rapidity Ω10 is

tanh Ω10 = v/c . (5.43)

tanh Ω10 → 1 holds for Ω10 → +∞, and tanh Ω10 → −1 for Ω10 → −∞.
Thus the parameter ranges of Ω10 and of v/c are −∞ ≤ Ω10 ≤ +∞ and
−1 ≤ v/c ≤ +1 .
Using the property

cosh Ω =
√

1
1− tanh2Ω

(5.44)

of hyperbola functions and the definition

γ ≡
√

1
1− (v/c)2 , (5.45)

the Lorentz boost alternatively may be written as

Λ


ct
x
y
z

 (5.42a)=


γ −γv/c 0 0

−γv/c γ 0 0
0 0 1 0
0 0 0 1



ct
x
y
z

 =


γ(ct− v

cx)
γ(x− vt)

y
z

 . (5.46)
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While this form possibly is more familiar from undergraduate studies, it
is advisable to parametrize the boost by the rapidity instead of the ve-
locity, because the rapidity, but not the velocity, is additive when several
transformations are concatenated.
The inverse transformations Λ-1 of the Lorentz boosts are found by

replacing the rapidity by the negative rapidity. For the boost along the x1

axis holds

Λ-1 =


cosh Ω10 sinh Ω10 0 0
sinh Ω10 cosh Ω10 0 0

0 0 1 0
0 0 0 1

 , Λ∼ (5.47)

∼ signifies the transposed matrix. The Lorentz boost is no orthogonal
transformation, as the inverse transformation does not equal the transposed !
We already noticed that the boost generators are not hermitean. This
property is transmitted to the non-orthogonality of the transformations.
Next we consider the transformations of vectors under purely space-like

rotations of the coordinate system by an angle Ω12 in the 12 plane.

( i
2~ Ωστ (Bστµ

ν)
)n (5.38f)= Ω12

n


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0


∣∣∣∣for n =
1, 5, 9, 13, . . . (5.48)

( i
2~ Ωστ (Bστµ

ν)
)n (5.38f)= Ω12

n


0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 0


∣∣∣∣for n =
2, 6, 10, 14, . . . (5.49)

( i
2~ Ωστ (Bστµ

ν)
)n (5.38f)= Ω12

n


0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0


∣∣∣∣for n =
3, 7, 11, 15, . . . (5.50)
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( i
2~ Ωστ (Bστµ

ν)
)n (5.38f)= Ω12

n


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0


∣∣∣∣for n =
4, 8, 12, 16, . . . (5.51)

1
0!
( i

2~ Ωστ (Bστµ
ν)
)0

=


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (5.52)

From this follows the Lorentz transformation for a coordinate rotation in
the 12 plane:

Λ (5.40)=


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

+

+


0 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 ·
∞∑

n=0,4,8,12,...

( 1
n!Ω12

n − 1
(n+ 2)!Ω12

n+2
)

+


0 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 0

 ·
∞∑

n=1,5,9,13,...

( 1
n!Ω12

n − 1
(n+ 2)!Ω12

n+2
)

(5.53)

These are the series expansions of the angular functions cos and sin. Taking
into account Ω12 = g1αg2βΩαβ = +Ω12, the Lorentz transformation for a
coordinate rotation in 12 plane becomes

Rotation 12 :
Λ =


1 0 0 0
0 cos Ω12 sin Ω12 0
0 − sin Ω12 cos Ω12 0
0 0 0 1

 . (5.54a)

The Lorentz transformations for coordinate rotations in the planes 23 and
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31 are found by the same method:

Rotation 23 :
Λ =


1 0 0 0
0 1 0 0
0 0 cos Ω23 sin Ω23

0 0 − sin Ω23 cos Ω23

 (5.54b)

Rotation 31 :
Λ =


1 0 0 0
0 cos Ω31 0 − sin Ω31

0 0 1 0
0 sin Ω31 0 cos Ω31

 (5.54c)

The inverse transformations Λ-1 of the space-like rotations are found by
replacing the rotation angles by the negative rotation angles:

Λ-1 =


1 0 0 0
0 cos Ω12 − sin Ω12 0
0 sin Ω12 cos Ω12 0
0 0 0 1

 = Λ∼ . (5.55)

The Lorentz transformations of purely space-like coordinate rotations are
orthogonal: The inverse transformations equal the transposed. An arbitrary
space-like rotation is uniquely specified due to three real parameters, namely
the angles Ω23, Ω31, Ω12.

In total, six linearly independent real parameters, three for the boosts and
three for the space-like rotations, uniquely determine an arbitrary rotation
of the four-dimensional space-time coordinates.
Without proof we cite the following theorem from the representation

theory of Lie groups:
Theorem: If the parameter-manifold of a Lie group is not
compact, then this group has no finite-dimensional unitary
representation.

(5.56)

Compact means bounded and closed. The boost-transformations’ parame-
ters, i.e. the rapidities, are not bounded, but can have any value in the range
−∞ ≤ Ωj0 ≤ +∞. Therefore according to the theorem there is no chance to
find a four-dimensional representation of the Lorentz group, whose elements
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exclusively are unitary transformations. A transformation T is unitary, if
it’s adjoint (= transposed complex-conjugate) transformation equals it’s
inverse transformation:

T is unitary ⇐⇒ TT † = I (5.57)
with T † = T ∗∼ , I = identical transformation

Orthogonal transformations are the real subset of the unitary transforma-
tions. The boost-transformations (5.42) neither are orthogonal nor unitary,
while the purely space-like rotations (5.54) are orthogonal and therefore a
fortiori unitary. The property of transformations, to be unitary or not, is
closely related to the property of their generators, to be hermitean or not.
To elucidate this relation, we consider the exponential form of an arbitrary
transformation:

T ≡ exp
{ i
~
Wk γ

k
}
is unitary ⇐⇒

⇐⇒ TT † = exp
{ i
~
Wk γ

k
}

exp
{
− i

~
Wk γ

k†
}

= exp
{ i
~
Wk

(
γk − γk†

)}
= I ⇐⇒

⇐⇒ γk = γk† with I= identical transformation (5.58)

This equation can be read in both directions: A transformation necessarily
is unitary, if it’s generator is hermitean (= self-adjoint). If a transformation
is unitary, then it’s generator necessarily is hermitean. Therefore it is not by
accident, that the boost-transformations are not unitary, as their generators
are not hermitean. In contrast, the purely space-like rotations are – thanks
to their hermitean generators – unitary, in this case even orthogonal.
Actually a subgroup of the Lorentz group – namely the group of co-

ordinate rotations of three-dimensional position space – has orthogonal
representations, which we will evaluate in section 6.1.1 .
Attention: The systematic names of matrix groups are compiled on

page 124. The group of the 4× 4 matrices of the Lorentz transformations
has the systematic name SO(3,1). The O in this name means orthogonal.
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Didn’t we just find out, that at least some of the Lorentz transformations
are not orthogonal? After all in that table the name is already reduced to
“pseudo-orthogonal”. The discrepancy can be traced to differing definitions.
Our definition of the notion orthogonal characterizes a feature of the trans-
formation. The definition behind the name SO(3,1) characterizes a feature
of the scalar product:

In three-dimensional position space of Newton’s physics, the scalar product
(a, b) of two vectors a =

( ax
ay
az

)
and b =

(
bx
by
bz

)
is defined by

(a, b) ≡ a∼b =
(
ax ay az

)bxby
bz

 = axbx + ayby + azbz . (5.59)

This scalar product is invariant under orthogonal transformations O:

(Oa, Ob) = (Oa)∼Ob = a∼O∼Ob = a∼O-1Ob = a∼b (5.60)

In the Hilbert space of the state vectors |u〉, |v〉 of quantum theory, a scalar
product is defined, which is invariant under unitary transformations U :

(|Uu〉, |Uv〉) ≡ 〈Uu|Uv〉 = 〈u|U †Uv〉 = 〈u|U -1Uv〉 = 〈u|v〉 (5.61)

In the four-dimensional space-time of special relativity theory, the scalar
product (a, b) of two vectors a and b is defined by

(a, b) ≡ a∼gb =
(
a0 a1 a2 a3

)
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1



b0

b1

b2

b3

 =

= a0b0 − a1b1 − a2b2 − a3b3 (5.62)

with the metric tensor g. This scalar product is invariant under Lorentz
transformations:
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(Λa,Λb) = (Λa)∼gΛb = a∼Λ∼gΛb = a∼gb (5.63)
thanks to Λ∼gΛ = g

resp. g-1Λ∼g = Λ-1

The Lorentz transformations would be “strictly orthogonal” under the
condition Λ∼ = Λ-1. They are “pseudo-orthogonal”, as they in fact meet
the condition g-1Λ∼g = Λ-1, because multiplication from left side by g-1 = g
multiplies the three bottom rows of Λ∼ by -1, and multiplication from right
side by g multiplies the three right columns of Λ∼ by -1. In total, the
parameters of purely space-like rotations remain invariant, while the boost-
parameters are multiplied by -1 . To this extend, all six linearly independent
Lorentz transformations are pseudo-orthogonal (or orthogonal), justifying
the matrix group’s name SO(3,1).

5.5.3 Single Indices

So far we attached double indices to the Lorentz group’s 6 real parameters
and to the 6 generators, and arranged them in skew-symmetric 4×4 matrices,
see (5.14) and (5.15). This notation often is very useful and elegant, but
not always. Particularly for the Lorentz transformations, sometimes a
different notation is advantageous, which has only one index, but in exchange
clearly emphasizes the difference between boost- and rotation-parameters
respectively between boost- and rotation-generators:

(Ωστ ) =


0 −η1 −η2 −η3

η1 0 θ3 −θ2

η2 −θ3 0 θ1

η3 θ2 −θ1 0

 (5.64a)

(Bστ ) =


0 −K1 −K2 −K3

K1 0 L3 −L2

K2 −L3 0 L1

K3 L2 −L1 0

 (5.64b)

Because of
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1
2 Ωστ B

στ = 1
2
(

Ωj0B
j0 + Ω23B

23 + Ω31B
31 + Ω12B

12

+ Ω0j B
0j + Ω32B

32 + Ω13B
13 + Ω21B

21
)

= ηjK
j + ΘjL

j , (5.65)

the Lorentz transformation in this notation becomes

(Λµν) (5.35)= exp
{ i

2~ Ωστ (Bστµ
ν)
}

= exp
{ i
~

(ηjKj + ΘjL
j)
}
. (5.66)

We introduce the totally antisymmetric tensor

εjkl


= 1 for even permutations of jkl
= −1 for odd permutations of jkl
= 0 if two indices are identical ,

(5.67)

and observe

ηj = Ωj0 = gjαg0βΩαβ = −Ωj0 = −ηj (5.68a)
Θj = εjklΩkl = εjklgkαglβΩαβ = +εjklΩkl = +Θj (5.68b)
Kj = Ωj0 = gjαg0βΩαβ = −Ωj0 = −Kj (5.68c)
Lj = εjklΩkl = εjklgkαglβΩαβ = +εjklΩkl = +Lj . (5.68d)

Note that η and K are vectors, while Θ and L are pseudo-vectors.

5.5.4 Commutators

We have seen that the Lorentz transformations with the six generators
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Generator What does it generate ?
K1 = B10 boost in direction x1

K2 = B20 boost in direction x2

K3 = B30 boost in direction x3

L1 = B23 rotation in plane x2x3

L2 = B31 rotation in plane x3x1

L3 = B12 rotation in plane x1x2

(5.69)

have the same Lie algebra as the Lorentz group:

[Bαβ, Bγδ] (5.36)= i~(gβγBαδ − gβδBαγ − gαγBβδ + gαδBβγ)

Now we want to list all commutators explicitely. With 6 generators, there
are 5 + 4 + 3 + 2 + 1 = 15 commutators:

[B10, B20] = [K1,K2] = i~(g02B10 − g00B12 − g12B00 + g10B02)
= − i~B12 = −i~L3 (5.70a)

[B20, B30] = [K2,K3] = i~(g03B20 − g00B23 − g23B00 + g20B03)
= − i~B23 = −i~L1 (5.70b)

[B30, B10] = [K3,K1] = i~(g01B30 − g00B31 − g31B00 + g30B01)
= − i~B31 = −i~L2 (5.70c)

[B10, B23] = [K1, L1] = i~(g02B13 − g03B12 − g12B03 + g13B02)
= 0 (5.70d)

[B20, B31] = [K2, L2] = i~(g03B21 − g01B23 − g23B01 + g21B03)
= 0 (5.70e)

[B30, B12] = [K3, L3] = i~(g01B32 − g02B31 − g31B02 + g32B01)
= 0 (5.70f)

[B10, B31] = [K1, L2] = i~(g03B11 − g01B13 − g13B01 + g11B03)
= + i~B30 = +i~K3 (5.70g)
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[B20, B12] = [K2, L3] = i~(g01B22 − g02B21 − g21B02 + g22B01)

= + i~B10 = +i~K1 (5.70h)
[B30, B23] = [K3, L1] = i~(g02B33 − g03B32 − g32B03 + g33B02)

= + i~B20 = +i~K2 (5.70i)
[B23, B20] = [L1,K2] = i~(g32B20 − g30B22 − g22B30 + g20B32)

= + i~B30 = +i~K3 (5.70j)
[B31, B30] = [L2,K3] = i~(g13B30 − g10B33 − g33B10 + g30B13)

= + i~B10 = +i~K1 (5.70k)
[B12, B10] = [L3,K1] = i~(g21B10 − g20B11 − g11B20 + g10B21)

= + i~B20 = +i~K2 (5.70l)
[B23, B31] = [L1, L2] = i~(g33B21 − g31B23 − g23B31 + g21B33)

= + i~B12 = +i~L3 (5.70m)
[B31, B12] = [L2, L3] = i~(g11B32 − g12B31 − g31B12 + g32B11)

= + i~B23 = +i~L1 (5.70n)

[B12, B23] = [L3, L1] = i~(g22B13 − g23B12 − g12B23 + g13B22)
= + i~B31 = +i~L2 (5.70o)

Using the totally antisymmetric tensor (5.67), the 15 commutators (5.70)
can be combined into three equations:

[Kj ,Kk] = −i~εjklLl (5.71a)
[Kj , Lk] = +i~εjklK l (5.71b)
[Lj , Lk] = +i~εjklLl (5.71c)

It’s evident, that the purely space-like rotations constitute a subgroup of
the Lorentz group, because the concatenation of purely space-like angular
momentum operators again results into a space-like angular momentum
operator, see (5.71c). On the other hand, from (5.71a) and (5.71b) we
learn that the boosts are no subgroup of the Lorentz group, because in the
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concatenation of boosts always a space-like angular momentum shows up.
We could have extracted the same result already from the matrices (5.42)

of boost-transformations and the matrices (5.54) of space-like rotations: In
the matrices (5.54) of space-like rotations there are non-zero non-diagonal
elements only in a 3×3 block bottom right. These transformations therefore
only are mixing the components 1 to 3 of the vectors onto which they are
acting, but leave the 0-component unchanged. In contrast, the matrices
(5.42) have non-zero non-diagonal elements in all rows and in all columns.
Thus they are mixing all four components of the vectors onto which they
are acting, and can not be separated as a subgroup from the Lorentz
transformations.

5.6 Vector Field Transformations

First we consider again the transformation of scalar fields. In sections 4.3 and
5.4 we introduced on the basis of scalar fields φ(x) an infinite-dimensional
representation

Rφ(x) (4.64)= exp
{ i

2~ Ωστ J
στ
}
φ(x) (5.72)

of the Lorentz group, whose generators are the angular momentum operators
J .
We now are going to proof, that the same transformation of the scalar

field can be achieved by applying the inverse Lorentz transformation Λ-1
onto the scalar field’s argument:

Rφ(x) ≡ φ(Λ-1x) (5.73)

For this purpose it’s sufficient to evaluate the infinitesimal transformation.
Once

RINFφ(x) ≡ φ(Λ-1INF x) (5.74)

is proved, (5.73) is proved as well. The infinitesimal Lorentz transformation
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of the position vector has the ρ-component

ΛINF
ρ
νx

ν (5.34)= (gρν + i

2~ ωστ B
στρ

ν)xν . (5.75)

Thus the inverse infinitesimal transformation is

Λ-1
INF

ρ
νx

ν = (gρν −
i

2~ ωστ B
στρ

ν)xν . (5.76)

As Bστρ
νx

ν is the ρ-component of the four-vector

Bστ
νx

ν ≡


Bστ0

νx
ν

Bστ1
νx

ν

Bστ2
νx

ν

Bστ3
νx

ν

 , (5.77)

(5.76) is the ρth row of the matrix equation

Λ-1
INF x = x− i

2~ ωστ B
στ
νx

ν . (5.78)

We expand the term

φ(Λ-1INF x) = φ(x− i

2~ ωστ B
στ
νx

ν) (5.79)

in a Taylor series around φ(x). The Taylor series may be ended after the
linear term, because ω is infinitesimally small:

φ(x− i

2~ ωστ B
στ
νx

ν) = φ(x)− i

2~ ωστ B
στµ

νx
νdµφ(x) (5.80)

Because of

Bστµ
ν =(5.33)

i~(gσµgτ ν − gτ µgσν) (5.81a)

Jστ =(4.58)
i~(xσgτµ − xτgσµ)dµ

= i~(gσνgτµ − gτ νgσµ)xνdµ , (5.81b)
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J and B are related by

Jστ = −Bστµ
νx

νdµ . (5.82)

Combination with (5.79) and (5.80) results into

φ(Λ-1INF x) = φ(x)− i

2~ ωστ B
στµ

νx
νdµφ(x) =

= φ(x) + i

2~ ωστ J
στφ(x) (4.56)= RINFφ(x) . (5.83)

Thus (5.74), and therefore (5.73), is proved.
After these preparations we turn to the actual subject of this section: The

transformation of vector fields. No new representation of the Lorentz group
is needed to transform fields of Lorentz vectors, like e.g. the electromagnetic
potential

A(x) =
(

Φ/c (x)
A(x)

)
=


A0(x)
A1(x)
A2(x)
A3(x)

 , (5.84)

which was introduced as a gauge field in section 4.5. The transformation
into a primed coordinate system′ is effected by combining the already
known four-dimensional representation {Λ} and the infinite-dimensional
representation {R}. However a clarification is needed with regard to the
combined application of the both transformations. We must make sure that
space-time vectors will not be transformed twice:

Λ̃ ≡ Λ , but Λ̃x = x (5.85a)
B̃στ ≡ Bστ , but B̃στx = 0 (5.85b)

The special rule applies only to space-time position vectors x.

Attention: It is not common practice in the literature to indicate by a tilde
or some other mark, whether a transformation operator is acting only onto
the amplitude of a vector field, or onto it’s argument as well. Usually it is
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left to the reader’s thoughtfulness to guess in any case what is meant. We
as well will sometimes skip the tilde in later chapters of this book.
First we consider a transformation, which rotates the coordinates by

the infinitesimal small angle ω. It doesn’t matter whether the combined
transformation is written as RINFΛ̃INF or as Λ̃INFRINF.

Aµ(x) `(ω)−−→ A′µ(x′)

A′µ(x′) =
(
I + i

2~ωστJ
στ
)

︸                    ︷︷                    ︸
RINF

(
gµν + i

2~ωστ B̃
στµ

ν

)
︸                           ︷︷                           ︸

Λ̃INF

Aν(x) (5.86)

The transformation A′µ(x) = Λ̃INF
µ
νA

ν(x) rotates the vector field’s ampli-
tude A(x) exactly like it would rotate a vector A. By definition it does not
affect the vector field’s argument. The transformation A′µ(x′) = RINFA

′µ(x)
rotates the argument x of the vector field’s µ-component exactly as it would
rotate the argument of a scalar field φ(x). It does not touch the vector
field’s amplitude.

The transformation’s two steps may as well be performed in the sequence
Aµ(x′) = RINFA

µ(x) and A′µ(x′) = Λ̃INF
µ
νA

ν(x′). In any case it’s essential
to execute both steps. It would be nonsense to evaluate vector fields like
Aµ(x′) or A′µ(x), whose amplitudes and arguments are defined in different
coordinate systems. Only Aµ(x) and A′µ(x′) are sensible terms. Remark:
Under coordinate rotations, for scalar fields holds φ′(x′) = φ(x′). Therefore
we dropped the prime from φ.

We now will compute the product of the both infinitesimal transformations.
With regard to the discussion subsequent to (5.18) we note, that the term
with ω2

στ – different from a term ωστωαβ with στ , αβ – may be neglected.

A′µ(x′) =
(
gµν + i

2~ωστ (B̃στµ
ν + Jστgµν)

)
Aν(x) (5.87)

This is the µ-th row of the matrix equation
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A′(x′) =
(
1+ i

2~ωστ
(
B̃στ︸ ︷︷ ︸

(B̃στµν)

+Jστ1
))
A(x) . (5.88)

1 is the unit matrix in four-dimensional space-time. Jστ1 is the angular
momentum operator, inflated to a four-dimensional diagonal matrix in
space-time.
Finite transformations are achieved by concatenation of infinitely many

infinitesimal small transformations:

A′(x′) = exp
{ i

2~Ωστ

(
B̃στ + Jστ1

)}
A(x) (5.89)

Summary: A vector field’s transformation under rotation of the space-time
coordinates can be written in three equivalent forms:

Aµ(x) `(Ω)−−→ A′µ(x′) = R Λ̃µνAν(x) (5.90a)
= Λ̃µν RAν(x) (5.90b)
= Λ̃µνAν(Λ-1x) . (5.90c)

5.7 Angular Momentum of Vector Fields

In section (4.3) we evaluated the angular momentum conservation of scalar
fields. The extension to vector fields does not cause significant new problems.

The field equation of the vector field A(x) is derived from the Lagrangian
L. The necessary (but not sufficient) condition for the transformation Γ
with generator γ to be a symmetry of the vector field A(x), is given by

(∂ρL)wγxρ (4.15)= 0 . (5.91)

With (5.87) the condition becomes

0 = (∂ρL)(wγ)ρνxν = (∂ρL)1
2ωστ (B̃στρ

ν + Jστgρν)xν

=(5.85) (∂ρL)1
2ωστJ

στxρ . (5.92)



5.7 Angular Momentum of Vector Fields 119
This is identical to the necessary condition (4.66) for angular momentum
conservation of a scalar field. Thus – as discussed at (4.66) – also for a
vector field the condition is fulfilled, if and only if the Lagrangian at least
does not depend explicitly on the directions σ and τ , in which the rotation
takes place. Then ∂σL = ∂τL = 0.
The sufficient symmetry condition (4.11)

∃G : L
I+ i

~
w γ

−−−−−→ L ′ = L+ i

~
w γL = L+ dρGρ

can be met due to

dρGρ = i

~
w γL = i

~

1
2ωστ (B̃στ + Jστ )L = i

2~ωστJ
στL .

Lagrangians are — by construction — scalars. Therefore

B̃στL = BστL = 0 . (5.93)

The sufficient condition for the vector field’s angular momentum conservation
thus is fulfilled by the same

Gρ (4.68)= − 1
2ωστ (xσgτρ − xτgσρ)L (5.94)

as the sufficient condition for the scalar field’s angular momentum conserva-
tion.
The conserved current density’s components are

jρ =(4.16)
C

(
∂L

∂(dρAµ)
1
2ωστ (B̃στ + Jστ )Aµ − i~Gρ

)
=

∑
στ=10,20,30,23,31,12

Ci~ωστ

(
∂L

∂(dρAµ)
( 1
i~
B̃στ + xσdτ − xτdσ

)
Aµ − (xσgτρ − xτgσρ)L

)
. (5.95)

According to (4.16),
∑
r is the sum of all fields φr, which are contained in
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the Lagrangian. Thereby each component of a vector field is to be handled
as an independent field. We have assumed that A(x) is the only vector
field within the Lagrangian, and did sum over it’s four components Aµ(x)
according to Einstein’s sum convention. It doesn’t matter whether A is
inserted in covariant or in contravariant form, but at both places consistently
the same form must be used. A contravariant factor in the denominator is
equivalent to a covariant factor in the nominator, as is visible at the index
ρ.
Furthermore in the last line the factor 1/2 was dropped, because the

sum is only running over the six linearly independent components of the
skew-symmetric tensor ωστ . As these components are independent, there
are six independent conserved current densities j. With C ≡ 1/(ci~ωστ ),
their components are

jρ = xσ
( 1
c

∂L
∂(dρAµ)d

τAµ − gτρL
c︸                              ︷︷                              ︸

T ρτ/c

)
− xτ

( 1
c

∂L
∂(dρAµ)d

σAµ − gσρL
c︸                               ︷︷                               ︸

T ρσ/c

)
+

+ 1
c

∂L
∂(dρAµ)

1
i~
B̃στAµ︸                        ︷︷                        ︸

Sρστ

with στ = 10, 20, 30, 23, 31, 12 . (5.96)

The same definition as in (4.32) was applied for the energydensity-stress
tensor T . Merely the sum over the scalar fields φr was replaced by the sum
over the four components Aµ of the vector field A(x).

Compared to the conserved current density of scalar fields, here the spin
density S shows up as an additional summand. With

B̃στµ
ν = Bστµ

ν =(5.33)
i~(gσµgτ ν − gτ µgσν) (5.97)

the spin density can be written as

Sρστ = 1
c

∂L
∂(dρAµ)

1
i~
B̃στAµ = 1

c

∂L
∂(dρAµ)

1
i~
Bστµ

νA
ν = (5.98)

= 1
c

∂L
∂(dρAµ)g

σµAτ − 1
c

∂L
∂(dρAµ)g

τ µAσ =
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=Sρστ 1
c

∂L
∂(dρAσ)A

τ − 1
c

∂L
∂(dρAτ )A

σ . (5.99)

The angular momentum density tensor’s components are

Mρστ ≡ xσ T
ρτ

c
− xτ T

ρσ

c
+ Sρστ . (5.100)

The dimension of this tensor is[
Mρστ ] = action

volume . (5.101)

There are six equations of continuity:

dρMρστ = 0 with στ = 10, 20, 30, 23, 31, 12 (5.102)

Integrating the null-components over the complete position space, the six
conserved angular momenta are found:

Mστ ≡
∫
Ω

d3x
(
xσ
T 0τ

c
− xτ T

0σ

c

)
+
∫
Ω

d3xS0στ (5.103)

with στ = 10, 20, 30, 23, 31, 12

We discussed them already at equation (4.74). There we have found, that
only the purely space-like angular momenta with στ = jl = 23, 31, 12 are
useful for practical applications:

M jl ≡
∫
Ω

d3x
(
xjP l − xlPj

)
︸                          ︷︷                          ︸

orbital angular momentum

+
∫
Ω

d3xS0jl

︸          ︷︷          ︸
spin

(5.104)

with jl = 23, 31, 12

Here Pj (4.34)= T 0j/c was used. Note, that conservation laws only hold for
the total angular momenta M jl, but not for orbital angular momenta or
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spins separately.
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6 Covering Groups

In the preceding chapters we established how scalar fields, vectors, and
vector fields are transformed under rotations of the coordinate system. I.e.
we figured out the representations of the Lorentz group, whose bases are
scalar fields resp. vectors. Now we must tackle our last and most difficult
task: To find out, how spinors are transformed under rotations of the
coordinate system. This is a tougher challenge, because spinors are not
bases of representations of the Lorentz group. Instead they are bases of
representations of another group – namely the group {B}, which is the
Lorentz group’s “universal covering group”.

For the following reason, here a new group comes into play: Obviously we
expect that the description of no observable physical phenomenon should
change under a space-like rotation of the coordinate system (i.e. under a
coordinate rotation in the planes 23, 31, or 12 of four-dimensional space-
time, or an arbitrary linear combination of these rotations) by an angle 2π .
But now we should note, that the state functions of quantum theory in the
descriptions of arbitrary observable quantities always appear as bi-linear
combinations. If the state functions would change by a factor exp{iα2 }
whenever the coordinate axes are rotated by an angle α, then – because of
exp{i4π

2 } = 1 – they would be identical to the not-rotated state functions
after a coordinate rotation by z · 4π with z ∈ Z. Thus the state functions
would have the periodicity 4π under space-like coordinate rotations. Under
a coordinate rotation by an odd multiple of 2π the state functions then
would change by a factor exp{i2π

2 } = −1. Because of

〈U(2π)φ|U(2π)ψ〉 = 〈−φ| − ψ〉 = 〈φ|ψ〉 , (6.1)

these two factors −1 would compensate in all computations of observ-
ables, and the theory again would describe all observable quantities with a
periodicity of 2π under space-like rotations.
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Experience indeed has shown, that state functions with 4π periodicity are
indispensable for a complete quantum theoretical description. Such state
functions are called spinors.
It will be easier to penetrate this somewhat complex construction, if

we first recall the analogous construction in elementary non-relativistic
quantum mechanics: The transformations of non-relativistic spinors under
coordinate rotations of three-dimensional position space. We write {

_
` }

for the group of coordinate rotations of three-dimensional position space.
Non-relativistic spinors are not bases of representations of {

_
` }. Instead

they are bases of representations of the group {
_
B}. This will be explained

immediately.
Upfront in a table we compile the nomenclature of some matrix groups.

In the majority of cases we indicate transformation groups, which constitute
representations of abstract groups, in form of matrix groups. Remember
e.g. the Lorentz transformations {Λ}, which are 4 × 4 matrices. Such
representations are called matrix representations. As the matrices of any
matrix representation form a group, the product of two matrices again must
be one of the group’s matrices. And for each matrix there must exist the
inverse matrix in the group. Therefore the matrices in any representation
are quadratic and invertible. This is the systematic nomenclature of matrix
groups:

U(n) Unitary matrices with dimension n×n. They leave invariant
the scalar product (and thus particularly the norm) of the
vectors onto which they are acting. Their determinant is ±1.
The matrix elements are complex numbers.

O(n) Subgroup of U(n), consisting of all matrices with exclusively
real elements. The O stands for orthogonal.

SU(n) Subgroup of U(n), consisting of all matrices with determinant
+1. The S stands for special, synonymic sometimes the notion
unimodular is used.

SO(n) Subgroup of O(n), consisting of all matrices with determinant
+1.
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SO(m,n) Pseudo-orthogonal group of matices with dimension (n+m)×

(n+m). It leaves invariant the scalar product of vectors a, b in
the form a·b = +a1b1+. . .+anbn−an+1bn+1−. . .−an+mbn+m.
SO(3,1) is the systemic name of the group {Λ} of Lorentz
transformations.

SL(n,C) Group consisting of linear matrices of dimension n× n with
determinant +1. The matrices have complex elements. SU(n)
is a subgroup of SL(n,C).

6.1 The Non-Relativistic Covering Group {
_
B}

6.1.1 The Groups {
_
` } and {

_
B}

{
_
` } is the group of coordinate rotations of three-dimensional position space.

It is a subgroup of the Lorentz group { `}. Both are abstract groups. They
are defined solely by their group structure, not by their effect when acting
on a base.
The matrix group SO(3) is a three-dimensional true representation of

{
_
` }. It’s base are the vectors V , which are defined in three-dimensional

position space. It’s elements R(θ) ∈ SO(3) transform the vectors into a
primed coordinate system′, whose axes are rotated by the angle θ relatively
to the un-primed system:

V ′ = R(θ)V (6.2)

For the rotation angle we apply the nomenclature introduced in (5.64):

Θj = εjklΩkl (6.3)

As {
_
` } is a subgroup of { `}, it’s easy to extract the representation SO(3)

of {
_
` } out of the representation {Λ} of { `}. From the four-dimensional

generator

Lj
(5.69)= Bkl generates rotations in xkxl-plane (6.4)

we derive the three-dimensional generator
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L̄j generates rotations in xkxl-plane , (6.5)

and mark it by a horizontal bar. The three generators of group SO(3) are:
Rotation in x2-x3-plane:

L̄1 (5.38d)= − i~

0 0 0
0 0 1
0 −1 0

 (6.6)

Rotation in x3-x1.plane:
L̄2 (5.38e)= − i~

0 0 −1
0 0 0
1 0 0

 (6.7)

Rotation in x1-x2-plane:
L̄3 (5.38f)= − i~

 0 1 0
−1 0 0
0 0 0

 (6.8)

The finite transformations R ∈ SO(3) are

R(Θ) = exp
{ i
~

ΘkL̄
k
}
. (6.9)

For the single rotation planes this is identical to

Rotation 23 :
R(Θ1) (5.54b)=

1 0 0
0 cos Θ1 sin Θ1

0 − sin Θ1 cos Θ1

 (6.10a)

Rotation 31 :
R(Θ2)

(5.54c)=

cos Θ2 0 − sin Θ2

0 1 0
sin Θ2 0 cos Θ2

 (6.10b)

Rotation 12 :
R(Θ3)

(5.54a)=

 cos Θ3 sin Θ3 0
− sin Θ3 cos Θ3 0

0 0 1

 (6.10c)

We already know the Lie algebra of the representation SO(3). It is identical
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with the Lie algebra of the abstract group {

_
` }:

[L̄j , L̄k] (5.71c)= +i~εjklL̄l (6.11)

The state functions, which form the bases of representations of the group
{
_
` }, are not sufficient for a complete description of the observed phenomena.

According to experience, in addition we need state functions, which are the
basis of representations of the group {

_
B}. We implicitly define the group

{
_
B} as follows:

Definition: The matrix group SU(2) is a two-dimensional
true representation of the abstract group {

_
B}. (6.12)

The elements of the group SU(2) are matrices, which transform two-
component vectors. The group {

_
B} has the same group structure as

the group SU(2), but the elements of {
_
B} are not acting onto anything

outside the group. {
_
B} is an abstract group, no transformation group.

The 4 elements of a matrix U ∈ SU(2) are complex numbers. Thus each
matrix has from start 8 degrees of freedom. Due to side conditions these are
reduced to 3 degrees of freedom. Firstly the determinant must equal +1:

detU = det
(
a b
c d

)
= ad− bc = +1 . (6.13)

This is a complex equation, which reduces the matrices’ degrees of freedom
from 8 to 6. The matrices must be unitary. That causes further conditions:

UU+ =
(
a b
c d

)(
a∗ c∗

b∗ d∗

)
=
(

1 0
0 1

)
aa∗ + bb∗ = 1 (6.14a)
ac∗ + bd∗ = 0 (6.14b)
ca∗ + db∗ = 0 (6.14c)
cc∗ + dd∗ = 1 (6.14d)

These conditions reduce the remaining degrees of freedom from 6 to 3,
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because (6.14b) and (6.14c) are complex conjugates and thus are not inde-
pendent from another.

Considering the side conditions we find (see attachment A.4 for computa-
tional details) the following most general form of a matrix U ∈ SU(2):

U =
(
a b
−b∗ a∗

)
with aa∗ + bb∗

(6.14a)= 1 . (6.15)

The complex numbers’ a and b total 4 degrees of freedom are reduced to 3
by the real equation aa∗ + bb∗ = 1 .

Thus the matrices U ∈ SU(2) are uniquely determined by 3 real parame-
ters, which can be combined in a three-vector Θ = (Θ1,Θ2,Θ3). We now
are going to prove, that with the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(6.16)

all matrices U ∈ SU(2) can be written in the form

U(Θ) = exp
{ i
~

Θk
~σk

2
}
. (6.17)

From

σ1σ1 = σ2σ2 = σ3σ3 =
(

1 0
0 1

)
(6.18)

follows with Θ ≡ |Θ|

U(Θ) (6.17)=
∞∑

n=0,2,4,...

1
n!
(
i
Θ
2
)n(1 0

0 1

)
+

∞∑
n=1,3,5,...

1
n!
(
i
Θ
2
)nΘ

Θ · σ

= cos(Θ/2)
(

1 0
0 1

)
+ i sin(Θ/2)Θ

Θ · σ . (6.19)

In this equation it is clearly visible, that the matrices U ∈ SU(2) are periodic
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with the real parameter 4π, but not with 2π. For arbitrary integers z holds

U
(
Θ + z · 4πΘ

Θ
)

= U
(
Θ
)

(6.20a)

U
(
Θ + (2z + 1) · 2πΘ

Θ
)

= U
(
Θ
)
·
(
−1 0
0 −1

)
(6.20b)

with arbitrary z ∈ Z .

In particular, independent from the rotation angle’s direction holds

U(0) = U(±4π) =
(

1 0
0 1

)
U(±2π) =

(
−1 0
0 −1

)
. (6.20c)

We already concluded in (6.1) that this is acceptable, because in all compu-
tations of observable quantities the spinors occur bilinear, so that observable
quantities have periodicity 2π, even if they are being computed by means
of spinors whose periodicity is 4π.
We write (6.19) by components:

U(Θ1) =
(

cos(Θ1/2) i sin(Θ1/2)
i sin(Θ1/2) cos(Θ1/2)

)
(6.21a)

U(Θ2) =
(

cos(Θ2/2) sin(Θ2/2)
− sin(Θ2/2) cos(Θ2/2)

)
(6.21b)

U(Θ3) =
(

exp{iΘ3/2} 0
0 exp{−iΘ3/2}

)
(6.21c)

From these three equations we can directly read off, that any matrix U ∈
SU(2) can be written in the form

U(Θ) (6.15)=
(
a b
−b∗ a∗

)
(6.17)= exp

{ i
~

Θk
~σk

2
}
.

It’s always possible to choose the three real parameters Θ such, that



130 6 Covering Groups

Re(b) = sin(Θ2/2)
Im(b) = sin(Θ1/2)

a = cos(Θ1/2) + cos(Θ2/2) + exp{iΘ3/2} (6.22)

with aa∗ + bb∗
(6.14a)= 1 .

The generators ~σk/2 of the transformation (6.17) have the commutation
relations [

~σ1

2 ,
~σ2

2

]
= ~

2

4

(
i 0
0 −i

)
− ~

2

4

(
−i 0
0 i

)

= ~
2

4

(
2i 0
0 −2i

)
= i~

~σ3

2 (6.23a)

[
~σ2

2 ,
~σ3

2

]
= ~

2

4

(
0 i
i 0

)
− ~

2

4

(
0 −i
−i 0

)

= ~
2

4

(
0 2i
2i 0

)
= i~

~σ1

2 (6.23b)

[
~σ3

2 ,
~σ1

2

]
= ~

2

4

(
0 1
−1 0

)
− ~

2

4

(
0 −1
1 0

)

= ~
2

4

(
0 2
−2 0

)
= i~

~σ2

2 . (6.23c)

The commutator’s general form is[
~σj

2 ,
~σk

2

]
= i~εjkl

~σl

2 , (6.24)

which is complying with (6.11).

The Lie algebra of the groups {
_
` } and

SU(2) respectively {
_
B} is identical. (6.25)
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As {

_
B} was defined as the abstract group represented by SU(2), both

groups are isomorph and have the same Lie algebra (6.24).

6.1.2 The Manifold’s Connectivity

In this section we will consider the formal relation between the groups {
_
B}

and {
_
` } under a further point of view taken from the theory of Lie groups:

{
_
B} is the universal covering group of the group {

_
` }.

In section 5.3.1 the notion “parameter manifold” was introduced. The
parameter manifold of the group {

_
` } is identical in the three purely space-

like parameters to the parameter manifold of the Lorentz group { `}: It is a
sphere with radius π around the origin. Any two points which are located
diametrical opposite on the manifold sphere’s surface are considered to be
one single topological point. The parameter manifold of the group {

_
B}

resp. it’s true representation SU(2) again is a sphere around the origin,
however with radius 2π, as the elements of SU(2) have 4π-periodicity. As
– independent from the direction of the rotation axis – for the elements
U ∈ SU(2)

U(±2πΘ
Θ ) (6.20c)=

(
−1 0
0 −1

)
,

the complete surface of the parameter-sphere of SU(2) constitutes one single
topological point.

A
B

①

A
B

②

A
B

③

A
B

④

Fig. 6.1 : Several parameter manifolds

To clarify the notion “connectivity” of a parameter manifold, the two-dimen-
sional parameter manifolds of four phantasy groups are sketched in figure
6.1 as gray areas.
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Definition: A topological manifold is called connected, if any
two points of the manifold can be connected by minimum one
continuous path, which nowhere is leaving the manifold.

(6.26)

Obviously the three manifolds ¬,,® in figure 6.1 are connected. Only the
manifold ¯ is not connected, as points A and B can not be connected by a
continuous path which does nowhere leave the manifold.

Definition: A topological manifold is called n-fold connected,
if between any two points of the manifold exactly n standard
paths exist, which are characterized by the following property:
Any path between the two points, which nowhere leaves the
manifold, can be continuously shifted, without anywhere leaving
the manifold, onto exactly one standard path.

(6.27)

The manifold ¬ in figure 6.1 is simply connected. For example the red path
may be declared a standard path. The green path and the blue path, and
any other path between points A and B can be continuously shifted within
the manifold onto the red standard path. The same holds for arbitrary
other two points in the manifold.
The manifold  is two-fold connected. We may declare the red and the

green path standard paths. The blue path can – without leaving anywhere
the manifold — be continuously shifted onto the green path, but not onto
the red one because of the hole in the manifold. Any arbitrary further path
between the arbitrary points A and B can be continuously shifted within
the manifold either onto the red or onto the green standard path, but not
onto both.
Finally the manifold ® is three-fold connected, because arbitrary paths

between arbitrary points A and B can be continuously shifted within the
manifold onto one of the three sketched standard paths. But no path can
be shifted onto a second or a third standard path, because the shifts are
blocked by the holes in the manifold.

Theorem: If several groups with different parameter manifolds
have the identical Lie algebra, then exactly one of them has a
simply connected parameter manifold.

(6.28)

I spare the readers (and myself) the proof of this important theorem.



6.1 The Non-Relativistic Covering Group 133
Definition: If several groups with different parameter man-
ifolds have the identical Lie algebra, then that one with the
singly connected parameter manifold is called the universal
covering group of the other groups.

(6.29)

The name “universal covering group” is intuitively plausible with regard to
figure 6.1: If one places the parameter manifolds ,®,¯ onto the parameter
manifold ¬, then parts of ¬ remain visible through the holes and gaps of
,®,¯. But if the simply connected manifold ¬ is placed on top, then
,®,¯ are completely covered.
The parameter manifold of group {

_
` } is a three-dimensional sphere

with radius π. The sphere’s center point is representing the parameter
triplet Θ = (0, 0, 0). The sphere’s surface consists of the points, which are
representing the parameter triplets Θ = ±πΘ/Θ. After a cursory glance
one might guess that this parameter manifold is simply connected, because
there are no holes or gaps in it. But we must read definition (6.27) carefully:
Neither “holes” nor “gaps” are mentioned there. Instead we must check, how
many different standard paths can be defined between any two arbitrary
points.

A

B

①

A

B

②

A

B

③

A

B

④

A

B

⑤

A

B

⑥

Fig. 6.2 : The parameter manifold of group {
_
` }

In sketch ¬ of figure 6.2 two paths are indicated, which connect the
points A and B of the parameter manifold of group {

_
` }. The blue path

is a direct connection, which does not touch the manifold’s surface. The
red path connects A with the manifold’s surface at approx. 1 o’clock. Der
diametrical opposite point on the parameter manifold’s surface at approx.
7 o’clock is defining the same rotation as the point at approx. 1 o’clock, i.e.
the two points are topological identical. Generally holds, that any “two”
points, which are positioned diametrically opposite on the manifold sphere’s
surface, are defining the same element of group {

_
` }, and thus must be
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considered as one single topological point. From the surface point at approx.
7 o’clock the red path continues to point B. Seen through the glasses of the
parameter manifold topology of group {

_
` }, the red path is as continuous

as the blue one.
We declare the blue path a standard path, and try to shift the red path

continuously onto the blue one. As soon as we pull back (even if only
infinitesimally) the red path from the surface point at approx. 1 o’clock into
the manifold’s interior, it is being pulled back from the surface point at
approx. 7 o’clock as well, because these “two” surface points actually are
just one single topological point. Either the path is running across this
point, or not. If the path doesn’t run across this point any more, then a gap
opens in the path, as visible in . By this method, evidently no continuous
shift of the red path is possible.
Alternatively we may try to shift the path along the sphere’s surface,

e.g. from approx. 1 o’clock in direction 2 o’clock. But this is identical to a
shift of the path from approx. 7 o’clock in direction 8 o’clock, see ®. By
this method again we can’t shift the red path onto the blue one. If in a
path there is a topological point on the surface of the parameter manifold
of group {

_
` }, then it’s impossible to detach it from the surface by any

continuous shift.
Things are quite different if – as sketched in ¯ – a path is touching the

manifold’s surface at two topological points: The red path leads from point
A to the manifold’s surface at approx. 1 o’clock resp. 7 o’clock, then continues
through the manifold’s interior to the topological point on the surface at
approx. half past 2 o’clock resp. half past 8 o’clock, and then continues to
point B. Now the path can be shifted continuously from the topological
point 1 o’clock resp. 7 o’clock along the manifold’s surface towards the other
topological point at approx. half past 2 o’clock resp. half past 8 o’clock, see
°. Once the path’s surface points touch, the path can be detached by
continuous shifting from the manifold’s surface – as visible in ± – and can
be shifted onto the blue standard path.

Generally holds: Any path connecting the points A and B, which touches
the surface of the parameter manifold of group {

_
` } in an even number

(including zero) of topological points, can be shifted continuously onto the
blue standard path. Any path connecting points A and B, which is touching
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the manifold’s surface in an odd number of topological points, can be shifted
continuously onto the red path in ¬, which we now declare the second
standard path. Thus the parameter manifold of group {

_
` } is connected

two-fold.
Now we turn to group {

_
B} resp. it’s true representation SU(2): It’s

parameter manifold is a three-dimensional sphere with radius 2π. The
sphere’s center point is representing the parameter-triplet Θ = (0, 0, 0). The
sphere’s surface consists of those points, which are representing the parame-
ter-triplet Θ = ±2πΘ/Θ. Different from {

_
` }, not only the diametrically

opposite points on the parameter sphere’s surface, but all surface points of
the parameter manifold of group {

_
B} are just one single topological point.

In sketch ¬ of figure 6.3 two paths are indicated, which are connecting the

A

B

①

A

B

②

A

B

③

Fig. 6.3 : The parameter manifold of group {
_
B}

two points A and B in the parameter manifold of group {
_
B}. (Apropos:

The scales of figures 6.3 and 6.2 are identical: The manifold of group {
_
B} is

a sphere with radius 2π, the manifold of group {
_
` } is a sphere with radius

π.) The blue path is connecting A and B within the manifold’s interior. The
red path leads from point A to the manifold’s surface at approx. 11 o’clock.
The manifold’s complete surface is one single topological point. It is painted
red, because it is a point within the red path. From this topological point
the path continues at approx. half past seven to point B. As the surface is
one single point, the both legs between the surface and the points A and B
can be shifted continuously towards one another, see sketch . Once the
legs touch at the surface, the can by continuous shifting be detached from
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the manifold’s surface (see sketch ®), and eventually be shifted onto the
blue path. Thus in the parameter manifold of group {

_
B} there is just one

standard path in-beteen any two topological points. The manifold therefore
is simple connected.
Therefore according to theorem (6.28), {

_
B} is the universal covering

group of group {
_
` }.

6.1.3 The Homomorphy of the Groups

In (6.25) we found out, that the groups {
_
B} and {

_
` } have the same Lie

algebra. In this section we will furthermore define a map, which assigns to
each element in {

_
` } two elements in {

_
B}. Overall this proves, that the

group {
_
` } of coordinate rotations of the three-dimensional postion space

is homomorph to it’s covering group {
_
B}.

For arbitrary parameter triplets Θ we define the following map:

A : {
_
B} −→ {

_
` }

_
B(Θ)_

B(Θ± 2πΘ
Θ )

}
A−→

_
`(Θ) (6.30)

Here
_
B(Θ± 2πΘ

Θ ) =
_
B(Θ)

_
B(±2π) is exactly one element of the group {

_
B}

for each parameter triplet Θ, but not two elements, as
_
B(+2π) =

_
B(−2π)

because of (6.20c).
The parameter manifold of group {

_
B} is a sphere with radius 2π around

the point Θ = (0, 0, 0). The parameter manifold of group {
_
` } is a sphere

with radius π around the point Θ = (0, 0, 0). Therefore the map can be

{
_
B}

{
_
ℓ }

±2π+3π/2+π+π/20−π/2−π−3π/2±2π

±π+π/20−π/2±π

Fig. 6.4 : Map from group {
_
B} onto group {

_
` }
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visualized as shown in figure 6.4 . An arbitrary axis through the parameter
manifolds center is shown. Each element in {

_
B} is uniquely mapped onto

exactly one element in {
_
` }. The same holds for

_
B(+πΘ

Θ ) and
_
B(−πΘ

Θ ),
because in the parameter manifold of {

_
` }, the point ±π on each axis is one

single topological point, which parametrizes the unique element
_
`(±πΘ

Θ ).
Onto each element in {

_
` } exactly 2 elements in {

_
B} are mapped. This

holds as well for the element
_
` (0), because onto this element the 2 elements_

B(0) and
_
B(±2π) are mapped, with

_
B(±2π) being one single element for

all possible rotation axes.

6.1.4 n-Dimensional Representations

Suggestion: As this section is about details which are not needed to under-
stand the following chapters, you should skip it when working through this
book first time, and continue immediately with section 6.2 on page 147.

6.1.4.1 Tensor Products

In non-relativistic quantum theory, spinors are – by definition – state
functions which are the basis of representations of the group {

_
B}. The

matrix group SU(2) by definition is a true two-dimensional representation
of the abstract group {

_
B}. Symbolically we write for this two-dimensional

representation

2 ≡ SU(2) . (6.31)

It’s basis are two-component spinors φ:

φ′ =
(
φ1
φ2

)′
= Uφ

(6.15)=
(
a b
−b∗ a∗

)(
φ1
φ2

)
=
(

aφ1 + bφ2
−b∗φ1 + a∗φ2

)

Matrix representations of {
_
B} with arbitrary dimension can be created by

choosing as basis the tensor products of two-component spinors. To demon-
strate the method, we now will construct a four-dimensional representation.
The four-dimensional spinors χ, which are the basis of this representation,
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can be found as the direct products of two-component spinors:

χ =


χ11
χ12
χ21
χ22

 ≡
(
φ1
φ2

)
⊗
(
ψ1
ψ2

)
=


φ1 ·

(
ψ1
ψ2

)

φ2 ·
(
ψ1
ψ2

)
 =


φ1ψ1
φ1ψ2
φ2ψ1
φ2ψ2

 (6.32)

χ is transformed by the 4× 4 matrix W . Using

U
(6.15)=

(
a b
−b∗ a∗

)
∈ SU(2) (6.33)

we find

χ′ =Wχ = U

(
φ1
φ2

)
⊗ U

(
ψ1
ψ2

)
(6.34)

=


(aφ1 + bφ2)(aψ1 + bψ2)
(aφ1 + bφ2)(−b∗ψ1 + a∗ψ2)

(−b∗φ1 + a∗φ2)(aψ1 + bψ2)
(−b∗φ1 + a∗φ2)(−b∗ψ1 + a∗ψ2)



=


aa ab ba bb
−ab∗ aa∗ −bb∗ ba∗

−b∗a −b∗b a∗a a∗b
b∗b∗ −b∗a∗ −a∗b∗ a∗a∗



φ1ψ1
φ1ψ2
φ2ψ1
φ2ψ2

 (6.35)

= (U ⊗ U)χ . (6.36)

The matricesW = U⊗U constitute a four-dimensional matrix representation
of {

_
B} on the basis of the four-component spinors χ. The representation

W is reducible. To explain this notion, we apply an arbitrary unitary
transformation T onto the equation χ′ (6.34)= Wχ, and insert the unit matrix
1 = T -1T :

∼
χ
′
≡ Tχ′ = TWT -1︸      ︷︷      ︸

∼
W

Tχ︸︷︷︸
∼
χ

≡
∼
W
∼
χ (6.37)
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{
∼
W} is a further representation — which is equivalent to {W} — of the
group {

_
B} on the basis of the four-component spinors

∼
χ. By appropriate

choice of T one can achieve, that the 4× 4-matrices {
∼
W} get the form of a

direct sum of a one-dimensional and a three-dimensional block (the detailed
computation can be found in A.5):

∼
W = TWT -1 =


1 0 0 0
0 aa ab

√
2 bb

0 −ab∗
√

2 aa∗ − bb∗ a∗b
√

2
0 b∗b∗ −a∗b∗

√
2 a∗a∗

 . (6.38)

In all matrices of the representation {
∼
W}, only the elements

∼
W 11 and

∼
W jk with j, k = 2, 3, 4 are different from zero. The three bottom spinor
components

∼
χ12,

∼
χ21,

∼
χ22 are only mixed among themselves, but not with

the top spinor component
∼
χ11. The top spinor component is “mixed” only

with itself. The 4× 4-dimensional matrices
∼
W therefore are the direct sum

of 1× 1-dimensional matrices and 3× 3-dimensional matrices:

∼
W = (1)⊕

 aa ab
√

2 bb

−ab∗
√

2 aa∗ − bb∗ a∗b
√

2
b∗b∗ −a∗b∗

√
2 a∗a∗

 (6.39)

The transformed spinors have the form

∼
χ= Tχ =


√

1
2(φ1ψ2 − φ2ψ1)

φ1ψ1√
1
2(φ1ψ2 + φ2ψ1)

φ2ψ2

 . (6.40)

From the three bottom components, the three-component spinors
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S ≡

 φ1ψ1√
1
2(φ1ψ2 + φ2ψ1)

φ2ψ2

 (6.41)

are built. They are the basis of a three-dimensional representation of the
group {

_
B}. The 3× 3-matrices Q of this representation have according to

(6.39) the form

Q ≡

 aa ab
√

2 bb

−ab∗
√

2 aa∗ − bb∗ a∗b
√

2
b∗b∗ −a∗b∗

√
2 a∗a∗

 (6.42)

with aa∗ + bb∗
(6.15)= 1 .

For this representation we define the symbolic notation

3 ≡ {Q} . (6.43)

Note that the spinor S is symmetric under exchange of φ and ψ: φ1ψ1√
1
2(φ1ψ2 + φ2ψ1)

φ2ψ2

 =

 +ψ1φ1

+
√

1
2(ψ1φ2 + ψ2φ1)

+ψ2φ2

 (6.44)

From the top component of (6.40) the one-component spinor

A ≡
√

1
2(φ1ψ2 − φ2ψ1) (6.45)

is built. It is the basis of a one-dimensional representation of the group {
_
B}.

This is a trivial representation, as all 1× 1-matrices P of this representation
have according to (6.39) the form

P ≡ (1) . (6.46)

For this representation we define the symbolic notation
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1 ≡ {P} . (6.47)

Note that the spinor A is antisymmetric under exchange of φ and ψ:√
1
2(φ1ψ2 − φ2ψ1) = −

√
1
2(ψ1φ2 − ψ2φ1) (6.48)

These results can be combined into the symbolic equation

2⊗ 2 = 1⊕ 3 . (6.49)

In words: The reducible four-dimensional representation of the group {
_
B},

which emerged from the direct product of two two-dimensional representa-
tions, can be decomposed into the direct sum of an irreducible one-dimensi-
onal representation and an irreducible three-dimensional representation.
We want to give the non-relativistic spinors still another, more pictorial

form, which may be more familiar from undergraduate studies. For this
purpose we define

↑φ≡ φ1 ↓φ≡ φ2 ↑ψ ≡ ψ1 ↓ψ ≡ ψ2 . (6.50)

The one- and three-component spinors, which are the bases of the irreducible
representations, in this notation are

A
(6.45)=

√
1
2( ↑φ ↓ψ − ↓φ ↑ψ ) (6.51)

S
(6.41)=

 ↑φ ↑ψ√
1
2( ↑φ ↓ψ + ↓φ ↑ψ )

↓φ ↓ψ

 . (6.52)

These equations allow a pictorial reading: The spinors φ and ψ each are
representing a particle with spin 1

2 . The arrow ↑ signifies, that the spin
projection onto a certain axis of position space is + ~2 . The arrow ↓ signifies,
that the spin projection onto that axis is − ~2 . ↑φ ↑ψ signifies, that the
composed system’s total spin projection onto that axis is +~, while ↓φ ↓ψ
signifies, that the composed system’s total spin projection onto that axis is
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−~.
The composed system, whose spin projection onto the reference axis

is 0, remarkably is not described by ↑φ ↓ψ nor by ↓φ ↑ψ , but either by
the antisymmetric combination

√
1
2( ↑φ ↓ψ − ↓φ ↑ψ ), or by the symmetric

combination
√

1
2( ↑φ ↓ψ + ↓φ ↑ψ ) of the two particles. In the composed

system, the two particles have merged into a single entity, and the one or
the other spin orientation can’t any longer be assigned to the one or the
other particle.

6.1.4.2 Symmetric-Product Representations

Irreducible representations of arbitrary dimensions can be found by con-
structing tensor products of representations with low dimensions, and then
tensor products of tensor products, and so on, and finally decomposing
these representations into a direct sum of irreducible representations. At
higher dimensions, this brute-force method soon becomes quite tedious. In
this section we present a method, by which the detour via the reducible
representations can be avoided, and straightaway irreducible representations
of arbitrary dimensions can be built.
Why at all do reducible representations appear in the method of tensor

products? To understand this, we compute the direct product of a two-com-
ponent spinor with itself:

(
u
v

)
⊗
(
u
v

)
=


uu
uv
vu
vv

 =


u2

uv
uv
v2

 (6.53)

There are two identical components in this product. If we again multiply this
product directly with the spinor ( uv ), we get a spinor with the components
u3,u2v,u2v,uv2,u2v,uv2,uv2,v3. Three components in this spinor equal u2v,
and three components equal uv2. In total, only four of the eight components,
namely u3,u2v,uv2,v3, are linearly independent. It is the multiple appearance
of identical components, which makes the representations reducible. It seems
plausible that a representation will be irreducible if and only if it’s basis
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is consisting of spinors, whose components are linearly independent from
another. We won’t bother to prove that.
To construct spinors of arbitrary dimensions with linearly independent

components, we start from the two-dimensional true representation of the
group {

_
B} by the matrix group SU(2):(

u′

v′

)
(6.15)=

(
a b
−b∗ a∗

)(
u
v

)
=
(

au+ bv
−b∗u+ a∗v

)
(6.54)

We code a representation’s dimension by means of a parameter j:

dimension = 2j + 1 = 1 , 2 , 3 , 4 , 5 , 6 , . . .
=⇒ j= 0 , 1

2 , 1 ,
3
2 , 2 ,

5
2 , . . .

(6.55)

The spinors φ(j), which constitute the basis of a 2j+ 1-dimensional represen-
tation of {

_
B}, are marked by (j). The elements D(j) of the representation

{D(j)} are marked identically. The round brackets are a reminder, that
multiply appearing (j) are not automatically to be summed-up according
to the sum convention.
We define the component φ(j)

r of the 2j + 1-component spinor φ(j) by

φ(j)
r ≡ N (j)

r u2j+1−rvr−1 (6.56a)

with the normalization factor

N (j)
r ≡

√
(2j)!

(r − 1)! (2j + 1− r)! . (6.56b)

Thus the 2j + 1-component spinor is

φ(j) =



N
(j)
1 u2jv0

N
(j)
2 u2j−1v1

...

N
(j)
2j u

1v2j−1

N
(j)
2j+1u

0v2j


. (6.57)
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In the sequel some spinors with few components, and their absolute squares,
are explicitly listed:

φ(0) =
(
N

(0)
1 u0v0

)
= (1) (6.58a)

|φ(0)|2 = 1 (6.58b)

φ( 1
2 ) =

N ( 1
2 )

1 u1v0

N
( 1

2 )
2 u0v1

 =
(
u
v

)
(6.59a)

|φ( 1
2 )|2 = |u|2 + |v|2 (6.59b)

φ(1) =

N
(1)
1 u2v0

N
(1)
2 u1v1

N
(1)
3 u0v2

 =

 u2
√

2uv
v2

 (6.60a)

|φ(1)|2 = |u|4 + 2|u|2|v|2 + |v|4 = (|u|2 + |v|2)2 (6.60b)

φ( 3
2 ) =


N

( 3
2 )

1 u3v0

N
( 3

2 )
2 u2v1

N
( 3

2 )
3 u1v2

N
( 3

2 )
4 u0v3

 =


u3
√

3u2v√
3uv2

v3

 (6.61a)

|φ( 3
2 )|2 = |u|6 + 3|u|4|v|2 + 3|u|2|v|4 + |v|6 = (|u|2 + |v|2)3 (6.61b)

Obviously all spinors are normalized to 1, if the two-component spinor ( uv )
is normalized to 1 .
The 2j + 1-dimensional basis vectors are computed by means of the

two-dimensional basis vectors:(
u′

v′

)
=(6.54)

(
au+ bv
−b∗u+ a∗v

)
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φ(j)
r =(6.56a)

N (j)
r u2j+1−rvr−1

φ(j)
r
′ = N (j)

r (u′)2j+1−r(v′)r−1

= N (j)
r (au+ bv)2j+1−r(−b∗u+ a∗v)r−1 (6.62)

The elements D(j) of the representation {D(j)} are specified as linear
transformations, which are acting onto the representation’s basis vectors
(6.62):

φ(j)′ ≡ D(j)φ(j) (6.63)

resp. in component notation

φ
(j)
r′
′ ≡ D(j)

r′rφ
(j)
r (6.64)

The row index of φ′ is named r′, to make it distinguishable from the row
index of φ. In the equation’s right-hand side the index r is summed-up from
1 to 2j + 1 according to the sum convention. The transformations D(j)

r′r are
(see appendix A.1 for computational details):

D
(j)
r′r=

2j+1−r′∑
k=0

√
(2j + 1− r′)!(r′ − 1)!(r − 1)!(2j + 1− r)!

k!(2j + 1− r′ − k)!(−k + r − 1)!(r′ + k − r)! ·

· a2j+1−r′−kbk(−b∗)r′+k−ra∗−k+r−1
(6.65)

Attention: In the denominator (but not in the numerator) of this formula
the factorials of negative integers may occur. The factorial of integers is
defined by

z! ≡ 1 · 2 · 3 · . . . · (z − 1) · z if z > 0
z! ≡ 1 if z = 0
z! ≡ ±∞ if z < 0

 z ∈ Z . (6.66)

Thus all summands with the factorial of a negative integer in their denomi-
nator are zero.
As the representations (6.65) have been constructed directly from the
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two-dimensional representation SU(2), we can be sure that they really are
representations of {

_
B}, which meet all formal representation requirements,

and in particular that they are homomorph to {
_
B}.

Some representation matrices with low j-values, computed by means of
(6.65), are displayed in the sequel. See appendix A.2 for computational
details:

D(0) (A.10)= (1) (6.67a)

D( 1
2 ) (A.11)=

(
a b
−b∗ a∗

)
(6.67b)

D(1) (A.12)=

 a2 √
2ab b2

−
√

2ab∗ aa∗ − bb∗
√

2ba∗
b∗2 −

√
2b∗a∗ a∗2

 (6.67c)

D( 3
2 ) (A.13)= (6.67d)

=


a3 √

3a2b
√

3ab2 b3

−
√

3a2b∗ a2a∗ − 2abb∗ 2aba∗ − b2b∗
√

3b2a∗√
3ab∗2 −2ab∗a∗ + bb∗2 aa∗2 − 2bb∗a∗

√
3ba∗2

−b∗3
√

3b∗2a∗ −
√

3b∗a∗2 a∗3


By construction, the two-dimensional representation {D( 1

2 )} = 2 clearly is
identical to (6.15).
We compare this result to the representations, which we created in the

previous section by means of tensor products of D( 1
2 ). The one-dimensional

representation {D(0)} is – see (6.46) – identical to the one-dimensional
representation {P} = 1, and the three-dimensional representation {D(1)}
is – see (6.42) – identical to the three-dimensional representation {Q} = 3.
In contrast the irreducible representation {D( 3

2 )} = 4 differs from the both
equivalent reducible four-dimensional representations {W} – see (6.35) –
and {

∼
W} – see (6.38).

Only for irreducible representations we sometimes are using the boldface
dimension numbers as shortcut representation names. Attention: Some
authors code by the boldface numbers not the representation’s dimension,
but the value of j. They name the two-dimensional representation 1

2 , the
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three-dimensional representation 1, and instead of our equation 2⊗2(6.49)= 1⊕
3 they are writing 1

2 ⊗
1
2 = 0⊕ 1.

In the following sections, we also will need the generators and the expo-
nential form of the transformations D(j). To find them, we use infinitesimal
small parameters

ΘINF
k = lim

n→∞
Θk

n
with n ∈ N , (6.68)

and expand the representation D(j)(ΘINF) in a Taylor series around the
argument Θ = 0). Because the parameters are infinitesimally small, the
evolution can be ended after the linear term:

D(j)(ΘINF) = I + ΘINF
k

dD(j)

dΘk

∣∣∣
Θ=0

= I + i

~
ΘINF
k Σ(j)k (6.69)

Σ(j)k ≡ −i~dD(j)

dΘk

∣∣∣
Θ=0

(6.70)

Σ(j)k are the three generators of the 2j + 1-dimensional representation
{D(j)} of {

_
B}. The transformation with finite parameters is found by

concatenation of infinitely many infinite small transformations:

D(j)(Θ) = lim
n→∞

(
I + i

~

Θk

n
Σ(j)k

)n
= exp

{ i
~

ΘkΣ(j)k
}

(6.71)

6.2 The Relativistic Covering Group {B}

In the previous section we have seen, that non-relativistic spinors are bases
of representations of the group {

_
B}, which is the universal covering group of

the rotation group {
_
` } of three-dimensional position space. The parameter

manifold of {
_
` } is a two-fold connected three-dimensional sphere with

radius π and center point (0, 0, 0). The parameter manifold of {
_
B} is a

simply connected three-dimensional sphere with radius 2π and center point
(0, 0, 0).
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The parameter manifold (η1, η2, η3,Θ1,Θ2,Θ3) of the Lorentz group { `}
is in three of it’s six dimensions identical with the parameter manifold
of {

_
` }, i.e. a two-fold connected three-dimensional sphere with radius

π. Consequently the parameter manifold of the Lorentz group’s universal
covering group – which we name {B}– must be in three of it’s six dimensions
identical to the parameter manifold of {

_
B}, i.e. a simply connected sphere

with radius 2π and center point (0, 0, 0, 0, 0, 0).
The Lorentz group’s remaining three parameters η1, η2, η3 can assume

any value −∞ ≤ η ≤ +∞. This part of the manifold is simply connected,
because no path between any two points can touch the manifold’s surface.
Therefore the manifold of the tree parameters η is identical for { `} and for
it’s covering group {B}. Thus the parameter manifold of the group {B} is
completely fixed.
Relativistic spinors are the bases of representations of the group {B}.

Our next task therefore is to find representations of {B} with arbitrary
dimensions. Some indications will be helpful in this search:
∗ The matrix group SU(2) is a two-dimensional representation of {

_
B}. It’s

three generators are ~2σ
k, with the Pauli-matrices σk, k = 1, 2, 3.

∗ The elements of all matrix representations of the groups {
_
` } and {

_
B}

have determinant +1.
∗ The elements of all matrix representations of the Lorentz group { `} have
determinant +1. Therefore the elements of all matrix representations of
the group {B} must as well have determinant +1.
∗ {B} and all it’s representations must have the same Lie algebra as the
Lorentz group { `}.

6.2.1 Two-Dimensional Representations of {B}

First we will look for a true matrix representation of {B} with dimension as
low as possible. 1× 1-matrices won’t do, because {B} has 6 real parameters.
We try 2× 2-matrices with complex elements:(

aeiα beiβ

ceiγ deiδ

)
with a, b, c, d, α, β, γ, δ ∈ R (6.72)
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The matrices’ 8 real parameters are constraint by the condition for the
determinant:

det
(
aeiα beiβ

ceiγ deiδ

)
= adei(α+δ) − bcei(β+γ) = +1 (6.73)

In attachment A.3 it is shown, that this condition reduces the number of free
matrix parameters to exactly six. The matrices (6.72) with condition (6.73)
constitute the matrix group SL(2,C). The S in the group’s name signifies
“special” or “unimodular”. It refers to the condition that the representation’s
elements must have determinant = +1. (2,C) signifies, that it is a group
of 2× 2-matrices with complex elements (there also exists a group SL(2,R)
with real elements). The L signifies “linear”. Different from the elements
of SU(2), the elements of SL(2,C) are not unitary. Actually we did not
expect that, as we already know from (5.56), that a Lie group can have a
finite dimensional unitary representations only if it’s parameter manifold is
compact.
By means of the six real numbers, which parameterize the elements of

SL(2,C), a bijective map between {B} and SL(2,C) can be defined. If in
addition the Lie algebra of SL(2,C) is identical to the Lie algebra of {B},
then SL(2,C) is a true two-dimensional representation of {B}.
We now want to find the generators of SL(2,C). They must be 2× 2-di-

mensional matrices with the same Lie algebra as the Lorentz group. For
comparision we consider the four-dimensional generators of the Lorentz
transformations {Λ}, which are listed in (5.69). Their Lie algebra is

[Kk,K l] (5.71a)= −i~εklmLm (6.74a)

[Kk, Ll] (5.71b)= +i~εklmKm (6.74b)

[Lk, Ll] (5.71c)= +i~εklmLm . (6.74c)

To find two-dimensional generators with the same Lie algebra, we recall
that the generators of SU(2) have the same comutation relations as (6.74c):
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[
~σk

2 ,
~σl

2

]
(6.24)= +i~εklm ~σ

m

2 (6.75)

Now it isn’t difficult any more, to guess the six generators

±i ~σ
k

2 ,
~σk

2 with k = 1, 2, 3 . (6.76)

The Lie algebra of these generators in fact is identical to (6.74):[
± i ~σ

k

2 ,±i ~σ
l

2

]
= −i~εklm ~σ

m

2 (6.77a)[
± i ~σ

k

2 ,
~σl

2

]
= +i~εklm

(
± i ~σ

m

2
)

(6.77b)[
~σk

2 ,
~σl

2

]
= +i~εklm ~σ

m

2 (6.77c)

As the Pauli-matrices are hermitean, the three rotation generators ~σk2 are
hermitean as well. In contrast the three boost generators ±i ~σk2 are not
hermitean. Caused by their double signs, there are two different two-dimen-
sional representations of {B}, which we will call {LD} and {RD} respectively.
The spinors, which are the basis of the representation {LD}, are named L.
The spinors, which are the basis of the representation {RD}, are named R:(

L1
L2

)′
= LD

(
L1
L2

)
≡ exp

{ i
~

(
Θk
~σk

2 + ηki
~σk

2
)}(L1

L2

)
(6.78a)(

R1
R2

)′
= RD

(
R1
R2

)
≡ exp

{ i
~

(
Θk
~σk

2 − ηki
~σk

2
)}(R1

R2

)
(6.78b)

In the notation with double-indexed angular matrices

(Ωστ ) (5.64a)=


0 η1 η2 η3
−η1 0 θ3 −θ2
−η2 −θ3 0 θ1
−η3 θ2 −θ1 0

 (6.79)



6.2 The Relativistic Covering Group 151
and double-indexed generator matrices

(LSστ ) ≡ ~2


0 iσ1 iσ2 iσ3

−iσ1 0 σ3 −σ2

−iσ2 −σ3 0 σ1

−iσ3 σ2 −σ1 0

 (6.80)

(RSστ ) ≡ ~2


0 −iσ1 −iσ2 −iσ3

iσ1 0 σ3 −σ2

iσ2 −σ3 0 σ1

iσ3 σ2 −σ1 0

 , (6.81)

which are defined analogously to (5.64b), these representations can also be
written in the form(

L1
L2

)′
= LD

(
L1
L2

)
≡ exp

{ i

2~Ωστ
LSστ

}(L1
L2

)
(6.82a)(

R1
R2

)′
= RD

(
R1
R2

)
≡ exp

{ i

2~Ωστ
RSστ

}(R1
R2

)
. (6.82b)

In honor of their discoverer1, these representations are called Weyl-re-
presentations. Attention: This is not a bivalent map. Instead these are
two uniquely defined maps from {B} onto the two groups {RD} and {LD},
which differ by the sign of their boost generators. We have mentioned that
some authors consider the representations of {B} to be representations
of the Lorentz group { `}. Thereby then an ambiguity appears, because
the Lorentz group’s parameter manifold is two-fold connected in the three
parameters Θk, while the parameter manifold of it’s covering group {B} is
simply connected in these parameters. The appearance of different signs in
the two representations (6.78) has nothing at all to do with that ambiguity.
This is evident already from the fact that the differing signs in (6.78) are
associated with the boost-generators, i.e. with the parameters ηk, whose
manifold is simply connected for both the Lorentz group and it’s covering
group {B}.

1 Hermann Klaus Hugo Weyl (1885-1955)
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Due to tanh η (5.43)= v/c, the three boost-parameters η are related to the
relative velocity v of two coordinate systems. Therefore the spinors, which
are the bases of the two representations with opposite rapidity parameters,
are well suited – as we will see – to describe fields with opposite helicity.
For this reason both variants of (6.78) are kept, even though the difference
seemingly is marginal. In section 8.10 we will prove, that the spinors R
are describing fields with right-handed helicity, while the spinors L are
describing fields with left-handed helicity. Thus the indices R and L should
be interpreted as “right” and “left” respectively.

6.2.2 n-Dimensional Representations of {B}

Suggestion: As this section is about details which are not needed to under-
stand the following chapters, you should skip it when working through this
book first time, and continue immediately with section 6.3 on page 154.

In section 6.1.4 we have deployed techniques for the construction of arbi-
trary-dimensional representations D(j) of the group {

_
B}, and in (6.70) we

constructed their generators. The dimension of representation D(j) is 2j+ 1.
The parameter j can assume the values 0, 1

2 , 1,
3
2 , . . .. The (j) in brackets

is not automatically summed-up according to the summation convention.
Now we want to construct representations of the group {B} with arbitrary
dimension 2j+ 1. At (6.76) it was not difficult to guess the six generators of
the two two-dimensional representations of {B}, because we already knew
the generators ~σk2 of the two-dimensional representations of the group {

_
B}.

All we had to do for finding the boost-generators was to add the factor ±i.
This is no special feature of the two-dimensional representations. Instead
the following theorem holds:
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Theorem: If Σ(j)k with k = 1, 2, 3

are the three generators of a 2j+ 1-dimensional represen-
tation of {

_
B} with j = 0, 1

2 , 1,
3
2 , . . . , then

+Σ(j)k , +iΣ(j)k with k = 1, 2, 3

are the six generators of a 2j+ 1-dimensional left-handed
representation of the group {B}, and

+Σ(j)k , −iΣ(j)k with k = 1, 2, 3

are the six generators of a 2j+1-dimensional right-handed
representation of the group {B}.

(6.83)

Proof: Being the generators of a representation of the group {
_
B}, the

operators Σ(j)k with k = 1, 2, 3 have the Lie algebra

[Σ(j)k,Σ(j)l] (6.24)= +i~εklmΣ(j)m . (6.84)

Therefore the Lie algebra of the six generators Σ(j)k,±iΣ(j)k is:

[±iΣ(j)k,±iΣ(j)l] = −i~εklmΣ(j)m (6.85a)
[±iΣ(j)k,Σ(j)l] = +i~εklm(±iΣ(j)m) (6.85b)

[Σ(j)k,Σ(j)l] = +i~εklmΣ(j)m (6.85c)

This again is identical to (6.74). Theorem and proof are valid for generators
of arbitrary dimension. With theorem (6.83) we can construct left- and
right-handed representations of {B}:

LD(j) ≡ exp
{ i
~

(
ΘkΣ(j)k + ηkiΣ(j)k

)}
(6.86a)

RD(j) ≡ exp
{ i
~

(
ΘkΣ(j)k − ηkiΣ(j)k

)}
(6.86b)

LD(j) and RD(j) both are of dimension 2j + 1.
Sometimes the direct products of RD(jR) and LD(jL) are useful, in which

jR = jL or jR , jL is possible. The 2jR + 1-dimensional spinors, which
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constitute the basis of the representation { RD(jR)}, may be named R(jR).
And the 2jL + 1-dimensional spinors, which constitute the basis of the
representation { LD(jL)}, may be named L(jL). The basis of the direct-
product representations are the direct products of the spinors R(jR) and
L(jL) :

D(jL,jR)
(
L(jL) ⊗R(jR)

)
≡
(
LD(jL)L(jL)

)
⊗
(
RD(jR)R(jR)

)
(6.87)

The dimension of the representation {D(jL,jR)} is (2jL + 1) · (2jR + 1).

6.3 Spinor Field Transformations

Due to the formal similarity to the transformation of vector fields, the
formulas from section 5.6 can be carried over after some slight modifications.
If the n-dimensional spinor φ under a rotation of the four-dimensional
space-time coordinates by an infinitesimally small angle ω is transformed by

φ′a = DINF
ab φb =

(
δab + i

2~ ωστS
στ
ab

)
φb , (6.88)

then under the same rotation of coordinates the n-dimensional spinor field
φ(x) is transformed by

φ′a(x′)
(5.87)=

(
δab + i

2~ωστ (Sστab + Jστδab)
)
φb(x) . (6.89)

This is the a-th row of the matrix equation

φ′(x′) =
(
1 + i

2~ωστ (Sστ + Jστ )
)
φ(x) . (6.90)

The transformation under a rotation of the four--dimensional space-time
coordinates by the finite angle Ω becomes

φ′(x′) = exp
{ i

2~Ωστ (Sστ + Jστ )
}
φ(x) . (6.91)
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As the generators S are acting onto the spinor field’s amplitude components
φn, but not onto their arguments x, and as the generators J are acting
onto the spinor field’s argument x, but not onto it’s amplitude components
φn, the generators S and J commute. The sequence of transformations
therefore doesn’t matter:

φ′(x′) = DRφ(x) (6.92a)
= RDφ(x) (6.92b)

As a third alternative the spinor field’s argument can be transformed – as
proved in section 5.6 – by the inverse Lorentz transformation:

φ′(x′) = exp
{ i

2~ΩστS
στ
}
φ(Λ-1x) = Dφ(Λ-1x) (6.92c)

(Sστab ) is the generator of the spinor transformation D. The space-time
indices σ and τ are running from 0 to 3. We did not specify the possible
values of the spinor indices a, b. Until now we only stated explicitly the
representations (6.82), which are defined on the basis of two-component
spinors. Of minimum same importance are the transformations of four-com-
ponent Dirac-spinors. We postpone the explicit construction of a four-di-
mensional representation of {B} until section 8.3 .
Warning: Some authors define φ′(x′) = Dφ(x), i.e. they integrate the

transformation of the argument x into the transformation D. Definitions
can’t be right or wrong, they just can be more or less convenient. It’s
important however, once a definition is made, to stick to it consistently.
Unfortunately this is not always respected in the textbook literature.

6.4 Angular Momentum of Spinor Fields

In section (4.3) the conservation of angular momentum of scalar fields was
considered, in section (5.7) the conservation of angular momentum of vector
fields. We now extend the investigation to spinor fields.
The field equation of a spinor field φ(x) is derived from the Lagrangian
L. According to (4.15), the necessary (but not sufficient) condition for a
transformation Γ with the generator γ to be a symmetry of φ, is given by
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(∂ρL)wγxρ = 0 . (6.93)

Insertion of 1
2ωστ (Sστ + Jστ ) for wγ results in

0 = (∂ρL)1
2ωστ (Sστ + Jστ )xρ = (∂ρL)1

2ωστJ
στxρ , (6.94)

because xρ is a scalar with regard to spinor space, and therefore Sστxρ = 0 .
We recognize that (6.94) is identical to the necessary condition (4.66) for the
conservation of angular momentum of a scalar field. Thus also for a spinor
field the condition is fulfilled – as discussed at (4.66) – if and only if the
Lagrangian is not explicitly dependent at least from those directions of space-
time σ and τ , in which the rotation takes place, so that ∂σL = ∂τL = 0.
The sufficient symmetry condition (4.11)

∃G : L
I+ i

~
w γ

−−−−−→ L ′ = L+ i

~
w γL = L+ dρGρ

results by insertion of 1
2 ωστ (Sστ + Jστ ) for wγ into

i

~
w γL = dρGρ = i

2~ωστ (Sστ + Jστ )L = i

2~ωστJ
στL . (6.95)

All Lagrangians which occur in this book are scalars with respect to spinor
space, i.e. in L all spinor indices are contracted. Thus

SστL = 0 . (6.96)

The sufficient condition for conservation of the spinor field’s angular mo-
mentum thus is met with the same function

Gρ (4.68)= −1
2ωστ (xσgτρ − xτgσρ)L , (6.97)

with which the the sufficient condition for the scalar field’s conservation of
angular momentum could be met. In the same manner as in section 4.3 the
conserved current’s components are found:
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jρ =(4.16)
C

( ∑
r ∂L

∂(dρφr)
1
2ωστ (Sστ + Jστ )φr + i~Gρ

)
=

∑
στ=10,20,30,23,31,12

Ci~ωστ ·

·
(∑

r

∂L
∂(dρφr)

( 1
i~
Sστ + xσdτ − xτdσ

)
φr − (xσgτρ − xτgσρ)L

)
The sum is over all spinor fields φr, which are included in the Lagrangian.
In the last line the factor 1/2 was dropped, because only the six linearly
independent components of the skew-symmetric tensor ωστ are summed
up. As these components are independent, there are six different conserved
current densities j. By means of the energy-stress tensor

T ρσ (4.32)=
∑
r

∂L
∂(dρφr)

dσφr − gρσL (6.98)

(which was defined in section 4.2), and by means of the spin density

Sρστ ≡ 1
i~c

∑
r

∂L
∂(dρφr)

Sστφr (6.99)

(which significantly differs from the spin density (5.99) of the vector field
considered in section 5.7), and with the definition C ≡ 1/(ci~ωστ ), the
components of the conserved current density can be written in the simple
form

jρ =(4.70)
xσ
T ρτ

c
− xτ T

ρσ

c
+ Sρστ (6.100)

with στ = 10, 20, 30, 23, 31, 12 .

The conserved current densities are combined into the angular momentum
density tensor

Mρστ ≡ xσ T
ρτ

c
− xτ T

ρσ

c
+ Sρστ . (6.101)
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It’s dimension is action/volume. The tensor M fulfills the six linearly
independent equations of continuity

dρjρ = dρMρστ = 0 for στ = 10, 20, 30, 23, 31, 12 . (6.102)

Integrating the null-components over the complete position space we find
the six conserved angular momenta

Mστ ≡
∫
Ω

d3x
(
xσ
T 0τ

c
− xτ T

0σ

c

)
︸                                 ︷︷                                 ︸
orbital angular momentum

+
∫
Ω

d3xS0στ

︸           ︷︷           ︸
spin

(6.103)

with στ = 10, 20, 30, 23, 31, 12 ,

which we discussed already at (4.73). There we had noticed, that for
practical applications only the purely space-like angular momenta with
στ = 23, 31, 12 are useful. Note, that conservation laws only hold for the
total angular momenta, but not separately for orbital angular momenta or
spins.
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7 Normalization, Delta Function,
Kronecker Symbol

The solutions of free field equations will be our starting point for field
quantization. Important formal topics of free fields are the normalization
of state vectors, and — related to normalization — different methods to
implement Dirac’s delta function and the Kronecker symbol. We now will
address these general topics, and then turn to the individual fields.
If a system is described by the state vector ψ(x), then

〈K〉 ≡

∫
Ω
d3xψ∗(t,x)Kψ(t,x)∫

Ω
d3xψ∗(t,x)ψ(t,x)

(7.1)

is the expectation value of an observable, which is represented by the
operator K. To make this method of computation possible, the value of the
normalization integral∫

Ω

d3xψ∗(t,x)ψ(t,x) = N (7.2)

with N ∈ R , N , 0 , −∞ < N < +∞

compulsory must be real, finite, and different from zero. It’s often convenient
to have N = 1, or at least lorentz-invariant. But neither of both is inevitable.
In many cases we will apply other normalization conditions, to simplify
equations or make contexts transparent.
Should the normalization volume Ω better be finite or infinite? Only a

finite normalization volume is physically reasonable. The visible universe
is finite. Even in case that there should be anything beyond the visible
universe, we can by no means get informations about it. Nothing, which is
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beyond the visible universe, can execute any action which can be observed
by us. Our interpretation of

1
N

∫
Ω

d3xψ∗(t,x)ψ(t,x) (7.2)= 1 (7.3)

is, that e.g. a particle, of whose existence we have positive knowledge, but
whose location in space we don’t know, can be detected with probability = 1
somewhere in the normalization volume Ω. It’s impossible that a particle,
of whose existence we have positive knowledge, is located outside the visible
universe. In most cases the space volume, in which it must be localized
with certainty, is by far smaller. If for example we want to describe what is
happening in a high-energy experiment in an electron-positron collider, then
we know for sure, that one nanosecond after the collision, all generated fields
with no exception can be detected inside a sphere with 30 cm radius around
the collision point. A reasonable normalization volume can not exceed the
finite size of the visible universe. In almost all cases of practical relevance,
it may be chosen much smaller.
But the finite normalization volume is associated with a drawback: It is

incompatible with plane waves. Strictly speaking, plane waves don’t exist.
At (and the more so beyond) the normalization volume’s boundary, any
field’s amplitude must be zero. Only wave packets, but not plane waves, can
have finite extension. On the other hand, if a wave packet’s amplitude does
not change significantly within the observed region – which in this case is
much smaller than the normalization volume – then in good approximation
it can be described as a plane wave. We would like to avoid the immense
paperwork, to describe such quasi-plane waves as wave packets. Instead we
prefer to handle them as simple plane waves ψ(x) ∼ exp{−i(ωt− kx)}.

Therefore we formally relax the normalization requirement by two meth-
ods: Either we define the normalization volume Ω = S1 · S2 · S3 as a box
with edge lengths S1,S2,S3, and postulate periodic boundary conditions

ψ(t, x1 + 2z1S
1, x2 + 2z2S

2, x3 + 2z3S
3) = ψ(t,x) (7.4)

with z1, z2, z3 ∈ Z .
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This normalization condition allows for plane waves. As a second method,
we formally consider the limit Ω → ∞, notwithstanding the mentioned
physical objections. In doing so, we often will apply the formula

lim
Ω→∞

1
Ω
∑
k

=
+∞∫
−∞

d3k

(2π)3 . (7.5)

We now consider a field ψ(x) ≡ ψ(t = 0,x) at time t = 0. Due to the
finite normalization volume, ψ(x) can be expanded in a Fourier series

ψ(x) = 1
Ω
∑
k

wk exp{+ikx} (7.6a)

wk =
∫
Ω

d3xψ(x) exp{−ikx} . (7.6b)

Remark: Some authors define (7.6b) as w-k and/or distribute the normal-
ization factor

√
1/Ω onto both lines of (7.6).

The sum in (7.6a) is over all wave numbers k which are compatible with
the boundary condition (7.4). If the normalization volume Ω is large, the
spectrum of wave numbers is to dense to be resolved by observations, and
seems to be continuous. Still we consider the wave numbers as a discrete
and countable infinite set which can be summed-up, because Ω is finite.
Authors, who choose an infinitely large normalization volume, get a

Fourier integral instead of the Fourier series:

ψ(x) =
+∞∫
−∞

d3k

(2π)3 w(k) exp{+ikx} (7.7a)

w(k) =
+∞∫
−∞

d3xψ(x) exp{−ikx} (7.7b)

The delta function is defined by
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δ(3)(x− z) = 0 if x , z (7.8a)∫
d3x δ(3)(x− z)φ(x) = φ(z) . (7.8b)

Here the integration volume must cover the point z. With finite normaliza-
tion volume Ω, the delta function can be written as

δ(3)(x− z) = 1
Ω
∑
k

exp{±ik(x− z)} , (7.9)

with infinite normalization volume as

δ(3)(x− z) =
+∞∫
−∞

d3k

(2π)3 exp{±ik(x− z)} . (7.10)

Using an infinite normalization volume, the three-dimensional delta func-
tion of wave numbers

δ(3)(k − f) = 0 if k , f
+∞∫
−∞

d3k δ(3)(k − f) = 1

can be written as

δ(3)(k − f) = 1
(2π)3

+∞∫
−∞

d3x exp{±i(k − f)x} . (7.11)

With finite normalization volume, the spectrum of wave numbers is discrete,
and the delta function δ(3)(k − f), whose dimension is volume, is replaced
by the dimension-less Kronecker symbol δkf :

δkf = 1
Ω

∫
Ω

d3x exp{±i(k − f)x} (7.12)

We also will need the extensions of Fourier expansions and delta functions
to four space-time dimensions. With infinite normalization volume, from
(7.7) we get
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ψ(x) =
+∞∫
−∞

d4k

(2π)4 w(k) exp{−ikx} (7.13a)

w(k) =
+∞∫
−∞

d4xψ(x) exp{+ikx} , (7.13b)

and the delta functions become

δ(4)(x− z) =
+∞∫
−∞

d4k

(2π)4 exp{±ik(x− z)} (7.14a)

δ(4)(k − f) =
+∞∫
−∞

d4x

(2π)4 exp{±i(k − f)x} . (7.14b)

The finite normalization volume Ω only refers to the three space-like dimen-
sions. The time is considered infinite. Therefore with finite normalization
volume, the four-dimensional Fourier transformation must be constructed
with a combination of (7.6) and (7.13):

ψ(x) = 1
Ω
∑
k

+∞∫
−∞

dk0

2π wk(k0) exp{−i(k0x0 − kx)} (7.15a)

wk(k0) =
∫
Ω

d3x

+∞∫
−∞

dx0 ψ(x) exp{+i(k0x0 − kx)} (7.15b)

With finite normalization volume, the four-dimensional delta functions are
constructed by combining (7.9), (7.12), and (7.14):

δ(4)(x− z) = 1
Ω
∑
k

+∞∫
−∞

dk0

2π exp{±ik(x− z)} (7.16a)

δ(k0 − f0) δkf = 1
2πΩ

∫
Ω

d3x

+∞∫
−∞

dx0 exp{±i(k − f)x} (7.16b)
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In equations (7.13) to (7.16a), the integration variable k0 can assume any
value between −∞ and +∞. But as null-component of the wave vector of a
plane wave exp{−i(ωkt− kx)}, the frequency ωk = ck0 is connected to the
wave number’s space components k due to the invariant wavenumber square

kνk
ν = (k0)2 − k2 =

(ωk
c

)2
− k2 = m2c2

~2
(7.17)

of Special Relativity theory, thus being no independent variable. We fix the
sign of k0 = ωk/c by definition:

We stipulate, that

k0 = ωk
c

= +

√
k2 + m2c2

~2
> 0

always is the positive root. Therefore a negative
frequency must be written as −ωk = −ck0 < 0.

(7.18)

(The case ωk = 0 is impossible for fields with finite mass m , 0. And a
massless field with frequency zero would simply not be existent.) To include
all possible waves, the Fourier-expansion to the space-like wave numbers k
then must incorporate for each wave number one summand with +ωk > 0
and one summand with −ωk < 0:

ψ(x) =
∑
k

1√
NΩ

(
ak exp{−ikx}+ b∗k exp{+ikx}

)
(7.19)

=
∑
k

1√
NΩ

(
ak exp{−i(ωkt− kx)}+ b∗k exp{+i(ωkt− kx)}

)
The sum runs over all positive and all negative wave numbers k, which are
compatible with the condition (7.4). But k0 = ωk/c > 0 always is positive.
We introduced the normalization factor 1/

√
NΩ with temporarily indefinite

N , to make the normalization flexible for each particular application case.
It is an additional advantage of the notation with the Fourier-coefficients ak
and b∗k, that we can easily make sure that the field ψ(x) is real, if desired:
For that purpose we just need to specify bk = ak for all wave numbers.
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The finite normalization volume is not only physically better justified than

an infinite one. It also spares us a complication regarding the normalization
integral’s Lorentz invariance. Let the plain wave

|k〉 ≡ 1√
Ω

exp{−ikx} = 1√
Ω

exp{−i(ωkt− kx)} (7.20)

be a solution of a field equation. With finite normalization volume Ω,

〈q|k〉 = exp{−i(ωk − ωq)t}
Ω

∫
Ω

d3x exp{i(k − q)x} (7.12)= δqk (7.21)

because of ωk = ωq at k = q. Observed from a coordinate system′, which is
moving with velocity v relatively to the unprimed system, the normalization
volume, which is at rest in the unprimed system, is shrunk by the factor√

1− (v/c)2 ≡ γ-1 . (7.22)

Therefore [32, (45a)]

Ω′ = γ-1Ω < Ω . (7.23)

Due to relativistic length contraction, the normalization volume is smaller in
the primed system (in which it is moving) than in the unprimed system (in
which it is at rest). Exactly the same holds for the infinitesimal volume d3x,
which is summed-up in (7.21). The contraction of d3x and the contraction
of Ω compensate mutually. Therefore, provided that the probability density
ψ∗(t,x)ψ(t,x) is Lorentz-invariant, the normalization integral

1
Ω

∫
Ω

d3xψ∗(t,x)ψ(t,x) (7.24)

is generally Lorentz-invariant as well.
Using an infinite normalization volume, one gets instead for plane waves
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|k〉 ≡ ψ(x) = 1√
N

exp{−ikx} = 1√
N

exp{−i(ωkt− kx)}

the normalization integral

〈q|k〉 = exp{−i(ωk − ωq)t}
N

+∞∫
−∞

d3x exp{i(k − q)x} =

=(7.11) (2π)3

N
δ(3)(q − k) . (7.25)

If the normalization factor N is Lorentz-invariant, then this integral is not
Lorentz-invariant due to d3x′ = γ-1d3x < d3x. If we want to compensate
this contraction, then we must apply a normalization factor with same
contraction. As an alternative, the time-like component of an arbitrary
Lorentz vector can be inserted as the reciprocal normalization factor 1/N ,
because this component is stretched by the factor γ under a rotation of
the space-time-coordinates. Many authors choose the energy ~ω for this
purpose. Using an infinite normalization volume, they define the Lorentz-
invariant normalization integral

〈q|k〉 =
√
~ωk~ωq exp{−i(ωk − ωq)t}

+∞∫
−∞

d3x exp{i(k − q)x} =

=(7.11)
~ωk(2π)3δ(3)(q − k) . (7.26)

While in this book we will stick to the finite normalization volume (7.21),
the reader should as well be familiar with normalization to infinite volume,
as this is often encountered in the literature. Normalization factors like
~ωk might seem quite perplexing to somebody, who does not know that
they are arbitrarily inserted for the purpose of Lorentz-invariance of the
normalization integral (7.26).
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8 The classical Dirac Field

8.1 Dirac Equation

From the energy-momentum vector

p = (pν) =


E/c
p1

p2

p3

 (8.1)

of special relativity theory one gets√
c2pνpν =

√
E2 − (cp)2 = mc2 (8.2)

as the rest energy, which is invariant under Lorentz transformations. There-
fore a relativistically invariant field equation with energy operator i~dt and
momentum operator −i~∇ should be of the form√(

i~
d
dt

)2
− (−i~c∇)2 ψ = mc2ψ . (8.3)

Due to the square root, this equation is extremely unwieldy and difficult to
handle. If the square root is expanded into an infinite series, one arrives
– because infinite powers of the differential operators are occurring – at a
non-local theory, with which a plethora of new problems are associated.
It was Dirac’s idea, to convert (8.3) into a linear equation by means of
(initially indefinite) coefficients γµ:

(i~cγ0 d
dct + i~cγ∇)ψ = i~cγµdµψ = mc2ψ (8.4)
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The result is the Dirac equation

(i~cγµdµ −mc2)ψ = 0 , (8.5)

which turned out to be a remarkably successful concept.
To determine the coefficients γµ, we take the square of equation (8.2)

E2 − (cp)2 = (mc2)2 , (8.6)

and iterate both sides of (8.4):

i~cγµdµi~cγσdσψ = (mc2)2ψ

(i~c)2
(
γ0γ0d0d0 + (γ0γk + γkγ0)d0dk + γkγjdkdj

)
ψ = (mc2)2ψ (8.7)

Comparing this to (8.6) results into the condition

γµγν + γνγµ = 2gµν . (8.8)

The stronger condition γµγν = gµν would make both equations compatible
as well. But it would be a too severe constriction. The weaker condition (8.8)
is sufficient, because (8.8) can be fulfilled with imaginary parts Im(γµγν) =
−Im(γνγµ), while the stronger condition γµγν = gµν can only be met with
Im(γµγν) = 0.
(8.8) can not be solved by numbers. For this reason, Dirac proposed to

interpret the coefficients γν as matrices. Thus condition (8.8) turns into the
condition

{γµ, γν} ≡ γµγν + γνγµ = 2gµν1 . (8.9)

1 is a n-dimensional unit matrix in the n-dimensional spinor space, which
is spanned by the spinors ψ. The spinor space is an abstract functional
space of the theory. It must not be confused with the four-dimensional
time-position space.
By now we don’t know the γ-matrices explicitly. We don’t even have

fixed their dimension. To find out details of these matrices, we multiply
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(8.5) from left by γ0:

(i~c γ0γ0︸  ︷︷  ︸
=1 because of (8.9)

d0 + i~cγ0γjdj − γ0mc2)ψ = 0 (8.10)

As any quantum-theoretical operator, which is representing an observable
quantity, the energy operator i~cd0 is hermitean (= self-adjoint). The same
holds for the momentum operator −i~dj and the operator mc2 (which is
simply a real factor). Therefore γ0γj and γ0 must be hermitean as well:

γ0† = γ0 (8.11a)

(γ0γj)† = γ0γj
(8.9)= (−γjγ0)† = −γ0†γj† = −γ0γj†

=⇒ γj† = −γj (8.11b)

This can be combined into the equation

γµ† = gµνγ
ν . (8.12)

This is the second and final condition which the γ-matrices must meet.
Besides (8.9) and (8.12) there are no further constraints.

In appendix A.8 it is proved, that the γ-matrices must have even dimension.
For simplicity we try to find appropriate matrices of dimension as low as
possible. The matrices

γk ≡ iσk preliminary only ! (8.13)

with the Pauli matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(8.14)

are complying with both (8.9) and (8.12). But there does not exist a fourth
2 × 2 matrix γ0, which fulfills these conditions as well. Therefore the γ-
matrices’ dimension must minimum be 4× 4.
The partial success with the Pauli matrices at least is indicating that
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we are searching in the right direction. Therefore we try to construct the
four-dimensional matrices as the direct product ρ⊗ σ of the Pauli matrices
and appropriate 2× 2-matrices ρ. In (8.13) we made the γk anti-hermitean
due to multiplication of σk by i. Now for the same purpose we define ρk as( 0 1
−1 0

)
. For σ0 usually simply 1 = ( 1 0

0 1 ) is chosen. This leads to the desired
result with ρ0 = ( 0 1

1 0 ) or with ρ0 =
( 1 0

0 −1
)
. Dirac decided for the second

alternative, which often is called the “standard form”. As this form of the γ-
matrices is in widespread use, we will shortly present it in section 8.7. But
in this book we prefer the other, so-called “chiral” form of the matrices,
because it makes transparent the structure of the Dirac equation and it’s
relationship with the Weyl-equations. The Dirac matrices in chiral form
are:

γ0 ≡
(

0 1
g00 0

)
⊗ 1 =

(
0 1

1 0

)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 (8.15a)

γ1 ≡
(

0 1
g11 0

)
⊗ σ1 =

(
0 σ1

−σ1 0

)
=


0 0 0 1
0 0 1 0
0 −1 0 0
−1 0 0 0

 (8.15b)

γ2 ≡
(

0 1
g22 0

)
⊗ σ2 =

(
0 σ2

−σ2 0

)
=


0 0 0 −i
0 0 i 0
0 i 0 0
−i 0 0 0

 (8.15c)

γ3 ≡
(

0 1
g33 0

)
⊗ σ3 =

(
0 σ3

−σ3 0

)
=


0 0 1 0
0 0 0 −1
−1 0 0 0
0 1 0 0

 (8.15d)

It is not difficult to prove by straight-forward computation, that these
matrices indeed are solutions of the equations

γµγν + γνγµ =(8.9) 2gµν1 (8.16)
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γµ† =(8.12)
gµνγ

ν (8.17)

with µ, ν = 0, 1, 2, 3. Attention: The spinor space of Dirac-theory only by
chance has the same dimension — namely four — as the time-position space.
The spinor space is an abstract space of functions, which is not identical
with time-position space.

The four γ-matrices are constants, i. e. Lorentz-scalars. They don’t
change when the coordinates of time-position space are rotated. In other
words: They do not constitute a four-dimensional Lorentz vector γ = (γµ).
Therefore the factor γµdµ in the Dirac equation (i~cγµdµ −mc2)ψ (8.5)= 0 is
no Lorentz scalar. Thus the Dirac equation’s Lorentz invariance is not at
all evident, but needs an accurate check, which we will undertake in section
8.3 .
For some computations a fifth matrix will be useful, which is defined as

follows:

γ5 ≡ iγ0γ1γ2γ3 =


−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1

 =
(
−1 0
0 1

)
(8.18)

Attention: Authors, who choose a different form of the γ-matrices (8.15),
consequently get a different form of γ5.
Due to our chosen chiral form of the γ-matrices, the four-dimensional

Dirac spinors become – as we will see – the direct sum of two-dimensi-
onal Weyl spinors, which we already know from (6.78). The both top
components of any Dirac spinor constitute a left-handed Weyl spinor, and
it’s both bottom components constitute a right-handed Weyl spinor:

ψ(x) =


L1(x)
L2(x)
R1(x)
R2(x)

 = L(x)⊕R(x) (8.19)

By means of the matrix γ5, projection operators LP and RP can be con-
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structed, which project the left- and right-handed components out of Dirac
spinors:

LPψ ≡ 1
2(1− γ5)

(
L
R

)
=
(
L
0

)
(8.20a)

RPψ ≡ 1
2(1+ γ5)

(
L
R

)
=
(

0
R

)
(8.20b)

This transparent relation in-between the two-dimensional Weyl-represen-
tations and the four-dimensional Dirac-representation of the group {B} is
the reason, why we prefer the chiral form of the γ-matrices.

8.2 Lagrangian

The Dirac field’s Lagrangian was already indicated in section 4.5 :

L (4.120)=
_
ψa

(
i~cγνab(dν + i

~
qAν)−mc2δab

)
ψb −

1
4µ0

FστF
στ (8.21)

The indices a, b are spinor indices. Whenever they show up twice in a
product, according to the summation convention they are to be summed up
automatically, in this case from 1 to 4. The indices ν, σ, τ are space-time
indices, which automatically are to be summed up from 0 to 3 whenever
they show up twice in a product. We carefully must distinguish superscript
contravariant space-time indices from subscript covariant indices. In contrast
the spinor space is an euclidean space, and we place spinor indices always
bottom. We emphasize once more, that time-position space and spinor
space are different spaces, which only by chance both are four-dimensional
in Dirac theory.

The Dirac-matrices (γab)ν are most notable. They are four 4× 4-matrices
in spinor space. In (8.15) these matrices are explicitly displayed. They are
not the components of a Lorentz vector, but constants (Lorentz-scalars).
Still they are — not without reason — suggestively marked by a space-
time index. We will turn back to this curiosity in the investigation of the
Lagrangian’s Lorentz invariance in section 8.3 .
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The field

_
ψ (x) is closely related to the field ψ(x) by it’s definition

_
ψ ≡ ψ†γ0 . (8.22)

ψ† is the adjoint, i.e. transposed complex-conjugate spinor of ψ. Abbre-
viating — though slightly imprecise — also

_
ψ is often called the adjoint

spinor of ψ. As we already decided in (8.15) for a concrete form of the Dirac
matrices, we can indicate

_
ψ explicitly:

ψ =


ψ1
ψ2
ψ3
ψ4

 ψ† =
(
ψ∗1 ψ

∗
2 ψ
∗
3 ψ
∗
4

)
_
ψ = ψ†γ0 (8.15a)=

(
ψ∗3 ψ

∗
4 ψ
∗
1 ψ
∗
2

)
(8.23)

The unit of ψ and of
_
ψ is volume-1/2, the unit of the Lagrangian L is

energy/volume.
In section 4.5 the “covariant derivative” dν + i

~qAν , which is replacing the
“normal” derivative dν , has been motivated by the demand for invariance of
the charged Dirac field under gauge transformations. There also the term
− 1

4µ0
FστF

στ , which exclusively is related to the gauge field, was justified.
The other ingredients of the Lagrangian have not been somehow derived
from basic principles. Only after Dirac had found the field equation (8.5),
the Lagrangian was constructed such, that this field equation results from it
due to variation of it’s variables. Still the Lagrangian is helpful to achieve a
systematic understanding of the theory’s symmetries and conservation laws.
In section 8.3 we will use the Lagrangian to investigate the Dirac equation’s
Lorentz invariance.
When we quantize the fields, we will in a first step separately quantize

the “free”, not interacting Dirac field, and the “free”, not interacting elec-
tromagnetic field. Only after that we will in a second step analyze the
interactions in-between quantized fields. Therefore it is reasonable to define
the Lagrangian of the free Dirac field, in which the gauge field is switched
off:
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L (8.21)=
_
ψa

(
i~cγνabdν −mc2δab

)
ψb (8.24)

Concluding this section, we now will check that the field equations indeed
can be derived from the Lagrangian. ψ(x),

_
ψ (x), and the gauge field’s

four components Aµ(x) are the six variables, with respect to which the
Lagrangian (8.21) must be varied to derive the six field equations. In the
lines after (3.37c) we explained, why

_
ψ (x) and ψ(x) must be considered

independent variables of L for derivation of the field equations. The field
equations for Aµ(x) were already derived and analyzed in section 4.5 .
Therefore we now will only consider the field equations for ψ(x) and for_
ψ (x).
Variation of L with respect to ψ(x) leads to the field equation

0 =(3.37b) dν
∂L

∂(dνψ) −
∂L
∂ψ

= dν
_
ψa i~cγ

ν
ab−

_
ψa

(
i~cγνab(

i

~
qAν)−mc2δab

)
= i~c(dν −

i

~
qAν)

_
ψa γ

ν
ab +mc2δab

_
ψa= 0 . (8.25a)

Variation of L to
_
ψ (x) leads to the field equation

0 =(3.37b) dν
∂L

∂(dν
_
ψ)
− ∂L
∂

_
ψ

= 0−
(
i~cγνab(dν + i

~
qAν)−mc2δab

)
ψb . (8.25b)

(8.25b) is the a-th row of the spinor equation(
i~cγν(dν + i

~
qAν)−mc2

)
ψ = 0 , (8.26a)

which – apart from replacement of the normal derivative dν by the covariant
derivative dν + i

~qAν , see section 4.5 – is identical to the Dirac equation
(8.5). (8.25a) is the b-th column of the spinor equation
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−i~c(dν −
i

~
qAν)

_
ψ γν −mc2 _

ψ= 0 . (8.26b)

We now will prove, that this is not an independent equation, but the adjoint
of (8.26a): With the rule (AB)† = B†A†, which is valid for arbitrary
matrices, and with i† = −i, we get

0 =(8.26a) ((
i~cγν(dν + i

~
qAν)−mc2)ψ)†

= −i~c(dν −
i

~
qAν)ψ†γν† −mc2ψ† . (8.27)

Multiplication from right by γ0 results into

0 = −i~c(dν −
i

~
qAν)ψ† γν†γ0︸   ︷︷   ︸

γ0γν

−mc2ψ†γ0 . (8.28)

case ν = 0 : γν†γ0 (8.12)= γ0γ0 = γ0γν

case ν , 0 : γν†γ0 (8.12)= −γνγ0 (8.9)= γ0γν .

With ψ†γ0 (8.22)=
_
ψ (8.28) thus becomes

−i~c(dν −
i

~
qAν)

_
ψ γν − mc2 _

ψ= 0 , (8.29)

which is identical to (8.26b).

8.3 Lorentz Invariance1

In section 6.3 we indicated, how spinor fields are transformed under a
rotation of the space-time coordinates:

ψ′(x′) (6.92c)= Dψ(Λ-1x) = exp
{ i

2~ΩστS
στ
}
ψ(Λ-1x) (8.30a)

In section 8.4 we will prove that the field
_
ψ is transformed by D -1:
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_
ψ ′(x′) =

_
ψ (Λ-1x)D -1 =

_
ψ (Λ-1x) exp

{
− i

2~ΩστS
στ
}

(8.30b)

The group {D} of spinor transformations D = (8.30) is a representation of
the group {B}, which is the covering group of the Lorentz group { `}. Thus
the Lie algebra of {D} and {B} resp. { `} must be identical. This condition
does not uniquely fix the transformations D respectively their generators S.
Some margin is left, which we will use to define appropriate generators. For
that purpose we will apply the spinor transformation (8.30) with indefinite
generator S, when we check the Lorentz invariance of the Lagrangian (8.21).
This evaluation will result into an exact condition, which the generators
S of the spinor transformations D must meet. Subsequently we will check
whether the generators, which were defined by that method, also have the
correct Lie algebra.
The Dirac equation is invariant under Lorentz transformations, if the

Lagrangian (8.21), from which it was derived in (8.26a), is invariant un-
der Lorentz transformations. The term − 1

4µ0
FστF

στ obviously is Lorentz-
invariant, because all it’s space-time indices are contracted (i. e. it is a
Lorentz-scalar). Thus we only need to consider the other terms. When the
Lagrangian is transformed into a primed coordinate system′, it reads

L′(x′) =(8.21) _
ψ
′
a (x′)

(
i~cγνab

(
dν ′ +

i

~
qA′ν(x′)

)
−mc2δab

)
ψ′b(x′) .

To avoid an outgrowing number of indices, in the following we will only
write those spinor indices explicitly, which really are mandatory.

L′(x′) =(8.21) _
ψ
′
(x′)

(
i~cγν

(
dν ′ +

i

~
qA′ν(x′)

)
−mc2

)
ψ′(x′)

L′(Λ-1x) =
_
ψ (Λ-1x)D-1(i~cγν Λ-1 µ

ν
(
dµ + i

~
qAµ(Λ-1x)

)
−mc2

)
Dψ(Λ-1x)

L′(x) =
_
ψ (x)

(
i~cD-1γνDΛ-1 µ

ν
(
dµ + i

~
qAµ(x)

)
−mc2

)
ψ(x) (8.31)

In the last step, the space-time variables Λ-1x have been renamed to x. Note
firstly, that the matrices γν didn’t get a prime′ under the transformation,
because they are not a Lorentz vector’s components, but constants, i. e.
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Lorentz scalars. Note secondly, that the matrix operators in time-position
space (namely the Lorentz transformations Λ-1) commute with the matrix
operators in spinor space (namely the spinor transformations D and D-1).

The Lagrangian is invariant under a rotation of space-time coordinates, if

D-1γνDΛ-1 µ
ν = γµ

D-1γνD = Λνµγµ . (8.32)

We once again should clearly point out, what we really are doing here: We
don’t aim to prove the Lorentz-invariance of a completely specified theory.
Instead at this stage we are constructing a Lorentz-invariant theory. The
spinor transformations D are not yet fixed, but we are free to define them.
We are trying to define them in such a way, that firstly the group {D}
becomes a representation of the Lorentz group’s covering group {B}, and
that secondly the elements D of this group are solutions of equation (8.32).
This equation is a central point in Dirac’s spinor theory, we will often turn
back to it. It is describing, how the space-time transformations Λνµ and the
spinor transformations D must match, so that a Lorentz-invariant theory
will emerge from their cooperation. The γ-matrices are the interface, where
transformations in spinor space and transformations in time-position space
interfere.
From (8.32) it becomes clear, why the γ-matrices, though they are con-

stants, are indexed like the components of a Lorentz vector: In section
5.6 we found out, that a vector field A(x) under a rotation of space-time
coordinates is transformed by

Aµ(x) `(Ω)−−→ A′µ(x′) (5.90c)= ΛµνAν(Λ-1x) . (8.33)

The field

Kµ(x) ≡
_
ψ (x)γµψ(x) (8.34)

under a coordinate rotation is transformed as

K ′µ(x′) (8.30)=
_
ψ (Λ-1x)D-1γµDψ(Λ-1x) . (8.35)
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If (8.32) holds, then

K ′µ(x′) =
_
ψ (Λ-1x)Λµνγνψ(Λ-1x) = ΛµνKν(Λ-1x) (8.36)

follows. Not γµ, but
_
ψγµψ therefore is the µ-component of a contravariant

Lorentz four-vector.

Theorem: If under rotations of the space-time coordinates the
spinor field ψ(x) incorrectly is transformed like a scalar field, and
if at the same time the constant spinor-matrices γµ incorrectly are
transformed like the components of a Lorentz vector, then both
errors compensate exactly in products of the form

_
ψ (x)γµψ(x)

or
_
ψ (x)γµAµψ(x) with arbitrary Lorentz vectors Aµ, and in

total a correct result is achieved.

(8.37)

Therefore it’s also reasonable to apply to the γ-matrices the method of
pulling indices up and down by means of the metric tensor:

_
ψγµψ = gµν

_
ψγνψ =⇒ γµ = gµνγ

ν (8.38)

For the construction of appropriate generators Sστ , we write equation
(8.32) in infinitesimal form:

(1− i

2~ ωστ S
στ )γν(1+ i

2~ ωστ S
στ ) = (gνµ + i

2~ ωστ B
στν

µ)γµ (8.39)

Neglecting terms O(ω2), the following equation must hold:

γν + i

2~ ωστ
(
γνSστ − Sστγν

)
= γν + i

2~ ωστB
στν

µγ
µ

[γν , Sστ ] = Bστν
µγ

µ (8.40)

The computation, which is documented in appendix A.6, results in

[γν , Sστ ] (A.43)=
[
γν ,

i~

4 [γσ, γτ ]
]
. (8.41)

Thus the Lagrangian (8.21) – and consequently the Dirac equation (8.26a) –
is Lorentz-invariant, if firstly the spinor transformation’s generators have
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the form

Sστ = i~

4 [γσ, γτ ] , (8.42)

and if secondly the spinor transformations, which were defined by this
method, have the Lie algebra of the Lorentz group. The

Theorem: A group of transformations with the six generators

Sστ ≡ i~

4 [γσ, γτ ]

has the Lie algebra of the Lorentz group, if the four n-dimensional
matrices γ0, γ1, γ2, γ3 comply with the relations

{γσ, γτ} ≡ γσγτ + γτγσ
(8.9)= 2gστ1 .

(8.43)

says, that this indeed is the case. (By the way, note that the theorem is
not limited to n = 4 dimensional spinor spaces.) To prove the theorem,
we directly compute the Lie algebra (see appendix A.7 for details of the
computation):

[Sαβ, Sηδ] = −~
2

16
(
(γαγβ − γβγα)(γηγδ − γδγη)

− (γηγδ − γδγη)(γαγβ − γβγα)
)

[Sαβ, Sηδ] =(A.44) i~(gβηSαδ − gβδSαη − gαηSβδ + gαδSβη) (8.44)

This Lie algebra indeed is identical to the Lorentz group’s Lie algebra
(5.24b). The group {D} of transformations

D = exp
{ i

2~ Ωστ S
στ
}

(8.45)

with generators according to (8.43) is a true representation of the Lorentz
group, if it’s parameter manifold is identical to the Lorentz group’s parameter
manifold. If the parameter manifold of the group {D} is chosen identical to
the parameter manifold of the group {B} — the Lorentz group’s universal
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covering group — , then {D} is a true representation of {B}, because the
Lorentz group { `} and it’s covering group {B} have the same Lie algebra,
and differ only by their parameter manifolds.

8.4 Probability Density

By analogy to non-relativistic quantum theory, we would guess the product
ψ†ψ to be the probability density. But actually it is the product

_
ψψ, which

is defined in Dirac theory as probability density. This is the reason for that
definition:

It is absolutely mandatory, that the state functions of quantum theory can
be normalized, i.e. that there exists a real number N (possibly multiplied
by some physical units) with the property

1
N

∫
Ω

d3x
_
ψ (x)ψ(x) = 1 with N ∈ R , −∞ < N < +∞ . (8.46)

In case of the Dirac field, N is dimensionless, because we defined [ψ] =
volume-1/2. We now will prove, that this normalization condition can always
be met with the probability density

_
ψψ, but that it could not be met in

certain cases, if we would define ψ†ψ instead of
_
ψψ as probability density.

In section 8.3 we constructed a representation of the group {B} on the
basis of Dirac-spinors. The elements of that representation are

D(Ω) = exp
{ i

2~ΩστS
στ
}

(8.47)

with Sστ =(8.43) i~

4 [γσ, γτ ] .

The generators, which are adjoint (i.e. transposed complex-conjugate) to
Sστ , are

Sστ † = − i~4 (γτ †γσ† − γσ†γτ †) =

=(8.12) − i~4 (gβτγβgασγα − gασγαgβτγβ) =
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= −gασgβτSβα = +gασgβτSαβ =

=
{

+Sστ if (σ=0 , τ=0) or (σ,0 , τ ,0)
−Sστ if (σ=0 , τ ,0) or (σ,0 , τ=0) .

(8.48)

The generators Sστ of spinor rotations are not self-adjoint in case of the
index combinations of Lorentz boosts. Consequently the representation D
of the boosts is not unitary. This is no surprise. The Lorentz group and it’s
covering group {B} according to theorem (5.56) have no finite-dimensional
unitary representations, because their parameter manifolds are not compact.
To clarify the impact of this fact onto the probability density in Dirac
theory, we first investigate an infinitesimal transformation of the product
ψ†ψ. Terms O(ω2) may be neglected:

ψ′† ψ′ = (DINFψ)† (DINFψ) = ψ†D†INF DINF ψ =

=(8.48)
ψ†
(
1− i

2~ ωστ g
ασgβτSαβ

)(
1 + i

2~ ωστ S
στ
)
ψ =

= ψ†
(
1− i

2~ ωστ ( gασgβτSαβ − Sστ )
)
ψ (8.49){

= ψ†ψ if (σ=0 , τ=0) or (σ,0 , τ ,0)
, ψ†ψ if (σ=0 , τ ,0) or (σ,0 , τ=0)

(8.50)

Now the matrix γ0 is added due to the definition
_
ψ

(8.22)= ψ†γ0. The commu-
tation relation of γ0 and Sστ is

Sαβγ0 =(8.43) i~

4 (γαγβ − γβγα)γ0

=(8.9)
{

+γ0Sαβ if (α=0 , β=0) or (α,0 , β,0)
−γ0Sαβ if (α=0 , β,0) or (α,0 , β=0)

= γ0gµαgνβSµν . (8.51)

These are exactly the same cases as in (8.48). Thus the sign changes
compensate in the transformation of ψ̄ψ, which is done analogous to (8.50):
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_
ψ ′ψ′ = ψ′†γ0ψ′ = ψ†D†INF γ

0DINF ψ =

=(8.48)
ψ†
(
1− i

2~ ωστ g
ασgβτSαβ

)
γ0
(
1 + i

2~ ωστ S
στ
)
ψ =

= ψ†γ0
(
1− i

2~ ωστ ( gασgµαgβτgνβSµν︸                     ︷︷                     ︸
Sστ

−Sστ )
)
ψ

=
_
ψψ (8.52)

We see that
_
ψ , but not ψ†, is transformed by D-1:

_
ψ ′=

_
ψD-1 ψ′†= ψ†D† , ψ†D-1 (8.53)

As
_
ψ ψ is Lorentz-invariant, the condition (8.46) can be fulfilled in any

coordinate system. In contrast there is no number Ñ ∈ R, which solves the
equation

1
N

∫
Ω

d3x
_
ψψ =

∫
Ω

d3xψ†
γ0

N
ψ =

∫
Ω

d3xψ†
1
Ñ
ψ . (8.54)

Therefore the Dirac field is normalizable only if
_
ψψ, but not ψ†ψ, is defined

as probability density.

8.5 The free Field

A Dirac field is “free”, if it is not interacting with any other field. Any
interaction of a Dirac field is conveyed by gauge fields. With the gauge
fields switched off, the equation of the free Dirac field gets the simple form

(i~cγµdµ −mc2)ψ(x) (8.5)= 0 . (8.55)

Based on (7.19), we try the general solution

ψ(x) =
∑
k

1√
NΩ

(
aku

k exp{−ikx}+ b∗kv
k exp{+ikx}

)
. (8.56)
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We factored the four-component spinors

uk ≡


uk1
uk2
uk3
uk4

 and vk ≡


vk1
vk2
vk3
vk4

 (8.57)

out from the Fourier coefficients. While the Dirac equation’s solution ψ(x)
is a four-component spinor, we want the Fourier coefficients to stay spinor-
scalars. Note that the wave numbers k in the products akuk and b∗kvk are
not automatically summed-up. Only space-time indices and spinor indices
are automatically summed-up. As the k are no space-time indices, their up-
or down-position is not related to contra- or covariant transformations. We
placed them just where some free space was available.
We now will analyze in more detail those solutions of the classical (not

quantized) Dirac equation, in which only one Fourier coefficient is ak = 1
or b∗k = 1, while all other Fourier coefficients are zero. They have the form

ψ(x) = 1√
NΩ

uk exp{−ikx}

ψ(x) = 1√
NΩ

vk exp{+ikx}

 with ωk > 0 . (8.58a)

The adjoint solutions
_
ψ (x) = ψ†(x)γ0 are

_
ψ (x) = 1√

NΩ
ūk exp{+ikx}

_
ψ (x) = 1√

NΩ
v̄k exp{−ikx}

(8.58b)

with ūk ≡ uk†γ0 , v̄k ≡ vk†γ0 .

Interpreted as state functions of point-particle quantum mechanics, these
solutions would have the energy

i~
dψ
dt = Eψ = i~(∓iωk)ψ = ±~ωkψ . (8.59)
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The solutions exp{+ikx} with negative frequency would have negative
energy. Dirac invented his hole theory (see e. g. [33, chap. 5]) to prevent
that the system would run by emission of energy into a state of infinitely
negative energy. We don’t need to worry about that issue. It will turn out
that the solutions with negative energy simply disappear upon appropriate
quantization of the Dirac field. In all states with no exception the quantized
Dirac field has positive (or zero) energy.

By insertion of (8.58a) into (8.55) we get with the momentum four-vector
p ≡ ~k the two equations

(+cγµpµ −mc2)uk = 0
(−cγµpµ −mc2)vk = 0 . (8.60)

Provided m , 0, there is a coordinate system in which the field is at rest
(p = ~k = 0). Using the invariant wave-number square and the invariant
momentum square

kνk
ν =

(ωk
c

)2
− k2 = m2c2

~2
(8.61)

~kν~k
ν = pνp

ν =
(~ωk
c

)2
− p2 = m2c2 , (8.62)

(8.60) can be written in the field’s rest system as

(cγ0mc−mc2)u0 =(8.15a)
(
−1 1

1 −1

)
mc2u0 =

= mc2


−u0

1 + u0
3

−u0
2 + u0

4
+u0

1 − u0
3

+u0
2 − u0

4

 = 0 =⇒
{
u0

3 =u0
1

u0
4 =u0

2
(8.63a)

resp.
(
−1 −1
−1 −1

)
mc2v0 = 0 =⇒

{
v0

3 =−v0
1

v0
4 =−v0

2 .
(8.63b)

Note that p0 = mc2 > 0 was inserted into both equations, according to
(7.18). Because of (8.63), a Dirac spinor in it’s rest system has only two
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independent components. There are two linearly independent spinors u0,
and two linearly independent spinors v0, which we will call 1u0, 2u0, 1v0,
2v0:

ru0 =


ru0

1
ru0

2
ru0

1
ru0

2

 rv0 =


rv0

1
rv0

2
−rv0

1
−rv0

2

 r = 1, 2 (8.64)

In the rest system, the Dirac equation has the four solutions

ψ(x) = 1√
NΩ

ru0 exp
{
− i mc

2

~
t
}

ψ(x) = 1√
NΩ

rv0 exp
{

+ i
mc2

~
t
}

 with r = 1, 2 . (8.65)

The field’s wave number is k = 0. Thus it’s wave length is infinite, and it
oscillates with the frequency mc2/~ > 0, which is determined by it’s mass.

The solutions with momentum p = ~k , 0 can be found by transformation
into a coordinate system, which is moving relatively to the field (8.65). In
the moving system, the four solutions of the free Dirac equation are

ψ(x) = 1√
NΩ

ruke−ikx = 1√
NΩ

D ru0e−ikx (8.66a)

ψ(x) = 1√
NΩ

rvke+ikx = 1√
NΩ

D rv0e+ikx (8.66b)

with r = 1, 2 .

For a pure boost (rapidity η , 0, space-like rotation θ = 0), the transforma-
tion

D =(11.5) exp
{ i
~

(
Θj
~

2

(
σj 0
0 σj

)
+ ηj

i~

2

(
σj 0
0 −σj

))}
can be written in the following form (see appendix A.9 for details of the
computation):
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D
(A.50)=

1 cosh
(
η
2

)
− ηj

η σ
j sinh

(
η
2

)
0

0 1 cosh
(
η
2

)
+ ηj

η σ
j sinh

(
η
2

)
 (8.67)

Alternatively, this transformation can be described as a function of the
field’s three momentum components pj and it’s energy E in the moving
coordinate system (see appendix A.9 for details of the computation):

D
(A.57)=

√
1

2mc2(E +mc2) ·

·
(

(E +mc2)1+ cpjσ
j 0

0 (E +mc2)1− cpjσj

)
(8.68)

In the limit of negligible rest mass m, the four-component Dirac equation
decomposes into the two two-component Weyl equations, see section 8.9 .
As one normally would like to avoid the need for a new definition of the
normalizing factor in that case, one chooses already for the Dirac equation
the two-component spinors(

ru0
1

ru0
2

)
and

(
rv0

1
rv0

2

)
with r = 1, 2 (8.69)

as orthogonal vectors, and assigns to them by definition the dimension√energy :

(
ru0

1
∗ ru0

2
∗
)(su0

1
su0

2

)
=
(
rv0

1
∗ rv0

2
∗
)(sv0

1
sv0

2

)
≡ mc2 δrs (8.70)

with r = 1, 2 s = 1, 2

Using (8.64), we get for the adjoint four-component spinors

rū0 = ru0+ ( 0 1
1 0 ) = ru0+

r̄v0 = rv0+ ( 0 1
1 0 ) = − rv0+

}
with r = 1, 2 . (8.71)

If the coordinate system is rotated, rūk and r̄vk are transformed by D-1,
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same as

_
ψ. Therefore the products

rūk suk = rū0D-1D su0 = 2mc2 δrs (8.72a)
rv̄k svk = rv̄0D-1D sv0 = −2mc2 δrs (8.72b)
rūk svk = ru0

1
∗ sv0

1 + ru0
2
∗ sv0

2 − ru0
1
∗ sv0

1 − ru0
2
∗ sv0

2 = 0 (8.72c)
rv̄k suk = −rv0

1
∗ su0

1 − rv0
2
∗ su0

2 + rv0
1
∗ su0

1 + rv0
2
∗ su0

2 = 0 (8.72d)

are lorentz-invariant.
With the transformation (8.68), and with the Pauli matrices (8.14), we

can immediately write down the spinors uk, vk with wave number k :

ruk = D ru0 =
√

1
2mc2(E +mc2) ·

·


(E +mc2 + cp3)ru0

1 + (cp1 − icp2)ru0
2

(cp1 + icp2)ru0
1 + (E +mc2 − cp3)ru0

2
(E +mc2 − cp3)ru0

1 + (−cp1 + icp2)ru0
2

(−cp1 − icp2)ru0
1 + (E +mc2 + cp3)ru0

2

 (8.73a)

rvk = D rv0 =
√

1
2mc2(E +mc2) ·

·


(E +mc2 + cp3)rv0

1 + (cp1 − icp2)rv0
2

(cp1 + icp2)rv0
1 + (E +mc2 − cp3)rv0

2
(−E −mc2 + cp3)rv0

1 + (cp1 − icp2)rv0
2

(cp1 + icp2)rv0
1 + (−E −mc2 − cp3)rv0

2

 (8.73b)

r = 1, 2 , D = (8.68) with
{
E= ~ωk > 0
pj = ~kj .

In the following paragraphs, we can proceed with less efforts if we fix for
the spinors with k = 0 the following explicit form, which complies with the
conditions (8.64) and (8.70):
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1u0 ≡
√
mc2


1
0
1
0

 2u0 ≡
√
mc2


0
1
0
1



1v0 ≡
√
mc2


1
0
−1
0

 2v0 ≡
√
mc2


0
1
0
−1

 (8.74)

Thus the spinors become

1uk =
√

1
2(E +mc2)


E +mc2 + cp3
cp1 + icp2

E +mc2 − cp3
−cp1 − icp2

 (8.75a)

2uk =
√

1
2(E +mc2)


cp1 − icp2

E +mc2 − cp3
−cp1 + icp2
E +mc2 + cp3

 (8.75b)

1vk =
√

1
2(E +mc2)


E +mc2 + cp3
cp1 + icp2

−E −mc2 + cp3
cp1 + icp2

 (8.75c)

2vk =
√

1
2(E +mc2)


cp1 − icp2

E +mc2 − cp3
cp1 − icp2

−E −mc2 − cp3

 (8.75d)

with E = ~ωk > 0 , pj = ~kj = −pj = −~kj .

Using (8.75), in appendix A.10 the following spinor-relations are derived,
which will be needed for the Dirac field’s quantization. For arbitrary k

∑
r

(
ruka

rukb
† + rv-ka rv-kb †

) (A.61)= 2E δab = 2~ωk δab (8.76a)
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ruk† suk
(A.62)= rvk† svk

(A.62)= 2E δrs = 2~ωk δrs (8.76b)
ru-k† svk (A.63)= rv-k† suk (A.63)= 0 . (8.76c)

In appendix A.11 these relations are proved:

2∑
r=1

ruk rūk
(A.67a)= cγµpµ +mc2 (8.77a)

2∑
r=1

rvk rv̄k
(A.67b)= cγµpµ −mc2 (8.77b)

This is a 4× 4 matrix in spinor space with mc2 ≡ 1mc2. Furthermore in
appendix A.27 the relations

rūkγρ suk
(A.205)= rv̄ kγρ svk

(A.205)= 2c~kρδrs (8.78a)

rūkγρ svk
(A.205)
, 0 , rv̄ kγρ suk

(A.205)
, 0 (8.78b)

are proved.
The probability density of the four solutions (8.66) is

_
ψψ = 1

NΩ exp{+ikx} rūk ruk exp{−ikx} = 2mc2

NΩ (8.79a)
_
ψψ = 1

NΩ exp{−ikx} rv̄k rvk exp{+ikx} = −2mc2

NΩ . (8.79b)

With the definition

N ≡ +2E = 2~ωk , (8.80)

the probability density is lorentz-invariant, because the product EΩ is
lorentz-invariant as was discussed at the end of section 7 . The unusual
negative probability density in (8.79b) is caused by the likewise unusual
definition of

_
ψ= ψ†γ0 by means of the Dirac-matrix γ0. Complying with

the remarks we added to (7.1) and (7.2), the probability W (V ) to find
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the field in volume V is – as necessary – always ≥ 0 and ≤ 1, even if the
probability density is negative:

0 ≤W (V ) =

∫
V
d3x

_
ψ (t,x)ψ(t,x)∫

Ω
d3x

_
ψ (t,x)ψ(t,x)

≤ +1 (8.81)

The boundary conditions (8.63), which reduce the degrees of freedom of the
Dirac spinors to 2, are valid as well for the boosted spinors. If a field’s spin
quantum number is s, then the number of it’s spin degrees of freedom is
2s+ 1. Therefore the Dirac spinors, even though they have 4 components,
are describing fields with spin s = 1/2, but not s = 3/2.

The spin of Dirac-fields is s = 1/2 . (8.82)

In this section we concentrated on those solutions of the Dirac equation,
in which only one single Fourier-coefficient of the general solution (8.56)
is 1, and all other Fourier-coefficients are 0 . Concluding this section, we
state the general solution. As there are two linearly independent variants
r = 1, 2 of each spinor ruk and rvk, there also are two rak and two rb∗k Fourier-
coefficients with r = 1, 2. Furthermore we insert the normalization factor
(8.80):

ψ(x) =(8.56)
∑
k,r

1√
2~ωkΩ

(
rak

ruk exp{−ikx}+ rb∗k
rvk exp{+ikx}

)
(8.83a)

ψ(x) =
∑
k,r

1√
2~ωkΩ

(
ra∗k

rūk exp{+ikx}+ rbk
rv̄k exp{−ikx}

)
(8.83b)

The momentum densities, which are canonical conjugate to ψ(x) and
_
ψ (x)

respectively, are

πψ ≡
(4.40) ∂L

∂ψ̇
= ∂L
c ∂(d0ψ)

(8.24)= i~
_
ψγ0 (8.84a)

π_
ψ
≡ ∂L
c ∂(d0

_
ψ)

(8.24)= 0 . (8.84b)
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We will comment in (8.99)ff on the peculiar asymmetry between (8.84a) and
(8.84b). The dimension of the canonical conjugate momentum density of the
Dirac field is action · volume−1/2. Note that the momentum density, which
is canonical conjugate to the column spinor ψ, is a row spinor. Inserting
(8.83), we find the canonically conjugate momentum density

π(x) (8.84a)= i~ψ† =
∑
k,r

i~√
2~ωkΩ

(
ra∗k

ru†k exp{+ikx}+ rbk
rv†k exp{−ikx}

)
. (8.85)

(8.83) and (8.85) will be our starting point for the quantization of the Dirac
field in chapter 16 .

8.6 Conserved Quantities

The components of the Dirac field’s energydensity-stress tensor (ES-tensor)
are

T ρσ =(4.32) ∂L
∂(dρψ) d

σψ + (dσψ) ∂L
∂(dρψ)︸      ︷︷      ︸

0

− gρσL

=(8.24)
ψ i~cγρdσψ − gρσ ψ

(
i~cγνdν −mc2

)
ψ

=(8.5) i~c ψγρdσψ . (8.86)

It’s dimension is energy/volume. In the first line, the factors have been
arranged such that each term is a number, but not a spinor-matrix. In
preparation of the evaluation of other fields, we make this a general rule:

All products of fields and their derivatives in the Lagrangian
L and in the ES-tensor’s components T ρσ must be arranged
such, that all terms are scalars in space-time, in spinor space,
in weak iso-spin space, and in color space.

(8.87)
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(Weak iso-spin will be introduced in chapter 29, and color will be introduced
in chapter 28 .)
In particular, the Dirac field’s energy density (Hamiltonian) is

H =(4.34) T 00 = i~c ψγ0d0ψ , (8.88)

and it’s physical momentum density is

Pj =(4.35) 1
c
T 0j = i~ψγ0djψ . (8.89)

Inserting the fields (8.83), we can work out the ES-tensor in more detail:

T ρσ = i~c
∑
f ,k,s,r

ikσ

2Ω~√ωfωk

(
− sa∗f

rak
sūfγρ ruk exp{+i(f − k)x}

+ sa∗f
rb∗k

sūfγρ rvk exp{+i(f + k)x}
− sbf

rak
sv̄fγρ ruk exp{−i(f + k)x}

+ sbf
rb∗k

sv̄fγρ rvk exp{−i(f − k)x}
)

(8.90)

Now we will integrate this result in three-dimensional position space over
the normalization volume Ω. We want to make use of the Kronecker symbol

1
Ω

∫
Ω

d3x exp{±i(k − f)x} (7.12)= δkf (8.91)

in all terms. As the sums are running symmetrically over all positive and
negative wavenumbers k and f , we can e. g. write:
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∑
f ,k,s,r

sa∗f
rb∗k

sūfγρ rvk
1
Ω

∫
Ω

d3x exp{+i(f + k)x} =

=
∑
f ,k,s,r

sa∗f
rb∗−k

sūfγρ rv−k exp{+i(f0 + k0)x0} ·

· 1
Ω

∫
Ω

d3x exp{+i(f j − kj)xj}

︸                                      ︷︷                                      ︸
δkf

Thus we get

T ρσ ≡
∫
Ω

d3x T ρσ = −~c
∑
k,s,r

kσ

2~ωk

(
− sa∗k

rak
sūkγρ ruk + sa∗−k

rb∗k
sū−kγρ rvk exp{+i2k0x0}

− sb−k
rak

sv̄−kγρ ruk exp{−i2k0x0}+ sbk
rb∗k

sv̄kγρ rvk
)
. (8.92)

Here we applied our convention (7.18), that the null-component of the
wavenumbers of free fields is chosen always ≥ 0. The terms with the
exponential functions are describing rapid oscillations. Their frequency does
depend on the energy of the field. Even for relatively light particles with
rest energy 1MeV, the frequency of these oscillations is minimum as high as

2k0c >
2MeV
~
≈ 3 · 1021Hz . (8.93)

Schrödinger [34], who detected them (theoretically, these oscillations have
never been observed experimentally), named them “Zitterbewegung” (trem-
bling motion). The mean value of these terms is zero, and due to the high
frequency, we certainly may neglect them, even though their coefficients ac-
cording to (8.78b) are different from zero. Thereby the ES-tensor simplifies
to

T ρσ ≡
∫
Ω

d3x T ρσ =
∑
k,s

c2~2kρkσ

~ωk

(
sa∗k

sak − sbk
sb∗k

)
. (8.94)
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In particular, the Hamilton function (energy) is

H ≡ T 00 =
∑
k,s

~ωk
(
sa∗k

sak − sbk
sb∗k

)
, (8.95)

and the field’s physical momentum is

P j ≡ 1
c
T 0j =

∑
k,s

~kj
(
sa∗k

sak − sbk
sb∗k

)
. (8.96)

The Dirac field’s electrical current density

jν
(4.87)= qc ψγνψ , (8.97)

for which the continuity equation

cd0 qψγ
0ψ︸    ︷︷    ︸

charge density= qψ†ψ

(4.88b)= −dkqcψγkψ (8.98)

holds, was computed already in section 4.4. The current density differs from
the Dirac field’s Lorentz-invariant probability density ψψ by the constant
factor q, and in addition by the factor γ0, which interchanges the spinor
components 1 and 2 with the spinor components 3 and 4. The charge,
but not the charge density, is a conserved quantity, because under Lorentz
transformations the size of the volume changes, in which the unchanged
charge is enclosed.
The canonical conjugate momentum densities are quite “asymmetric”:

πψ
(8.84a)
, 0 , πψ

(8.84b)= 0. Some authors therefore prefer to define an alterna-
tive Lagrangian

L′ = − i~c2 (dνψ)γνψ + i~c

2 ψγνdνψ − ψmc2ψ , (8.99)

in which the fields ψ and ψ appear more symmetrical. This Lagrangian
leads to the same field equations as L = (8.24):
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0 = dν
∂L′

∂(dνψ) −
∂L′

∂ψ
= i~cdνψγν + ψmc2 (8.100a)

0 = dν
∂L′

∂(dνψ)
− ∂L′

∂ψ
= −i~cγνdνψ +mc2ψ (8.100b)

From the Lagrangian (8.99) the canonically conjugate momentum densities

π′ψ ≡
∂L′

c ∂(d0ψ) = i~

2
_
ψγ0 (8.101a)

π′_
ψ
≡ ∂L′

c ∂(d0
_
ψ)

= − i~2 γ
0ψ (8.101b)

are derived, which are significantly more symmetric than (8.84). But of
course the Lagrangians L and L′ are completely equivalent only, if they also
result into the same ES-tensor. With L′ = (8.99) we get this ES-tensor:

T ′ρσ =(8.86) ∂L′

∂(dρψ) d
σψ + (dσψ) ∂L′

∂(dρψ)
− gρσL′

=(8.99) i~c

2
(
ψγρ dσψ − (dσψ) γρψ

)
− gρσL′ (8.102)

In particular we find

H′ = i~

2
_
ψγ0 cd0ψ − (cd0

_
ψ) i~2 γ

0ψ − L′

= i~c

2 (djψ)γjψ − i~c

2 ψγjdjψ + ψmc2ψ , (8.103)

which can be written as

H′ = (8.103)− (8.100a)︸       ︷︷       ︸
0

·ψ2 −
ψ

2 · (8.100b)︸       ︷︷       ︸
0

= − i~c2 (d0ψ)γ0ψ + i~c

2 ψγ0d0ψ . (8.104)

The physical momentum density is found to be
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P ′j ≡ i~

2
_
ψγ0djψ − (dj

_
ψ) i~2 γ

0ψ . (8.105)

By closer analysis in section 16.2 we will find out, that indeed (8.104) =
(8.88) and (8.105) = (8.89). Thus it’s merely a matter of taste, whether
L = (8.24) or L′ = (8.99) is used.
We conclude this section with an remark on General Relativity Theory

(GRT). The field-equation of GRT describes, how the geometry of four-
dimensional space-time is deformed by it’s content of energy and momentum:

Rµν(x)− R(x)
2 gµν(x) + Λ gµν(x) = −8πG

c4 Tµν(x) (8.106)

The tensor Rµν and it’s contraction R are describing the curvature of space-
time at x. Λ is the cosmological constant, and G is Newton’s constant of
gravitation. Tµν is the ES-tensor of all fields at space-time point x, with
exception of the metric field gµν .
It has been shown in section 2.1, that the metric tensor of GRT is sym-

metric

gµν
(2.5)= g νµ (8.107)

and thus only 10 of it’s components are independent. Consequently, ac-
cording to (8.106) Tµν must be symmetric as well. But neither T = (8.86)
nor T ′ = (8.102) is symmetric, i. e. for both forms we have T ρσ , T σρ and
T ′ρσ , T ′σρ.
At first sight, there seems to be a serious problem. But it is shown in

appendix A.12 that symmetric ES-tensors can be constructed for arbitrary
vector- and spinor-fields, which are resulting into the same equations of
continuity as the asymmetric ES-tensors of the form (8.86). In case of the
Dirac field, the symmetric ES-tensor is

∼
T ρσ (A.86)= i~c

4
(
− (dρψ)γσψ − (dσψ)γρψ + ψγρdσψ+

+ ψγσdρψ
)
− gρσ ψ(i~cγνdν −mc2)ψ︸                        ︷︷                        ︸

L

. (8.108)
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To stay in line with most textbooks on quantum field theory, we keep in
mind that the symmetric ES-tensor (8.108) exists (and must be used for
computations in the framework of GRT), but we will use throughout this
book the asymmetric form (8.86).

8.7 Standard Form of the Dirac-Matrices

In (8.15) we decided for the chiral form of the Dirac-matrices, and we will
stay with this choice everywhere in this book. But as the “standard form”
of the matrices is often encountered in the literature, the reader should
become familiar with it as well.
We define the four-dimensional unitary spinor transformation

U ≡
√

1
2

(
1 1

−1 1

)
U+ =

√
1
2

(
1 −1
1 1

)
= U -1 . (8.109)

1 is the two-dimensional unit matrix. The four-dimensional unit matrix
1 = U+U is inserted two times into the Dirac field’s Lagrangian:

L =(8.21) _
ψ(x)

(
i~cγν

(
dν + i

~
qAν(x)

)
−mc2

)
ψ(x)

=
_
ψ(x)U †

(
i~cUγνU+(dν + i

~
qAν(x)

)
−mc2

)
Uψ(x) (8.110)

The transformed γ-matrices are

Uγ0U † = 1
2

(
1 1

−1 1

)(
0 1

1 0

)(
1 −1
1 1

)
=
(
1 0
0 −1

)
(8.111)

UγjU † = 1
2

(
1 1

−1 1

)(
0 σj

−σj 0

)(
1 −1
1 1

)
=
(

0 σj

−σj 0

)

This is the “standard form” of the Dirac-matrices. It differs from the chiral
form only in γ0. The three matrices γj of both forms are identical. The
spinors in the standard form get the shape
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Uψ =
√

1
2

(
1 1

−1 1

)(
L
R

)
=
(
L+R
−L+R

)
. (8.112)

The standard form is most suitable for the exploration of the non-relativistic
limit. This is described e. g. in [33, chapter 1.4]. It’s disadvantage is, that
the close relation of Dirac-spinors to the direct sum of left- and right-handed
Weyl-spinors is obscured. In the standard form it’s not immediately evident,
that the four-dimensional Dirac-representation of high-energy fields can
be reduced – as we will discuss in section (8.9) – into two-dimensional
Weyl-representations.

8.8 A Remark on the Electron’s Spin

The spin ~/2 of the electron has been detected in the early twenties of the last
century due to analysis of the optical absorption spectra of atoms. An unex-
pected doubling of almost all spectral lines (a phenomenon called anomalous
Zeeman-effect) could be explained as the effect of an additional degree of
freedom of the electron, namely the two possible orientations of it’s “spin”
along some axis of position space. Pauli expanded the Schrödinger-equation
to a non-relativistic equation for two-component spinors (one component for
each possible spin projection onto that axis), and thus could accommodate
most spectroscopic observations with reasonable accuracy. Still spin seemed
to be a surprising and “unnecessary” complication. Why couldn’t the elec-
tron be a simple elementary point-particle which is completely characterized
by it’s mass and charge?
In the introduction of his publication [35] of equation (8.5), Dirac wrote:

“The question remains as to why Nature should have chosen this particular
model for the electron instead of being satisfied with the point-charge. One
would like to find some incompleteness in the previous methods of applying
quantum mechanics to the point-charge electron such that, when removed,
the whole of the duplexity phenomena follow without arbitrary assumptions.
In the present paper it is shown that this is the case, the incompleteness of
the previous theories lying in their disagreement with relativity”.

Indeed, Dirac only required (8.3) to be a correct, Lorentz-invariant equa-
tion, and linearized it in the form (8.4). As shown in the previous sections,



8.8 A Remark on the Electron’s Spin 199
the Dirac-equation and the form of the γ-matrices are resulting from this
ansatz without any further artfully arranged assumptions. And in [33, chap-
ter 1.4] it is shown, that the Pauli-equation is nothing but the non-relativistic
limit of the Dirac-equation (8.5) (with two spinor components being negli-
gible in that limit). Thus the electron with spin ~/2 is really the simplest
design Nature could choose to construct a point-charge in compliance with
Special Relativity.
Finally a word of warning may be appropriate. The often encountered

picture of the electron as a rotating sphere must not be taken literally,
because that picture is inconsistent with observation in several respects:
In that picture, the electron’s speed at the equator must be much higher
than the speed of light in vacuum, unless a much larger electron diameter
is assumed than compatible with experimental evidence. Dirac in contrast
assumes the electron to be a true mathematical point particle, with no
diameter at all. Furthermore the orbital magnetic moment of a particle
with charge q, mass m, and orbital angular momentum L is

µL = gL
q

2m L with gL = 1 , (8.113a)

while the electron’s spin magnetic moment is in good approximation

µS = gS
(−e)
2m S with gS = 2 and |S| = ~/2 . (8.113b)

In Dirac’s theory, the observed factor gS ≈ 2 results — as shown in [33,
chapter 1.4] — quite simple and without any additional assumptions. (In
chapter 26 we will compute quantum-field-theoretical corrections of that
factor.) Surprisingly, the g-factors are no insurmountable problem for the
rotating-sphere-model, because the factor gS = 2 can be explained in that
model as an effect of relativistic kinematics [36]. But Dirac emphasizes in
his publication [35] that only the sum of the orbital angular momentum and
of the spin are conserved, but not the electron’s orbital angular momentum
nor it’s spin alone. This again is showing that the picture of a rotating
sphere would be misleading, as in that case (e. g. in case of a rotating planet
which is orbiting around the sun) both orbital angular momentum and spin
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would be separately conserved.
Thus the spin must be interpreted as a quite abstract mathematical

concept, which has no analogue in classical physics, and can not be squeezed
into the pictorial model of a rotating sphere.

8.9 Weyl Equations

The Dirac equation (i~cγµdµ −mc2)ψ (8.5)= 0 can be written by insertion of
the γ-matrices (8.15) as

(i~c
(

0 1

1 0

)
d0 + i~c

(
0 σk

−σk 0

)
dk −mc2)ψ =(

−mc2 i~c(d0 + σkdk)
i~c(d0 − σkdk) −mc2

)
ψ = 0 . (8.114)

If m = 0, or if the field’s energy is so high that it’s rest energy mc2 is
negligible, then the components of the four-dimensional Dirac equation
(8.114) split into the two-dimensional Weyl equations:

i~c(d0 − σkdk)
(
L1
L2

)
= 0

i~c(d0 + σkdk)
(
R1
R2

)
= 0

(8.115a)

(8.115b)

Here we resumed the notation of section 6.2.1, in which two-dimensional
spinors were used as bases of left- and right-handed representations of the
Lorentz group’s covering group {B}. In the next section we will discuss
solutions of the Weyl equations (8.115), and we will clarify the notion of
their helicity (sometimes also called chirality or handedness).

8.10 The free Weyl Field

As the four-component Dirac equation decomposes in case of negligible rest
mass (and the more so in case of rest mass zero) into a two-component left-
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handed and a two-component right-handed Weyl equation, the solutions of
the Weyl equations can be derived from the solutions of the Dirac equation
due to the limit m→ 0.
We again constrain our considerations to those solutions ψ(x), in which

only one single Fourier coefficient in (8.83) is 1, while all other Fourier
coefficients are 0. We start with the spinors (8.75), and apply such a strong
boost in direction of the negative x3-axis, that E ≈ c2p2 � mc2. Now we
have p3 > 0, p3 < 0 and E + cp3 ≈ 0, E − cp3 ≈ 2E. Thus instead of (8.75)
we get these spinors:

1uk =
√

1
2E


O(mc2)

0
2E
0

 2uk =
√

1
2E


0

2E
0

O(mc2)



1vk =
√

1
2E


O(mc2)

0
−2E

0

 2vk =
√

1
2E


0

2E
0

O(mc2)

 (8.116)

In the limit m → 0 from the two top components of these spinors, left-
handed Weyl spinors can be derived, and right-handed Weyl spinors from
the two bottom components. We mark left-handed spinors by the index L,
right-handed spinors by the index R. The additional index >, which codes
p3 = ~k3 > 0, will soon be skipped:

1ukR> =
√

2E
(

1
0

)
2ukL> =

√
2E

(
0
1

)

1vkR> =
√

2E
(
−1
0

)
2vkL> =

√
2E

(
0
1

)
. (8.117)

Spinors ( 0
0 ), which are trivial solutions of the Weyl equations, have been

ignored from the outset.
A very strong passive boost in direction of the positive x3-axis results in

p3 < 0, p3 > 0 and E + cp3 ≈ 2E, E − cp3 ≈ 0. Thus one gets instead of
(8.75) the spinors
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1uk =
√

1
2E


2E
0

O(mc2)
0

 2uk =
√

1
2E


0

O(mc2)
0

2E



1vk =
√

1
2E


2E
0

O(mc2)
0

 2vk =
√

1
2E


0

O(mc2)
0
−2E

 . (8.118)

From these Dirac spinors one can in the limit m → 0 extract these non-
trivial Weyl spinors:

1ukL< =
√

2E
(

1
0

)
2ukR< =

√
2E

(
0
1

)

1vkL< =
√

2E
(

1
0

)
2vkR< =

√
2E

(
0
−1

)
(8.119)

Dirac spinors of type v are linearly independent of spinors of type u of the
Dirac field in (8.73a) resp. (8.74). This isn’t true any more for the Weyl
spinors. In both (8.117) and (8.119), the v spinors depend linearly from (or
are even identical to) the u spinors. Therefore we only keep the spinors of
type u.

The helicity of a two-component spinor is by definition the eigenvalue of
the

helicity operator ≡ Z ≡ −1
2
pj
p
σj . (8.120)

If the field is moving in direction of the positive x3-axis, then p3 > 0, and
there is a factor p3/p = −1 within the helicity operator. In this case the
spinors have the helicity

Z1ukR> = +1
2σ

3 √2E
(

1
0

)
= +1

2
1ukR> (8.121a)
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Z2ukL> = +1
2σ

3 √2E
(

0
1

)
= −1

2
2ukL> . (8.121b)

If the field is moving in direction of the negative x3-axis, then there is the
factor p3/p = +1 within the helicity operator because of p3 < 0. In this
case, the spinors have the helicity

Z1ukL< = −1
2σ

3 √2E
(

1
0

)
= −1

2
1ukL< (8.121c)

Z2ukR< = −1
2σ

3 √2E
(

0
1

)
= +1

2
2ukR< . (8.121d)

All four spinors are eigenvectors of the helicity operator. The R-spinors
have positive helicity, and the L-spinors have negative helicity. This justifies
by hindsight the classification of the spinors into right- and left-handed ones,
which we had established already in (6.78) and (8.115).

We have derived the solutions of the free Weyl-equations only for boosts
along the x3-axis. But similar solutions hold for boosts in arbitrary directions.
In the general form (8.73) of the Dirac spinors there are all three products
pjσ

j , and in the helicity operator (8.120) there are the same products. Weyl-
spinors, which are built from the two top components of boosted Dirac
spinors, always have helicity −1

2 , independent of the boost’s direction. Weyl-
spinors, which are built from the two bottom components of boosted Dirac
spinors, always have helicity +1

2 .
From now on, we skip the indices > and <, because these informations

are already supplied by the index k. But we continue to distinguish left-
handed from right-handed spinors, because they belong — even though
they are looking formally identical — to solutions of the different equations
(8.115a) and (8.115b).

1ukL =
√

2E
(

1
0

)
2ukL =

√
2E

(
0
1

)
(8.122a)

1ukR =
√

2E
(

1
0

)
2ukR =

√
2E

(
0
1

)
(8.122b)
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The products

(rukL)† sukL = (rukR)† sukR = 2E δrs (8.123)

are not lorentz-invariant, in contrast to the corresponding products (8.72)
of Dirac-spinors. Same as for the Dirac field in (8.80), we choose

N ≡ 2E (8.124)

as normalization factor of the complete solution, and get as complete Weyl-
spinors

ψ(x) = 1√
2EΩ



1ukL exp{−ikx}
2ukL exp{−ikx}
1ukL exp{+ikx}
2ukL exp{+ikx}
1ukR exp{−ikx}
2ukR exp{−ikx}
1ukR exp{+ikx}
2ukR exp{+ikx}

(8.125)

with E = c~k0 = ~ωk > 0 and ruX = (8.122).

Weyl fields have mass m = 0, or negligibly small mass, spin
s = 1/2, and helicity Z = +1/2 or Z = −1/2. Left-handed
Weyl fields (helicity = −1/2) emerge in the limit m→ 0 from
the two top components of Dirac spinors. Right-handed Weyl
fields (helicity = +1/2) emerge in the limit m→ 0 from the
two bottom components of Dirac spinors.

(8.126)

The two last sentences are only true with our definitions (8.15) of the Dirac-
matrices. With other definitions of the γ-matrices, the relations inbetween
Weyl spinors and Dirac spinors are less transparent.
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8.11 Weyl field: Probability Density

We found out in section 8.4, that the Dirac field is normalizable only
if the product

_
ψ ψ, but not the product ψ† ψ, is defined as probability

density. No complication of that type does exist for the two-component
Weyl-spinors, even though they are identical to the upper two or to the
lower two components of Dirac-spinors. Weyl-spinors are normalizable with
the probability density ψ†ψ.
The transformation of a Weyl-spinor ψ(x) under a rotation of the space-

time coordinates is

ψ′
(6.78)= exp

{ i
~

(
Θk
~σk

2 ± ηki
~σk

2
)}

︸                                    ︷︷                                    ︸
D

ψ . (8.127)

Using σj (8.14)= σj† we get the infinitesimal transformation (in which terms
O(Θ2),O(η2),O(Θη) may be neglected):

ψ′† ψ′ = (DINFψ)† (DINFψ) = ψ†D†INF DINF ψ =

=(8.127)
ψ†
(

1− i

~

(
Θk
~σk†

2 − ηki
~σk†

2
))
·

·
(

1 + i

~

(
Θk
~σk

2 + ηki
~σk

2
))
ψ =

= ψ†
(

1 + i

2Θk(σk − σk†)−
1
2ηk(σ

k + σk†)
)
ψ =

= ψ†
(
1− ηkσk

)
ψ , ψ†ψ (8.128)

While the Weyl field’s probability density ψ† ψ is invariant under a pure
space-like rotation of coordinates (Θ , 0,η = 0), it is not invariant under a
Lorentz boost (η , 0).
Recall, however, that it is not the probability density but the three-

dimensional space integral over the probability density, which must be
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Lorentz-invariant. The Weyl field does meet this criterion:∫
Ω

d3xψ†(t,x)ψ(t,x) (8.123),(8.125)= 1
Ω

∫
Ω

d3x = 1 (8.129)
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9 The classical Electromagnetic Field

We have seen in section 4.5 that the electromagnetic field is the gauge field
of fields with an electric charge (for example the Dirac field), and that it’s
Lagrangian is almost completely fixed by the postulate, that the charged
field shall be invariant under local gauge transformations.

9.1 Lagrangian and Field Equation

This is the Lagrangian of the free electromagnetic field, i. e. the electromag-
netic field which is not interacting with any other field:

L (4.120)= − 1
4µ0

FστF
στ (4.114)= − 1

4µ0
(dσAτ−dτAσ)(dσAτ−dτAσ) (9.1)

The second term in the field equation

dν
∂L

∂(dνAµ) −
∂L
∂Aµ︸  ︷︷  ︸
−jµ

(3.37)= 0 with µ = 0, 1, 2, 3 (9.2)

is the current density jµ = (4.113). In case of the free electromagnetic field,
this term is zero. With

∂L
∂(dνAµ) = − 2

4µ0
(gνσgµτ − gντgµσ)(dσAτ−dτAσ) =

= − 1
2µ0

(dνAµ−dµAν − dµAν+dνAµ) =

= − 1
µ0

(dνAµ−dµAν) (4.114)= − 1
µ0

F νµ (9.3)
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we get this equation for the free electromagnetic field:

dνF νµ = dν(dνAµ−dµAν) = 0 with µ = 0, 1, 2, 3 (9.4)

It has been shown at the end of section 4.5, that this four-dimensional
equation is equivalent to the well-known four three-dimensional Maxwell
equations.

9.2 Conserved Quantities

For the free electromagnetic field’s ES-tensor

T στ (4.32)= ∂L
∂(dσAρ)

dτAρ− gστL (9.5)

(9.3),(9.1)= − 1
µ0

F σρ dτAρ + gστ
1

4µ0
FνρF

νρ

these four equations of continuity hold:

dσT στ
(4.33)= 0 with στ = 0, 1, 2, 3 (9.6)

Remember that H (4.34)= T 00 is the field’s energy density, and that the j-
component of it’s momentum density is Pj (4.34)= T 0j/c .
In section 5.7 we found that the six equations of continuity

dρMρστ (5.102)= 0 with στ = 10, 20, 30, 23, 31, 12 (9.7)

hold for the angular-momentum-density tensor

Mρστ (5.100)= xσ
T ρτ

c
− xτ T

ρσ

c
+ Sρστ , (9.8)

in which

Sρστ (5.99)= 1
c

∂L
∂(dρAσ)A

τ − 1
c

∂L
∂(dρAτ )A

σ (9.9)
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is the electromagnetic field’s spin density. We discussed already at equation
(4.74) that only the purely space-like angular momenta

M jl (5.104)=
∫
Ω

d3x
(
xjP l − xlPj

)
︸                          ︷︷                          ︸

orbital angular momentum

+
∫
Ω

d3xS0jl

︸          ︷︷          ︸
spin

(9.10)

with jl = 23, 31, 12

are useful for practical applications. Note that conservation laws only hold
for the total angular momenta M jl, but not for orbital angular momenta or
spins separately.

The ES-tensor (9.5) is obviously not symmetric, i. e. T στ , T τσ. As
explained around (8.106), this will result into problems if computations are
done in the framework of General Relativity Theory, because in that theory
ES-tensors must be symmetric. It is shown in appendix A.12, however,
that symmetric ES-tensors can be constructed for arbitrary vector- and
spinor-fields, which are resulting into the same equations of continuity as
the asymmetric ES-tensors of the form (9.5). In case of the electromagnetic
field, the symmetric ES-tensor is

∼
T στ (A.83)= − 1

µ0
F σνF τ ν + gστ

1
4µ0

FνρF
νρ . (9.11)

To stay in line with most textbooks on quantum field theory, we keep in
mind that the symmetric ES-tensor (9.11) exists (and must be used for
computations in the framework of GRT), but we will use throughout this
book the asymmetric form (9.5).
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10 The classical Klein-Gordon Field

10.1 Field Equation

In section 8.1 we iterated the Ansatz for the Dirac equation, and thereby
found an equation for the squared energy:

(i~c)2
(
γ0γ0d0d0 + (γ0γk + γkγ0)d0dk+

+γkγjdkdj
)
φ

(8.7)= (mc2)2φ (10.1)

From this we derived the Dirac equation, which is linear in the energy.
Alternatively we may stick to equation (10.1). Inserting the γ-matrices from
(8.15), and regarding

γµγν + γνγµ
(8.9)= 2gµν1 ,

we find (
(i~c)2(1d0d0 − 1dkdk)− (mc2)2

)
φ = 0 .

All four components of this equation are identical. Therefore this actually
is only one equation:

(~2c2dµdµ +m2c4)φ = 0 (10.2)

Thus the field φ(x) is a spinor with one component only, i. e. a scalar in
spinor-space (and a scalar in space-time). Schrödinger found this equation
even previous to his non-relativistic equation
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(
i~

d
dt + ~2

2m∇
2
)
ψ = 0 . (10.3)

But he discarded it when he noticed, that no equation of continuity can be
derived from it. Searching for a continuity equation, he multiplied (10.2)
by the complex-conjugate function φ∗, multiplied the complex-conjugate
equation by φ, and subtracted one equation from the other:

0 = φ∗(~2c2dµdµ +m2c4)φ− φ(~2c2dµdµ +m2c4)φ∗

= ~2c2(φ∗dµdµφ− φdµdµφ∗) = ~2c2dµ(φ∗dµφ− φdµφ∗)
d
dt
(
φ∗

dφ
dt − φ

dφ∗

dt
)

= −c2dk
(
φ∗dkφ− φdkφ∗

)
(10.4)

The term φ∗φ̇− φφ̇∗ can become negative. If instead (10.3) is multiplied by
ψ∗, the complex-conjugate equation is multiplied by ψ, and one equation is
subtracted from the other, then the result is

i~
(
ψ∗

dψ
dt + ψ

dψ∗

dt
)

= − ~
2

2m
(
ψ∗∇2ψ − ψ∇2ψ∗

)
i~

d(ψ∗ψ)
dt = − ~

2

2m∇
(
ψ∗∇ψ − ψ∇ψ∗

)
. (10.5)

ψ∗ψ obviously is positive definite, and thus – in contrast to (φ∗φ̇−φφ̇∗) – is
a reasonable expression for the electron field’s probability density (or rather
matter density according to Schrödinger’s understanding by the end of
1925). For this reason, Schrödinger dismissed his ansatz (10.2), and focused
for the time being on the non-relativistic equation (10.3). Motivated by the
need of different names for different equations, for Schrödinger’s obviously
relativistically invariant equation (10.2) “unjustly” the name Klein-Gordon
equation became conventional.

While (10.2) because of (10.4) is not reasonable as an equation for one
particle, the Klein-Gordon equation turned out to be a sensible and useful
equation in relativistic quantum field theory.
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10.2 The free Field

(~2c2dµdµ +m2c4)φ(x) (10.2)= 0 (10.6)

is the equation of a free, not with any other field interacting, Klein-Gordon
field. To check that this equation is solved by plane waves

φ(x) = 1√
N

exp{∓ikx} = 1√
N

exp{∓i(ωkt− kx)} , (10.7)

we insert this Ansatz into the field equation:

(−~2ω2
k + ~2c2k2 +m2c4) exp{∓ikx}√

N

(7.17)= 0 · exp{∓ikx}√
N

Any real or complex solution of the Klein-Gordon equation can — according
to the general considerations of chapter 7 — be written in the form

φ(x) (7.19)=
∑
k

1√
NΩ

(
ak exp{−ikx}+ b∗k exp{+ikx}

)
(10.8)

as a linear combination of plane waves. Interpreted as state functions of
point-particle quantum mechanics, the energy of these solutions would be

i~
dφ
dt = Eφ =

=
∑
k

1√
NΩ

(
~ωkak exp{−ikx} − ~ωkb∗k exp{+ikx}

)
.

Because we fixed in (7.18) that k0 = ω/c > 0 always is positive, the
solutions b∗k exp{+ikx} would have negative energy −~ωk < 0. We will see,
that energy is computed by a different method in quantum field theory, and
that the energy of the quantized Klein-Gordon field always is positive.
Real and complex solutions of the Klein-Gordon equation both are im-

portant. In section 4.4 we found out, that the global phase transformation
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φ(x) Γ−→ φ′(x) (4.77)= e
i
~
Kqφ(x) with K, q ∈ R

correlates with conservation of the charge q. This transformation makes
sense only for a complex field.

Real solutions of the Klein-Gordon equations are suited for
the description of fields with spin s = 0 and mass m , 0 or
m = 0, which have no conserved charge. They have the form
(10.8) with bk = ak for arbitrary wavenumbers k.
Complex solutions of the Klein-Gordon equation are suited
for the description of fields with spin s = 0 and mass m , 0
or m = 0, which have (minimum) one conserved charge. They
have the form (10.8) with ak , bk for at least one wavenumber
k.

(10.9)

10.3 Lagrangian

The equation (10.2) of the Klein-Gordon field can be derived from the
Lagrangian

L = c2~2(dµφ∗)dµφ−m2c4φ∗φ . (10.10)

In the lines after (3.37c) we explained, why φ and φ∗ must be treated as
independent variables of L for the derivation of the field equations. Because
of

(dµφ∗)dµφ = gµσg
µτ (dσφ∗)dτφ = δστ (dσφ∗)dτφ

= (dσφ∗)dσφ = (dµφ∗)dµφ

the Lagrangian is completely symmetric in φ and φ∗. Therefore it’s variation
to φ∗ and φ results into the identical field equations

dµ
∂L

∂(dµφr)
− ∂L
∂φr

=(3.37b) 0

c2~2dµdµφ+m2c4φ = 0 (10.11a)
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c2~2dµdµφ∗ +m2c4φ∗ = 0 , (10.11b)

namely the Klein-Gordon equation (10.2).
At closer inspection one notices, that a re-definition of the units of the

field φ(x) is necessary. We derived the Klein-Gordon equation (10.2) as an
iterated Dirac equation. The Dirac field’s dimension is volume−1/2. If we
would stick to this definition for the Klein-Gordon field, then it’s Lagrangian
(10.10) would get the exotic dimension energy2/volume. That’s not accept-
able. To avoid that the canonical formalism goes to pieces, the dimension of
Lagrangian and Hamiltonian compulsory must be energy/volume. Therefore
we define for the Klein-Gordon field the dimension

[Klein-Gordon field] = [φ(x)] =
√

1
energy · volume . (10.12)

Consequently, as the Fourier coefficients are dimension-less numbers, the
normalization factor N in

φ(x) =(10.8)∑
f

1√
NΩ

(
af exp{−ifx}+ b∗f exp{+ifx}

)
(10.13a)

φ∗(x) =
∑
k

1√
NΩ

(
a∗k exp{+ikx}+ bk exp{−ikx}

)
(10.13b)

must have the dimension [N ] = energy .
Using φ̇ = cd0φ = cd0φ, the canonical conjugate momentum density π of

the field φ is

π(x) (3.57)= ∂L
∂φ̇(x)

= c~2d0φ∗ = ~2φ̇∗ , (10.14a)

and the conjugate momentum density of the field φ∗ is

∂L
∂φ̇∗(x)

= c~2d0φ = ~2φ̇ = π∗(x) . (10.14b)

The conjugate momentum densities’ dimension is energy
1
2 ·action ·volume-

1
2 .
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Thus the dimension of the product of field amplitude φ(x) and it’s conjugate
momentum density π(x) is action · volume-1, and the dimension of the
product of the field’s amplitude and it’s conjugate momentum is action.
The dimension of a product of canonically conjugate quantities always must
be action. Thus our choice of dimensions seems reasonable.

10.4 Conserved Quantities

The components of the classical Klein-Gordon field’s ES-tensor are

T ρσ (4.32)= ∂L
∂(dρφ) d

σφ+ (dσφ∗) ∂L
∂(dρφ∗)

− gρσL . (10.15)

Note that we placed here, and in the Lagrangian (10.10), the complex
conjugate factors φ∗ and dσφ∗ always left of the factors φ and dσφ. As
the Klein-Gordon field is a scalar, the general rule (8.87) is silent about
the arrangement of these factors, and indeed the order of these factors
is completely arbitrary. That will change, however, when the field will
be quantized in chapter 15. Then the amplitudes will become operators
with non-commutative algebra, and their sequence will have significant
consequences. As we derived both the Dirac equation and the Klein-Gordon
equation from (10.1), these fields are closely related. For that reason we
arrange the factors in Klein-Gordon theory like we did in Dirac theory, with
the complex conjugate factors φ∗ and dσφ∗ left of φ and dσφ.
Inserting

∂L
∂(dρφ) = c2~2dρφ∗ ∂L

∂(dρφ∗)
= c2~2dρφ

into (10.15), we get these components of the ES-tensor:

T ρσ = c2~2
(
(dρφ∗) dσφ+ (dσφ∗) dρφ−

− gρσ(dµφ∗) dµφ+ gρσ
m2c2

~2
φ∗φ

)
(10.16a)

In particular, the Hamiltonian is
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H
(4.35)
≡ T 00 = 2c2~2(d0φ

∗)d0φ− c2~2(dµφ∗)dµφ+m2c4φ∗φ

= c2~2(dµφ∗)dµφ+m2c4φ∗φ , (10.16b)

and the physical momentum density is

Pj
(4.35)
≡ 1

c
T 0j = c~2

(
(d0φ∗) djφ+ (djφ∗)d0φ

)
. (10.16c)

By insertion of the fields (10.13), the ES-tensor (10.16a) can be evaluated
a little bit further:

T ρσ =
∑
k,f

c2~2

2Ω~√ωkωf

[
i2kρfσ

(
a∗k exp{+ikx} − bk exp{−ikx}

)
·

·
(
− af exp{−ifx} + b∗f exp{+ifx}

)
+

+ i2fρkσ
(
a∗k exp{+ikx} − bk exp{−ikx}

)
·

·
(
− af exp{−ifx} + b∗f exp{+ifx}

)
−

− gρσi2kµfµ
(
a∗f exp{+ifx} − bf exp{−ifx}

)
·

·
(
− ak exp{−ikx} + b∗k exp{+ikx}

)
+

+ gρσ
m2c2

~2

(
a∗k exp{+ikx}+ bk exp{−ikx}

)
·

·
(
af exp{−ifx} + b∗f exp{+ifx}

)]
=

=
∑
k,f

c2~2

2Ω~√ωkωf

[
i2(kρfσ + fρkσ)

(
− a∗kaf exp{+i(k − f)x}+ a∗kb

∗
f exp{+i(k + f)x}+

+ bkaf exp{−i(k + f)x} − bkb∗f exp{−i(k − f)x}
)
−
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− gρσi2kµfµ

(
− a∗fak exp{+i(f − k)x}+ a∗fb

∗
k exp{+i(f + k)x}+

+ bfak exp{−i(f + k)x} − bfb∗k exp{−i(f − k)x}
)

+

+ gρσ
m2c2

~2

(
a∗kaf exp{+i(k − f)x}+ a∗kb

∗
f exp{+i(k + f)x}+

+ bkaf exp{−i(k + f)x}+ bkb
∗
f exp{−i(k − f)x}

)]
(10.17)

Now we will integrate this result in three-dimensional position space over
the normalization volume Ω. We want to make use of the Kronecker symbol

1
Ω

∫
Ω

d3x exp{±i(k − f)x} (7.12)= δkf (10.18)

in all terms. As the sums over k and f are running symmetrically over all
positive and negative wavenumbers, we can e. g. write

∑
k,f

a∗fb
∗
k

1
Ω

∫
Ω

d3x exp{+i(f + k)x} =
∑
k,f

a∗−fb
∗
k ·

· exp{+i(f0 + k0)x0}
1
Ω

∫
Ω

d3x exp{+i(−f j + kj)xj}
(10.18)=

=
∑
k

a∗−kb
∗
k exp{+i2k0x0} . (10.19)

Here we applied our convention (7.18), that the null-component of the
wavenumbers of free fields is chosen always ≥ 0. With (10.19) we get

T ρσ ≡
∫
Ω

d3x T ρσ =
∑
k

c2~2

2~ωk

[



218 10 The classical Klein-Gordon Field

− 2kρkσ
(
− a∗kak + a∗kb

∗
−k exp{+i2k0x0}+

+ bka−k exp{−i2k0x0} − bkb∗k
)
−

+ gρσkµk
µ
(
− a∗kak + a∗−kb

∗
k exp{+i2k0x0}+

+ b−kak exp{−i2k0x0} − bkb∗k
)

+

+ gρσ
m2c2

~2

(
+ a∗kak + a∗kb

∗
−k exp{+i2k0x0}+

+ bka−k exp{−i2k0x0}+ bkb
∗
k

)]
. (10.20)

The terms with the exponential functions are describing rapid oscillations.
Their frequency does depend on the mass of the field. Even for relatively
light particles with rest energy 1MeV, the frequency of these oscillations is
as high as

2k0c >
2MeV
~
≈ 3 · 1021Hz . (10.21)

Schrödinger [34], who detected them (theoretically, these oscillations have
never been observed experimentally), named them “Zitterbewegung” (trem-
bling motion). The mean value of these terms is zero, and due to the high
frequency, we certainly may neglect them.
Using that for free fields kµkµ = m2c2/~2, we thus arrive at

T ρσ =
∑
k

c2~2

~ωk
kρkσ

(
a∗kak + bkb

∗
k

)
. (10.22)

Note that we — in anticipation of the quantization to be done in chapter 15
— never in the derivation of this result interchanged the sequence of Fourier-
coefficients in any product. While these coefficients are commutative num-
bers in the classical formula (10.22), they will become non-commutative
operators upon quantization.
The Klein-Gordon field has a conserved charge q, if it is invariant under



10.4 Conserved Quantities 219
a global phase transformation

φ(x) Γ−→ φ′(x) (4.77)= e
i
~
Kqφ(x) with K, q ∈ R . (10.23)

This transformation is reasonable only for a complex field. A real Klein-
Gordon field has no conserved charge.
To find out whether a G exists, with which the sufficient symmetry

condition (4.11)

∃G : L
I+ i

~
wγ

−−−−→ L ′ = L+ i

~
wγL = L+ dρGρ (10.24)

can be fulfilled, we investigate the infinitesimal transformation. Because of

e
i
~
Kq = lim

n→∞

(
1 + i

~

K

n︸︷︷︸
≡k

q

)n
with n ∈ N (10.25)

it’s form is

φ(x)
I+ i

~
wγ

−−−−→ φ′(x) = φ(x) + i

~
kqφ(x) . (10.26)

The transformed complex-conjugated field is

φ∗′(x) = φ∗(x)− i

~
kqφ∗(x) . (10.27)

Note the minus sign. Now we can compute the impact of the infinitesimal
transformation on L (terms O(k2) may be neglected):

L′ = c2~2(dµφ∗ −
i

~
kqdµφ∗)(dµφ+ i

~
kqdµφ)

−m2c4(φ∗ − i

~
kqφ∗)(φ+ i

~
kqφ)
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= L+ c2~2(dµφ∗)
i

~
kqdµφ− c2~2

i

~
kq(dµφ∗)dµφ

−m2c4φ∗
i

~
kqφ+m2c4 i

~
kqφ∗φ+O(k2) = L

The sufficient symmetry condition (10.24) is fulfilled by

dρGρ = 0 ⇐⇒ G = constant . (10.28)

We can avoid unnecessary writing efforts by choosing G ≡ 0. The conserved
current density

jρ =(4.16)
C

(∑
r

∂L
∂(dρφr)

wγφr + i~Gρ
)

with C ≡ 1/(i~k) becomes

jρ = 1
i~k

(
∂L

∂(dρφ)kqφ− kqφ
∗ ∂L
∂(dρφ∗)

)
= 1
i~k

(
c2~2(dρφ∗)kqφ− c2~2kqφ∗dρφ

)
= −iqc2~

(
(dρφ∗)φ− φ∗dρφ

)
. (10.29)

j fulfills the equation of continuity

dρjρ = 0 (10.30)

−ic2~qd0
(
(d0φ∗)φ− φ∗d0φ

)
= +ic2~qdj

(
(djφ∗)φ− φ∗djφ

)
.

Integration over the volume V and application of Gauß’ theorem results
into
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d
dt

∫
V

d3x i~q
(dφ∗

dt φ− φ
∗dφ

dt
)

︸                                  ︷︷                                  ︸
Q(V )

=

= −
∫

O(V )

dfj iqc2~q
(
(djφ∗)φ− φ∗djφ

)
︸                                ︷︷                                ︸

jj

. (10.31)

In the integral Q we recognize – apart from constant factors – the term
(10.4). As probability density, this term is useless, but as charge density it
is acceptable, because a charge very well may be negative. Thus a complex
Klein-Gordon field may have a positive or a negative conserved charge.

If the volume integral is extended over the complete normalization volume
Ω, then the right side of (10.31) is zero, because φ and φ∗ are zero on the
normalization volume’s surface. If in addition

π(x) (10.14a)= ~2φ̇∗(x) π∗(x) (10.14b)= ~2φ̇(x)

is inserted, then the total conserved charge of the Klein-Gordon field can
be written in the form

Q =
∫
Ω

d3x
iq

~

(
πφ− φ∗π∗

)
. (10.32)

10.5 The Real Klein-Gordon-Field

Compared to the vector field of electromagnetic interaction, or to the spinor
field of Dirac theory, the charged Klein-Gordon field already is easy to
handle. Even simpler is the formal treatment of the real Klein-Gordon field.
It is defined by it’s Lagrangian

L = c2~2

2 (dµφ)dµφ− 1
2 m

2c4φ2 . (10.33)
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Like the charged KG-field, the uncharged KG-field by definition has the
dimension (10.12) = (energy · volume)−1/2. Due to this definition it’s
ensured, that the Lagrangian and the Hamiltonian will have the dimension
energy/volume.
Variation of L with respect to φ leads to the field equation

dµ
∂L

∂(dµφ) −
∂L
∂φ

=(3.37b) 0

c2~2dµdµφ+m2c4φ = 0 , (10.34)

which is identical to (10.11a).
The canonically conjugate momentum density π of the real KG-field is

π(x) (3.57)= ∂L
∂φ̇(x)

= c~2d0φ , (10.35)

and the components of it’s energy-density-stress tensor are

T ρσ (4.32)= ∂L
∂(dρφ)d

σφ− gρσL =

= c2~2(dρφ)dσφ− gρσ c
2~2

2 (dµφ)dµφ+ gρσ
1
2 m

2c4φ2 . (10.36)

In particular, it’s energy density (Hamiltonian) is

H =(4.34) T 00 = c2~2

2 (d0φ)d0φ− c2~2

2 (djφ)djφ+ 1
2 m

2c4φ2

= c2~2

2 (dµφ)dµφ+ 1
2 m

2c4φ2 , (10.37)

it’s physical momentum density is

Pj =(4.34) 1
c
T 0j = c~2(d0φ)djφ (10.35)= π(x)djφ , (10.38)

and it’s mean pressure P is



10.5 The Real Klein-Gordon-Field 223

P =(4.45a) 1
3
(
SP11 + SP22 + SP33

)
= 1

3 T
jj

= c2~2

3 (djφ)djφ− gjj

3
c2~2

2 (dµφ)dµφ+ gjj

6 m2c4φ2

= +c2~2

2 (d0φ)d0φ−
c2~2

6 (djφ)djφ−
1
2 m

2c4φ2 . (10.39)
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11 Discrete Symmetries

11.1 The Extended Lorentz Group

The Lorentz group { `} is a continuous group. Each if it’s elements can be
expanded in a Taylor series around the group’s unit element. This means
that any of it’s elements can be represented by the product of infinitely
many infinitely small elements.

In addition, there are two discrete changes of the space-time coordinates,
which are as well leaving invariant the product AνBν : The inversion P
of the three space coordinates x1, x2, x3, and the inversion T of the time
coordinate x0. The coordinate inversion P is called parity transformation.
The set union

{{ `}, T, P} contains the totality of space-time coordinate
transformations, which are leaving invariant the product AνBν , because
the inversion of a single coordinate axis or of arbitrary combinations of
coordinate axes can be constituted by appropriate products of P , T , and
the elements of { `}.
The Lorentz group { `} is more specifically called proper orthochrone

Lorentz group {`↑+}. The arrow ↑ and the word orthochron are indicating,
that the Lorentz group’s elements don’t rotate the time axis out of the light
cone. The plus sign + and the word proper are meaning, that all elements
of all matrix representations of the Lorentz group have determinant +1 .
We will keep on calling the proper orthochrone Lorentz group {`↑+} simply
Lorentz group { `}.
The orthochrone improper Lorentz set {`↑−} is the set

{
P{ `}

}
of all

products P` = `P of the parity transformation and of elements of the
Lorentz group. {`↑−} is no group, because the product of two elements
of {`↑−} is not an element of {`↑−}, but an element of { `}. The set union{{ `}, P} =

{{ `}, {`↑−}} is a group.
The non-orthochrone improper Lorentz set {`↓−} is the set

{
T{ `}

}
of all
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products T` = `T of time inversion and the elements of the Lorentz group.
{`↓−} is not a group, because the product of two elements of {`↓−} is not
an element of {`↓−}, but an element of { `}. The set union

{{ `}, T} ={{ `}, {`↓−}} is a group.
The non-orthochrone proper Lorentz set {`↓+} is the set

{
TP{ `}

}
of all

products TP` of time inversion and parity transformation and the elements
of the Lorentz group. As T and P commute mutually and with all elements
of the Lorentz group, the sequence of the factors does not matter. {`↓+} is
not a group, because the product of two elements of {`↓+} is not an element
of {`↓+}, but an element of { `}. The set union

{{ `}, TP} =
{{ `}, {`↓+}} is

a group.
The set union

{{ `}, T, P} =
{{ `}, {`↑−}, {`↓−}, {`↓+}} is called extended

Lorentz group. Due to it’s elements T and P , the extended Lorentz group is
no continuous group. It’s parameter manifold is not connected, but split
into the four parameter manifolds of it’s components { `}, {`↑−}, {`

↓
−}, and

{`↓+}. No point A in one of these four components can be connected with a
point B in one of the three other components by a continuous path, which is
nowhere leaving the parameter manifold. Each one of these four components
of the manifold is twofold connected, as each one contains the parameter
manifold of { `}, which is twofold connected.

11.2 Discrete Symmetries of the Dirac Field

Using the definition of the γ-matrices

γ0 (8.15a)=
(

0 1

1 0

)
γk

(8.15)=
(

0 σk

−σk 0

)
, (11.1)

the generators

Sστ
(8.43)= i~

4 [γσ, γτ ] , (11.2)

which were defined in theorem (8.43), can be written in 2× 2 block format:
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Sk0 = i~

4

(( 0 σk

−σk 0

)(
0 1

1 0

)
−
(

0 1

1 0

)(
0 σk

−σk 0

))

= i~

2

(
σk 0
0 −σk

)
(11.3a)

Skl = i~

4

(( 0 σk

−σk 0

)(
0 σl

−σl 0

)
−
(

0 σl

−σl 0

)(
0 σk

−σk 0

))

= − i~4

(
[σk, σl] 0

0 [σk, σl]

)
(6.24)= εklm

~

2

(
σm 0
0 σm

)
(11.3b)

Using furthermore the single-indexed notation

ΘkS
k
R + ηkS

k
B ≡

1
2ΩστS

στ (11.4)

with rotation generators SR and boost generators SB, the transformations
(8.30) of the Dirac field under rotations of the space-time coordinates become
the form

ψ′(x′) = Dψ(Λ-1x)

= exp
{ i
~

(
Θk
~

2

(
σk 0
0 σk

)
+ ηk

i~

2

(
σk 0
0 −σk

))}
ψ(Λ-1x) . (11.5)

{D} is nothing other than the direct sum of the left- and right-handed two-
dimensional representations (6.78) of the group {B}. Consequently the
four-dimensional Dirac spinors

ψ(x) =
(
L(x)
R(x)

)
(11.6)

are nothing other than the direct sum of the two-dimensional Weyl spinors
L and R, which are the bases of the left- and right-handed representations
(6.78).

Why then do we bother at all with the seemingly reducible representations
(11.5), and don’t decompose them into the two irreducible representations
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(6.78)? We stick to (11.5) because the Dirac field is not only invariant
under the continuous transformations of the Lorentz group, but also under
the discrete symmetries P and T , and in addition under a further discrete
transformation, namely the charge conjugation C. As a representation of
the group {B}, the group {D = (11.5)} would be reducible. But it is
irreducible as a representation of

{{B}, P, T, C} – the covering group of the
extended Lorentz group plus C. We will see in sections 11.2.1 and 11.2.3 ,
that the right- and left-handed spinor components are coupled by the parity
transformation P and the charge conjugation C.

When we constructed the Dirac equation, we never demanded this equa-
tion to be not only lorentz-invariant but also invariant under parity transfor-
mation and under charge conjugation. But we demanded in section 8.1 that
the representation must be compatible with the energy-momentum equation√
E2 − (cp)2 (8.2)= mc2 of Special Relativity theory. Due to E2 = (−E)2

and p2 = (−p)2 this equation is invariant under time inversion and under
parity transformation, and guided us to a theory which is not only lorentz-
invariant, but also invariant under these discrete transformations.

11.2.1 Parity

We are looking for a representation of the parity transformation on the basis
of four-vectors in time-position space, and we are looking for a representation
of the parity transformation on the basis of four-component spinors. The
four-dimensional representation

ΛP ≡


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 (11.7)

on the basis of four-vectors in time-position space is forced by definition.
The representation DP on the basis of spinors follows by computation, using
the equation

D-1
P γ

νDP

(8.32)= ΛνPµγµ . (11.8)
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From γµγν + γνγµ
(8.9)= 2gµν1 follows γ0γ0γ0 = +γ0 and γ0γkγ0 = −γk.

Therefore

DP ≡ eiϕγ0 (8.15a)= eiϕ
(

0 1

1 0

)
(11.9)

with arbitrary phase factor ϕ is a representation of the parity transformation
on the basis of Dirac spinors, which is a solution of equation (11.8).
We apply the elements of this representation of P onto the Dirac field

ψ(x). With Λ-1
P = ΛP follows

P
(
ψ(x)

)
= ψ′(x′) = DPψ(Λ-1P x) =

=


L′1(x′)
L′2(x′)
R′1(x′)
R′2(x′)

 = eiϕ


R1(x0,−x)
R2(x0,−x)
L1(x0,−x)
L2(x0,−x)

 . (11.10)

DP permutes the spinor components R and the spinor components L.
Therefore the representation

{
D,DP , DT , DC

}
of the group

{{B}, P, T, C}
can not be reduced into two two-dimensional representations.

11.2.2 Time Inversion

We are looking for a representation of time inversion on the basis of four-
vectors in time-position space, and we are looking for a representation of
time inversion on the basis of four-component spinors. Regarding the vectors
in time-position space, there is a complication: While the matrix

ΛT ≡


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (11.11)

is transforming x and dν correctly, a different time-inversion transformation
is needed for the gauge field A:
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T (A) = A′ =
(
φ′/c
A′

)
=
(

+φ/c
−A

)
(11.12)

This can be seen e.g. with the help of Maxwell’s equation

E =(4.128a) −∇Φ− dtA . (11.13)

P (E) = −E holds under space inversion P . From P (∇) = −∇ and
P (dt) = +dt follows P (φ) = +φ and P (A) = −A. But T (E) = +E
under time inversion T . And from T (∇) = +∇ and T (dt) = −dt follows
T (φ) = +φ and T (A) = −A. Thus parity transformation and time inversion
are acting differently onto xν and dν , but identically onto the gauge field
A ! Due to the opposite sign changes of dν and Aν under time inversion,
there exists – different from parity transformation – no matrix operator,
which can represent this transformation.

For this reason time inversion T is defined such, that a solution ψ of the
Dirac equation (

i~cγν(dν + i

~
qAν)−mc2

)
ψ

(8.26a)= 0 (11.14a)

is transformed into a solution ψ∗ of its complex-conjugated equation(
− i~cγν∗(dν −

i

~
qAν)−mc2

)
ψ∗ = 0 . (11.14b)

This is achieved by the following definitions:

T
(
γν
)
≡ −D-1

T γ
ν∗DT (11.15a)

T
(
V
)
≡ ΛTV mit ΛT = (11.11) (11.15b)

T
(
q
)
≡ −q (11.15c)

T
(
ψ(x)

)
≡ DTψ

∗(Λ-1T x) (11.15d)

V is an arbitrary Lorentz vector. By this definition of T , the sign changes
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of dν and Aν in (11.14) are opposite – exactly as needed. Like charge
conjugation C, which will be treated in the next section, also time inversion
T changes the sign of the charge parameter q. But besides that, T and C
are different transformations. DT is a representation of time inversion on
the basis of spinors. It can be found by means of (8.32):

−D-1
T γ

ν∗DT

(8.32)= ΛνTµγµ
(11.11)= −gνµγµ (11.16)

Note that −γν∗ from (11.14b) shows up on the equation’s left side, while on
the right side γν from (11.14a) is used. The left side of (8.32) is describing
the transformation of γ-matrices in spinor space, and therefore (11.15a) must
be inserted. But the right side of (8.32) is describing the transformation of
the four γ-matrices, if they are formally considered as the components of a
Lorentz vector, and therefore (11.15b) must be inserted. This equation is
solved by

DT = eiχγ1γ3 =
(

0 σ1

−σ1 0

)(
0 σ3

−σ3 0

)

= eiχ
(
−σ1σ3 0

0 −σ1σ3

)
= ieiχ

(
σ2 0
0 σ2

)
(11.17)

with an arbitrary phase factor χ. This can be proved by direct insertion,
using the definitions of γν in (8.15), and

γµγν + γνγµ
(8.9)= 2gµν1 =⇒ (γα) -1 = γα . (11.18)

Due to the structure of the matrix (11.17), the L- and R-components of the
Dirac field ψ(x) are not coupled by time inversion:

T
(
ψ(x)

)
= ψ′(x′) = DTψ

∗(Λ-1T x) =

= ieiχ
(
σ2 0
0 σ2

)
L∗1(Λ-1T x)
L∗2(Λ-1T x)
R∗1(Λ-1T x)
R∗2(Λ-1T x)

 = −eiχ


−L∗2(−x0,x)
+L∗1(−x0,x)
−R∗2(−x0,x)
+R∗1(−x0,x)

 (11.19)
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The procedure of time inversion seems rather artificial and cumbersome.
Again we see that the notion “time” does not fit well into quantum theory.

11.2.3 Charge Conjugation

The name of this discontinuous transformation does only quite incompletely
reflect it’s properties. Charge conjugation by definition is a transformation,
which changes solutions of the Dirac equation

(8.26a) = i~cγν(dν + i

~
qAν)ψ −mc2ψ = 0 (11.20a)

into solutions of it’s adjoint transposed equation

(8.26b)∼ = i~c(−γν∼)(dν −
i

~
qAν)ψ ∼ −mc2 ψ ∼ = 0 . (11.20b)

In other contexts, “adjoint transposed” would have the same meaning as
“complex conjugate”, because normally “adjoint” is the same as “complex
conjugate and transposed”. But in Dirac theory, the adjoint spinor is not
only complex conjugate and transposed, but in addition multiplied (from
right) by the matrix γ0. Therefore ψ ∼ , ψ∗.
With reference to (11.20), charge conjugation C is defined as follows:

C
(
γν
)
≡ −D-1

C γ
ν∼DC (11.21a)

C
(
q
)
≡ −q (11.21b)

C
(
V
)
≡ ΛCV (Λ-1

C x) (11.22)= V (11.21c)

C
(
ψ(x)

)
≡ DCψ

∼(Λ-1C x) . (11.21d)

V is an arbitrary Lorentz vector. ΛC is a representation of C on the basis of
Lorentz vectors, which will be defined immediately. DC is a representation
of C on the basis of spinors.
Charge conjugation C is a symmetry of the Dirac field, if DCψ

∼ is
describing an observable state, provided that ψ is describing an observable
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state. DCψ
∼ is describing the antiparticles of those particles, which are

described by ψ. (Here – as everywhere in this book – we are using the
notions “field”, “wave”, and “particle” synonymously.) Therefore in the
quantized theory, charge conjugation is often called particle-antiparticle
conjugation.

As representation of charge conjugation C on the basis of Lorentz vectors
we choose the trivial representation

ΛCV ≡ 1V = V . (11.22)

Then in particular for the four-dimensional time-position vector

ΛCx = x .

Due to it’s definition, charge conjugation results into modifications in spinor
space, and it changes the charge parameter q. Different from P and T , C
does not affect the space-time coordinates of the fields.
Now we determine DC by means of (8.32):

−D-1
C γ

ν∼DC

(8.32)= ΛνCµγµ
(11.22)= γν (11.23)

Note that −γν∼ from (11.20b) shows up on the equation’s left side, while on
the right side γν from (11.20a) is used. The left side of (8.32) is describing
the transformation of γ-matrices in spinor space, and therefore (11.21a) must
be inserted. But the right side of (8.32) is describing the transformation of
the four γ-matrices, if they are formally considered as the components of a
Lorentz vector, and therefore (11.21c) must be inserted. This equation is
solved by

DC ≡ ieiζγ0γ2 =

= ieiζ
(

0 1

1 0

)(
0 σ2

−σ2 0

)
= ieiχ

(
−σ2 0

0 σ2

)
. (11.24)

This is proved by direct computation of the four products, using the definition
of γν in (8.15), and equation (11.18). ζ is an arbitrary phase factor. Compare
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the results (11.24) and (11.17) ! DC differs from DT only by one sign (resp.
2 signs, if the two components of σ2 are counted separately). But because
under charge conjugation in addition the transition ψ → ψ ∼ is made, charge
conjugation does – different from time inversion – interchange the L- and
R-components of spinors:

C
(
ψ(x)

)
= ψ′(x′) = DCψ

∼(Λ-1C x) =

= ieiζγ0γ2


ψ∗3(x)
ψ∗4(x)
ψ∗1(x)
ψ∗2(x)

 = eiζ


−ψ∗4(x)
+ψ∗3(x)
+ψ∗2(x)
−ψ∗1(x)

 = eiζ


−R∗2(x)
+R∗1(x)
+L∗2(x)
−L∗1(x)


Charge conjugation interchanges right- and left-handed spinor components,
interchanges in addition the both right-handed components mutually, inter-
changes the both left-handed components mutually, changes one sign each of
the right- and left-handed components, and takes the complex-conjugated.
Besides the symmetry under parity transformation, symmetry under

charge conjugation is the second (and last) cause, why the four-dimensional
representation

{
D,DP , DT , DC

}
of the group

{{B}, P, T, C} can not be
reduced into two two-dimensional representations.

11.3 Discrete Symmetries of the Weyl Field

The four-dimensional Dirac-representation of the group {B} is the direct
sum of the left- and right-handed two-dimensional Weyl-representation
(6.78). To phrase it conversely: The four-dimensional Dirac-representation
of the group {B} can be reduced into the two two-dimensional Weyl-
representations, if it does not in addition contain the discrete symmetries
of parity and/or charge conjugation. As these both symmetries interchange
the right- and left-handed components of Dirac spinors, they make the four-
dimensional representation irreducible, and thus are no symmetries of the
Weyl-representations. Only the representation of time inversion on the basis
of four-dimensional Dirac spinors
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T
(
ψ(x)

)
= DTψ

∗(Λ-1T x) (11.19)= ieiχ
(
σ2 0
0 σ2

)
ψ∗(Λ-1T x) (11.25)

is reducible, and thus also a discrete symmetry of the left- and right-handed
Weyl fields:

DT = ieiχ
(
σ2 0
0 σ2

)
= ieiχ(σ2 ⊕ σ2) (11.26)

11.4 Discrete Symmetries of the Klein-Gordon Field

The Klein-Gordon field’s Lagrangian

L (10.10)= c2~2(dµψ∗)dµψ −m2c4ψ∗ψ (11.27)

is due to it’s quadratic structure and it’s invariance under the change to
the complex-conjugated equation obviously invariant under time inversion,
under parity transformation, and under charge conjugation. As we derived
the Klein-Gordon equation from the Dirac equation, it’s no surprise that
both are not only lorentz-invariant, but also feature the same discrete
symmetries.
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12 Inhomogeneous Fields

12.1 Greensfunction of the Klein-Gordon Field

The homogeneous Klein-Gordon equation

(~2c2dµdµ +m2c4)ψ(0)(x) (10.2)= 0 (12.1)

describes a free, not interacting field. If there are interactions, then this
equation changes to an inhomogeneous equation, in which the interactions
show up as source-terms j(x):

(~2c2dµdµ +m2c4)ψ(x) = j(x) (12.2)

For the solutions of this inhomogeneous equation we make the ansatz

ψ(x) = ψ(0)(x) +
∫
Ω

d3y

+∞∫
−∞

dy0 i

~c
G(x, y)j(y) . (12.3)

ψ(0)(x) is a solution of the homogeneous equation (12.1). The source term
j creates at the space-time point y an additional wave, which spreads
– as described by the function i

~cG(x, y) – from y to x. According to
Huygens’principle, i

~cG(x, y)j(y) can be imagined as a wave, which emanates
from the source point y. At space-time point x, it combines with the free
field and with the waves, which emanate from all other source points, to
the inhomogeneous field ψ(x).
The sum in (12.3) is running not only over the space-time points y in

the backwards lightcone of x, but over all position-space points in the
normalization volume Ω, and over all time points in the past and the future.
There are two reasons for this surprising procedure: Firstly we will interpret
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waves, which are spreading backwards in time, as the waves of anti-fields,
which are spreading forward in time. Secondly we are already anticipating
the intended quantization. We will see, that space-like interactions of fields
and antifields outside the forward- and backwards-lightcone are mutually
compensating exactly to zero. While antifields can be defined very well as
classical fields, the compensation of space-like virtual fields is comprehensible
only in the framework of quantum theory.
G(x, y) is called Greens-function1. In field theory, the name propagator2

is conventional. Note: Instead of the factor i/~c, some authors factor out
−i/~c, and some authors factor out nothing at all of the Greens-function.
Inserting the Ansatz (12.3) into the inhomogeneous equation (12.2) one

finds

0 +
∫
Ω

d3y

+∞∫
−∞

dy0 (~2c2dµdµ +m2c4) i

~c
G(x, y)j(y) =

= j(x) =
∫
Ω

d3y

+∞∫
−∞

dy0 δ(4)(x− y)j(y)

=⇒ (~2c2dµdµ +m2c4) i

~c
G(x, y) = δ(4)(x− y) . (12.4)

i
~cG(x, y) is a solution of the inhomogeneous differential equation, if the
inhomogeneous source j(x) is condensed into an infinitely short, infinitely
strong “test-stroke” in form of a delta function.
If the investigated system is invariant under translations, then G(x, y)

only depends on the difference (x− y), and the Fourier-transformation

G(x− y) (7.15)= 1
Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k) exp{−ik(x− y)} (12.5)

can be performed. Inserting (12.5) and

1 named in honor of it’s explorer George Green (1793 - 1841)
2 latin: propagare= to spread, to propagate
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δ(4)(x− y) (7.16a)= 1
Ω
∑
k

+∞∫
−∞

dk0

2π exp{−ik(x− y)} (12.6)

into (12.4), one gets

(−~2c2k2 +m2c4) i

~c
G̃(k) = 1

=G̃(k) +i
~c
(
k2 −m2 c2

~2 + iε′
) (12.7a)

G̃(k) = +i
~c
(
k0 + ωk

c
− iε

)(
k0 − ωk

c
+ iε

) . (12.7b)

Here we used

k2 − m2c2

~2
= (k0)2 −

(
k2 + m2c2

~2

)
=
(
k0 + ωk

c

)(
k0 − ωk

c

)
ωk
c

=(7.18) +

√
k2 + m2c2

~2
. (12.8)

Only “on mass shell” k0 is the null-component of a four-vector with the
relativistically invariant square k2 = (k0)2 − k2 = m2c2/~2. But under
the integral (12.5), the integration variable k0 is a parameter, which is
independent of k, and assumes all values in the continuum inbetween
−∞ and +∞. G̃(k) would have poles of first order at k = ∓mc/~ resp.
k0 = ∓ωk/c, if not the infinitesimal small imaginary term −iε had been
added to ωk/c:

ωk/c → ωk/c− iε with

ε ∈ R , ε > 0
ε

ωk/c
≤ ε

mc/~
� 1 (12.9a)

This shifts the poles, which are indicated in fig. 12.1 as red points, from the
real axis into the complex plane. There are overall four different ways to
shift the two poles into the upper or lower complex k0-plane. The advantage
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Fig. 12.1 : Poles and integration paths

of (12.9), which leads to the Feynman-propagator, will be explained once
the integration is done. The infinitesimal parameter ε′ is defined by(

k0 + (ωk/c− iε)
)(
k0 − (ωk/c− iε)

)
=

= k2 −m2 c
2

~2
+ iε

2ωk
c

+O(ε2) ≡ k2 −m2 c
2

~2
+ iε′

with ε′ ∈ R , 0 < ε′ � m2 c
2

~2
. (12.9b)

In case x0 > y0, the integration path of (12.5) can be closed in the
lower complex half-plane, without changing the integral’s value (path 1
in fig. 12.1), and the integral can be computed by means of the residue
theorem3. The integral over the bottom half circle is zero due to the term
(k0)2 in the denominator for large real part of k0, and due to the exponential
function in the nominator for large negative imaginary part of k0. The pole
at k0 = +ωk/c − iε is enclosed by the integration path. Thus one finds,
neglecting terms O(ε2), as solution of (12.5) the Greens function

3 A comprehensive introduction, which is tailored to the need of physicists, to this
important mathematical tool can be found in [37].
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G(x− y) =x
0>y0 i

Ω2π
∑
k

exp{+ik(x− y)} ·

·
∮
�

dk0 exp{−ik0(x0 − y0)}
~c
(
k0 + ωk

c
− iε

)(
k0 − ωk

c
+ iε

)
= +1

Ω
∑
k

exp{+ik(x− y)} ·

· exp{−i(ωk/c− iε)(x0 − y0)}
2~ωk − 2iε . (12.10)

There was a change of sign because of the clockwise integration path. Now
ε is negligible versus ωk/c, and one gets the Greens function

G(x− y) =x
0>y0 ∑

k

exp{−ik(x− y)}
Ω2~ωk

≡ Ga(x− y) . (12.11a)

In case x0 < y0 the integration path is closed in the upper complex half-
plane (path 2 in fig. 12.1):

G(x− y) =x
0<y0 i

Ω2π
∑
k

exp{+ik(x− y)} ·

·
∮
	

dk0 exp{−ik0(x0 − y0)}
~c
(
k0 + ωk

c
− iε

)(
k0 − ωk

c
+ iε

)
= −1

Ω
∑
k

exp{+ik(x− y)} ·

· exp{−i(−ωk/c+ iε)(x0 − y0)}
−2~ωk + 2iε

As the summation is done symmetrically over all positive and negative
wave numbers k, and because of ω-k = ωk, we may change k versus −k.
Neglecting ε we get
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G(x− y) =x
0<y0 ∑

k

exp{−ik(y − x)}
Ω2~ωk

≡ Gb(y − x) . (12.11b)

The sequence of x and y in the arguments of Ga(x − y) and Gb(y − x) is
always arranged to the form Gx(later− earlier). There is no such rule for
G(x − y). Only as integration variable, k0 is assuming all values −∞ to
+∞ independent of k. In (12.11), k0 = ωk/c = +

√
k2 +m2c2/~2 > 0 , and

k0 is fixed by k.
In both propagators (12.11) the null-component of the exponential has

the form

exp{−i · (frequency︸         ︷︷         ︸
≥ 0

· time-interval)︸               ︷︷               ︸
> 0

} (12.12)

with positive frequency-timeinterval product. This is a result of the choice
we made for the shift of the poles, which is sketched in figure 12.1. Any other
of the three possible shifts of the poles into the complex plane would lead to
minimum one residue with negative frequency-timeinterval product. Only
solution with positive frequency-timeinterval product can be interpreted as
fields or antifields with positive energy, which are moving forward in time.
Being sums of plane waves, Ga(x − y) and Gb(y − x) are solutions of

the homogeneous Klein-Gordon equation (12.1), but no solutions of the
inhomogeneous equation (12.4). But we derived (12.11) from (12.4) ! The
explanation is hidden in the boundary conditions x0 > y0 resp. x0 <
y0, which are indicated in (12.11) above the =. These conditions must
be integrated formally into the solutions, to make them solutions of the
inhomogeneous equation (12.4). This can be achieved by means of the step
function

θ(x0 − y0) ≡


1 if x0 > y0

1/2 if x0 = y0

0 if x0 < y0
(12.13a)

d
dx0 θ(x

0 − y0) = −d
dx0 θ(y

0 − x0) = δ(x0 − y0) . (12.13b)
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The derivative of the step function at x0 = y0 is the delta function. Using
the step function, the two equations (12.11) can be combined to

G(x− y) x
0,y0
= θ(x0 − y0)

∑
k

exp{−ik(x− y)}
Ω2~ωk

+

+ θ(y0 − x0)
∑
k

exp{−ik(y − x)}
Ω2~ωk

.
(12.14)

To check whether this now is a solution of the inhomogeneous equation
(12.4), we first insert the solution (i/~c)θ(x0 − y0)Ga(x − y) into (12.4).
dµ are derivatives to xµ, under which yµ must be regarded as a constant.
Furthermore in (12.17) we will use

dµθ(x0 − y0) = δ0µ δ(x0 − y0) (12.15)

and the property

f(τ) d
dτ δ(τ) = −δ(τ) d

dτ f(τ) (12.16)

of the delta function.

(~2c2dµdµ +m2c4) i
~c
θ(x0 − y0)Ga(x− y) =

= i~c
(
dµdµθ(x0 − y0)

)
Ga(x− y)

+ 2i~c
(
dµθ(x0 − y0)

)
dµGa(x− y)

+ θ(x0 − y0) (~2c2dµdµ +m2c4) i
~c
Ga(x− y)︸                                          ︷︷                                          ︸

0

=

= −i~cδ(x0 − y0) d0G
a(x− y) + 2i~cδ(x0 − y0) d0G

a(x− y)

= iδ(x0 − y0)
∑
k

(−i~ck0) exp{−ik(x− y)}
Ω2~ωk



242 12 Inhomogeneous Fields

= + 1
2
∑
k

exp{+ik(x− y)}
Ω︸                           ︷︷                           ︸

δ(3)(x−y)

δ(x0 − y0) exp{−ik0(x0 − y0)}︸                                        ︷︷                                        ︸
δ(x0−y0)

= 1
2 δ

(4)(x− y) (12.17)

If θ(y0− x0)Gb(y− x) is inserted into (12.4) instead of θ(x0− y0)Ga(x− y),
there is a change of sign due to the different signs of x in the exponential
function, and a second change of sign due to (12.13b). Thus in total the
result is identical. The sum of both solutions is identical to (12.4).

12.2 Greens function of the Dirac field

In the definition and computation of the Dirac field’s Greens function we will
proceed in close analogy to the Klein-Gordon field. The free, not interacting
Dirac field ψ(0)(x) is a solution of the equation

(i~cγµdµ −mc2)ψ(0)(x) (8.5)= 0 . (12.18)

If interaction terms j(x) show up on the right side of the equation

(i~cγµdµ −mc2)ψ(x) = j(x) , (12.19)

then the field ψ(x) can be described as the overlay of waves, which propagate
from source terms j(y) to the space-time point x, and combine with the
free field ψ(0)(x) to the inhomogeneous field

ψ(x) = ψ(0)(x) +
∫
Ω

d3y

+∞∫
−∞

dy0 (−i)
~c

S(x, y)j(y) . (12.20)

S(x, y) is the Greens function of the Dirac field. As in case of the Klein-
Gordon field, the summation in this equation is running not only over the
points y in the backwards-lightcone of x, but over all position points in the
normalization volume and over all time points in the past and the future.
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The Greens function is a solution of the inhomogeneous Dirac equation, if
the source j(x) is condensed to a delta function:

(i~cγµdµ −mc2) (−i)
~c

S(x, y) = δ(4)(x− y) (12.21)

If the investigated system is invariant under translations, S(x, y) is depend-
ing only of the difference (x− y), and the Fourier transformation

S(x− y) (7.15)= 1
Ω
∑
k

+∞∫
−∞

dk0

2π S̃(k) exp{−ik(x− y)} (12.22)

is feasible. This equation, and the form (12.6) of the delta function, are
inserted into the inhomogeneous equation (12.21):

(+~cγµkµ −mc2) (−i)
~c

S̃(k) = 1 (12.23)

Because of

γµkµγ
νkν = 1

2γ
µγνkµkν + 1

2γ
νγµkνkµ = 1

2{γ
µ, γν}︸         ︷︷         ︸

(8.9)= gµν

kµkν = k2

we have

γµkµ −m c
~ =

(
γµkµ −m c

~

)(γνkν +m c
~

)
(
γνkν +m c

~

) =
k2 −m2 c2

~2(
γνkν +m c

~

) .
Using this, we get

S̃(k) =
i(γνkν +m c

~)
k2 −m2 c2

~2 + iε′
. (12.24)

γνkν can be a diagonal spinor matrix only in case k = 0, see (8.15). Thus the
factor γνkν + 1m c

~ in the numerator is never zero. If we had not converted
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the fraction, but had left the factor γµkµ − 1m c
~ in the denominator, then

it would not be easy to see, that it has zeros. But it has zeros, as S̃(k)
has poles. Evidently the properties of terms with gamma-matrices in the
denominator are hard to identify. Therefore it’s a good idea, always to
transfer all spinors and spinor-matrices into the numerator.
S̃(k) has two poles of first order at k = ∓mc/~ resp. k0 = ∓ωk/c because

of

k2 −m2 c2

~2
(12.8)=

(
k0 + ωk

c

)(
k0 − ωk

c

)
.

To avoid the poles in the integration (12.22), the infinitesimal small imag-
inary terms −iε resp. +iε′ have bee added to ωk/c resp. to k2, compare
(12.9). As shown in fig. 12.1 this shifts the pole at k0 = −ωk/c from the
real axis into the second quadrant, and the pole at k0 = +ωk/c into the
fourth quadrant of the complex k0-plane. These shifts lead to the Feynman-
propagator, whose frequency-timeinterval product is always positive, see
(12.12).

In case x0 > y0, the integration path can be closed in the lower complex
half-plane (path 1 in fig. 12.1) without changing the integral’s value. Thus
one finds the Greens function

S(x− y) =x
0>y0 i

Ω2π
∑
k

exp{+ik(x− y)} ·

·
∮
�

dk0 (γνkν +m c
~) exp{−ik0(x0 − y0)}

(k0 + ωk
c − iε)(k0 − ωk

c + iε)

= +1
Ω
∑
k

exp{−i(ωk/c− iε)(x0 − y0) + ik(x− y)} ·

·
(γ0(ωk/c− iε) + γjkj +m c

~)
2ωk/c− 2iε . (12.25)

The integration variable assumes all values −∞ ≤ k0 ≤ +∞. After the
integration, k0 = +ωk/c is again the k0-value on mass shell. Furthermore ε
now can be neglected versus ωk/c, and one gets the Greens function
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S(x− y) =x
0>y0 ∑

k

(γµkµ +m c
~) exp{−ik(x− y)}
Ω2ωk/c

. (12.26a)

In case x0 < y0, the integration path is closed in the upper complex half-
plane (path 2 in fig. 12.1), resulting in the Greens function

S(x− y) =x
0<y0 −1

Ω
∑
k

exp{+i(ωk/c− iε)(x0 − y0) + ik(x− y)} ·

·
(−γ0(ωk/c− iε) + γjkj +m c

~)
−2ωk/c+ 2iε .

As the sum is running symmetrically over all positive and negative wavenum-
bers k, and because of ω-k = ωk, we may change k versus −k. Neglecting ε
one finds

S(x− y) =x
0<y0 ∑

k

(−γµkµ +m c
~) exp{+ik(x− y)}
Ω2ωk/c

. (12.26b)

We keep ~kµ = pµ in mind, multiply the numerators and denominators of
the two equations (12.26) by ~c, and combine them by means of the step
function (12.13) to the Feynman-propagator:

S(x− y) x
0,y0
=

= θ(x0 − y0)
∑
k

(+γµcpµ +mc2) exp{−ik(x− y)}
Ω2~ωk

+

+ θ(y0 − x0)
∑
k

(−γµcpµ +mc2) exp{−ik(y − x)}
Ω2~ωk

(12.27)

Note the different signs of ±γ. The propagator is a 4× 4 spinor matrix, and
the term mc2 is to be interpreted as 1mc2. The same holds for the Fourier-
transformed propagator (12.24).
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12.3 Greens function of the gauge field A(x)

The gauge field’s equation

dνF νρ
(4.125)= µ0j

ρ with ρ = 0, 1, 2, 3 ,

which was derived in section 4.5, becomes with (4.114) for the source-free
field (jρ = 0)

dνdνAρ − dνdρAν = 0 with ρ = 0, 1, 2, 3 .

A(x) is an analytical function. Therefore dνdρAν = dρdνAν . Because of the
field’s gauge invariance, the four-divergence dνAν may be chosen arbitrarily.
(In section 17.1 we will explain this aspect of gauge invariance in detail.) In
this book, we always choose the

Lorentz gauge: dνAν ≡ 0 , (12.28)

by which the source-free field equation assumes the simple form

dνdνAρ = 0 with ρ = 0, 1, 2, 3 . (12.29)

If interactions show up as source terms µ0j(x) on the right side of the
equation

dνdνAρ(x) = µ0j
ρ(x) with ρ = 0, 1, 2, 3 , (12.30)

then the field A(x) can be described as the overlay of waves, which propagate
from the source terms µ0j(y) to the space-time point x, and add-up there
with the free field A(0)(x) to the inhomogeneous field with the components

Aρ(x) = Aρ(0)(x) +
∫
Ω

d3y

+∞∫
−∞

dy0 (−i)
µ0~c

Dρσ(x, y) gστ µ0j
τ (y) . (12.31)
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The matrix D(x, y), which has 4× 4 space-time components, is the Greens
function of the gauge field A(x). We will explain in section 12.4, why
−i/µ0~c was factored out of the Greens function.
Inserting the Ansatz (12.31) into the inhomogeneous equation (12.30),

one finds

0 +
∫
Ω

d3y

+∞∫
−∞

dy0 dνdν
(−i)
~c

Dρσ(x, y)gστ jτ (y) =

= µ0j
ρ(x) =

∫
Ω

d3y

+∞∫
−∞

dy0 δ(4)(x− y) gρτ︸︷︷︸
gρσgστ

µ0 j
τ (y)

=⇒ dνdν
(−i)
~cµ0

Dρσ(x, y) = δ(4)(x− y)gρσ . (12.32)

If the system under investigation is invariant under translations, Dρσ(x, y)
depends only of the difference (x− y), and the Fourier transformation

Dρσ(x− y) (7.15)= 1
Ω
∑
k

+∞∫
−∞

dk0

2π D̃ρσ(k) exp{−ik(x− y)}

can be performed. Inserting this equation and (12.6) into (12.32), one gets

−k2 (−i)
~c

D̃ρσ(k) = gρσµ0

=D̃ρσ(k) −igρσµ0~c

k2 + iε′
(12.33a)

D̃ρσ(k) = −igρσµ0~c(
k0 + ωk

c
− iε

)(
k0 − ωk

c
+ iε

) . (12.33b)

For the mass-less gauge field A(x)

ωk
c

(7.18)= +
√
k2 = |k| > 0 .
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As usual, a small imaginary term was inserted, to avoid the divergence at
the poles k0 = ±ωk/c. From comparison with the propagator of the Klein-
Gordon field

G̃(k) (12.7)= +i
~c
(
k2 −m2 c2

~2 + iε′
)

G(x− y) (12.14)= θ(x0 − y0)
∑
k

exp{−ik(x− y)}
Ω2~ωk

+

+ θ(y0 − x0)
∑
k

exp{−ik(y − x)}
Ω2~ωk

,

the propagator of the gauge field A(x) in time-position-space can immedi-
ately be deduced:

Dρσ(x− y) x
0,y0
= θ(x0 − y0)(−gρσµ0~

2c2)
∑
k

exp{−ik(x− y)}
Ω2~ωk

+

+ θ(y0 − x0)(−gρσµ0~
2c2)

∑
k

exp{−ik(y − x)}
Ω2~ωk

(12.34)

D(x− y) and D̃(k) are 4× 4-matrices in time-position-space. All their off-
diagonal elements are zero.

12.4 Units

The units of the Klein-Gordon field, the Dirac field, and it’s gauge field, are
according to our definitions

[
ψKG(x)

]
=(10.12)

√
1

energy · volume[
ψDirac(x)

]
=
√

1
volume[

A(x)
]

=(4.106) momentum
charge .
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The propagators were defined by means of the inhomogeneous field equations:

(~2c2dµdµ +m2c4)ψKG(x) =(12.2) j(x)

(~2c2dµdµ +m2c4) i

~c
G(x, y) =(12.4) δ(4)(x− y) (12.35a)

(i~cγµdµ −mc2)ψDirac(x) =(12.19) j(x)

(i~cγµdµ −mc2) (−i)
~c

S(x, y) =(12.21) δ(4)(x− y) (12.35b)

dνdνAρ(x) =(12.30) µ0j
ρ(x)

dνdν
(−i)
~cµ0

Dρσ(x, y) =(12.32) δ(4)(x− y)gρσ (12.35c)

Only the ±i is arbitrary in the out-factored terms. For the factors ~c
resp. ~cµ0 there is a cogent reason, which becomes clear from the Greens
functions’ units. Because of[

δ(4)(x− y)
]

= 1
length4

their units are[
G(x, y)

]
=(12.35a) 1

energy · volume =
[
ψKG(x)ψKG(y)

]
[
S(x, y)

]
=(12.35b) 1

volume =
[
ψDirac(x)ψDirac(y)

]
[
D(x, y)

]
=(12.35c) momentum2

charge2 =
[
A(x)A(y)

]
.

By quantization, the fields’ amplitudes will become field-operators, and
in the second part of this book we will construct the propagators of the
quantum field theories as bi-linear forms of their field operators. Thanks to
the definitions (12.35) they have from start on the appropriate units.
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Part2:
Field Quantization
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13 Why Quantum Field Theory?

This question can be understood on two different levels:
1. Why are quantum field theories needed instead of the classical field

theories?
2. Why is quantum field theory needed instead of point-particle quantum

mechanics?
In this chapter we will try to answer both of these questions.
The first question immediately leads back into the year 1900, when

quantum theory was born. This theory emerged from the analysis of
two theories, which where firmly established and had performed quite
well in many experimental tests: Classical thermodynamics and Maxwell’s
electrodynamics. The problem, with which Planck was struggling, was not
that one of these theories had failed when used separately. The problem
was, that it seemed impossible to combine them without running into
inconsistencies.

Planck tried at that time to compute – by means of Maxwell’s electrody-
namics and classical thermodynamics – the energy density of “blackbody
radiation” as a function of temperature. A blackbody is a furnace, whose
walls are in thermodynamic equilibrium with the electromagnetic radiation
field within the furnace. The number of degrees of freedom of the elec-
tromagnetic field in a narrow frequency interval ∆ν around the frequency
ν equals the number of radiation modes (i.e. standing waves) with this
frequency, which fit into the furnace. The result [38] computed by Maxwell’s
electrodynamics for a furnace with volume V is

number of degrees of freedom = V · 16πν2

c3 ∆ν . (13.1)
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On the other hand, there is the “equipartition theorem” of classical thermo-
dynamics. According to that theorem, each degree of freedom of a dynamical
system in thermal equilibrium at temperature T has the energy

E = 1
2kT , (13.2)

with the Boltzmann-constant k = 1.38 · 10−23 J/K. Combining these equa-
tions, the electromagnetic energy within a furnace of volume V in the
frequency range ∆ν around the frequency ν at temperature T should equal

E = V
16πν2

c3 ∆ν · 1
2kT , (13.3)

and the energy density in the frequency range ∆ν should equal

ρ = 8πν2

c3 · kT . (13.4)

This radiation law follows stringently from the combination of classical
electrodynamics and classical thermodynamics. If it is wrong, then there
must be basic failures at least in one of these classical theories. Actually
this radiation law is wrong in two aspects:
Firstly according to (13.4) the electromagnetic field’s energy density at

a given temperature T is increasing quadratically with the frequency ν.
For low frequencies this fits very well to the observations, but for high
frequencies the equation diverges. This obviously absurd result was dubbed
“ultraviolet-catastrophe”.

Secondly, (13.4) is depending linearly upon temperature T . Thus accord-
ing to this equation, the energy density of all frequencies should increase
uniformly at increasing temperature. But actually, when a furnace is slowly
heated up, we see at low temperature a dark red color, which is changing
with raising temperature to orange, then to yellow, and eventually to white.
Obviously the energy is not at all distributed equally into all radiation
modes. Instead the energy share of high-frequency modes is relatively low
at low temperature, but raises significantly with increasing temperature.

Eventually Planck found out how a radiation law could be constructed,
which matched reality.
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which matched reality. He had to make a simple, but quite unexpected
assumption, which was absolutely incompatible with the principles of classi-
cal physics: The exchange of energy between the oscillating charges in the
walls of the furnace and the electromagnetic radiation field is not a contin-
uous process, but happens in energy quanta of size hν, with the constant
h = 6.63 · 10−34J, which later was named in honor of Planck. Based on this
assumption, Planck derived the radiation law

ρ = 8πhν3/c3

e
hν
kT − 1

, (13.5)

which excellently matches all observations.
It soon turned out, that the quantized energy is not – as the cautious

Planck had assumed – a property of the oscillating charges in the walls of
the furnace, but a property of the electromagnetic field itself, and as well a
property of any other field. The “ultraviolet-catastrophe” according to (13.4)
is unavoidable in any field, which firstly can oscillate in infinitely many modes
(i. e. with infinitely many different wave numbers), and whose oscillation
modes secondly can assume a continuum of energy values. Conversely stated:
The specific heat of a field with infinitely many oscillation modes and a
continuous energy spectrum must diverge according to (13.4), because an
infinite amount of energy is needed, to assign the finite amount of energy
1
2kT to each of infinitely many degrees of freedom.
In contrast, quantum field theory states that each oscillation mode can

assume only discrete energy values, which are proportional to it’s wave
number. Therefore, if a finite amount of energy is distributed to the field’s
oscillation modes, the modes with highest frequencies are not excited at
all. The energy is distributed only to the finite number of low-frequency
oscillation modes. Thus the specific heat is finite.
The retrospection to the birth of quantum theory has led us directly

to the theme of the second part of this book: We see the imperative to
formulate the theory of all fields such, that the energy in thermodynamic
equilibrium is not distributed equally to all degrees of freedom. How this
can be done remained a mystery for a quarter of a century after Planck’s
seminal discovery.
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A physical theory describes by means of mathematical equations the
course of events in nature, and the interactions and correlations between
these events. This is not to say that the objects of physical research
are identical with the elements of the mathematical language. But there
exists a “correspondence” between them: The elements of the mathematical
language are assigned as representatives to the physical objects. The
relations and mutual dependencies between the mathematical elements are
representing analogous relations and dependencies between the objects of
physical observation. Thereby a structural similarity exists between the
theory, which is formulated in mathematical language, and the described
physical phenomena.

It was the conviction of physicists since the days of Galilei, that numbers
– possibly multiplied by units like meter or second or volt times coulomb –
are suitable and appropriate representatives of physical objects of whatever
type. Therefore it came as a big surprise, when Heisenberg in June 1925
puzzled out a strange system – he named it “number schemes” – , by
which the discrete energy values, which a quantum mechanical oscillator can
assume, could be computed correctly. It turned out, that these “number
schemes” actually were matrices, and that their success rested on the fact,
that the algebra of matrices is not commutative, in contrast to the algebra
of numbers.

Schrödinger was upset so much by Heisenberg’s “horrible” matrix mechan-
ics, that he immediately started to work out a more “beautiful” quantum
theory. Already some few months later he could publish his wave-me-
chanics, which indeed goes without matrices, but does not lead back to
the commutative algebra of numbers. In Schrödinger’s wave-mechanics
measurable physical quantities instead are represented by operators, and
these operators have exactly the same non-commutative algebra as Heisen-
berg’s matrices. Within soon, Schrödinger himself proved, that Heisenberg’s
matrix mechanics and his own wave-mechanics are indeed mathematically
completely equivalent, and nothing but different formulations of the selfsame
mathematical structure.

Whether one prefers matrices, or operators, or mathematical elements of
whatever type – the essential point is, that the representatives of measurable
quantities of quantum phenomena must follow a non-commutative algebra.



13 Why Quantum Field Theory? 255
The commutator or anti-commutator of canonically conjugated observables,
for example of a particle’s position and momentum, equals in this algebra
Planck’s reduced quantum of action ~, multiplied by i =

√
−1.

Thereby already the second difference of quantum theory’s mathematics
versus the mathematics of classical theory is addressed: While all classical
theories can be formulated with real numbers, and only for convenience
sometimes imaginary numbers are used, quantum theory can not do without
imaginary numbers.
Now we turn to the second of the two questions posed at the beginning

of this chapter: Why is quantum field theory needed, although there is
a quantum mechanics of point-particles available? There are three main
reasons for this, which are closely connected mutually:
∗ All attempts to construct a quantum mechanics of point-particles, which
is consistent with special relativity theory, inevitably lead to solutions
with negative energies. For fermions, Dirac found a workaround by means
of his holes-theory, while no remedy is known for bosons. Quantum field
theory solves this problem completely. The energy of quantized fields
always is positive.
∗ It is known from observations, that particles can decompose into other
particles, or can be created in collisions of other particles. Quantum field
theory describes such events qualitatively and quantitatively in excellent
compliance with experimental observations, while in relativistic point-
particles quantum mechanics the number of particles is invariable.
∗ If two measurements of one quantum system are performed, and the
two measurements are space-like (i.e. one measurement is not within
the lightcone of the other), then these two measurements must not
influence one another, if the theory is to comply with relativity theory.
Nobody succeeded to fulfill this requirement with a relativistic quantum
mechanics of point-particles. Quantum field theory meets this objective
with elegance and perfection due to exchange of virtual space-like particles
and antiparticles.

Thus there are convincing arguments for the development of a quantum
theory of fields. In the following chapters we will clarify, how this can be
done successfully.
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14 Canonical Quantization

The canonical quantization of fields starts with the construction of their
canonically conjugate momentum densities. Then a non-commutative alge-
bra is postulated for the fields and their canonically conjugate momenta,
according to which their commutator or anti-commutator must equal i~. We
will see that there is no freedom to choose arbitrarily either the commutator
or the anticommutator in the algebra’s definition. Instead the commutator is
mandatory in the definition of boson field algebra, and the anticommutator
is mandatory in the definition of fermion field algebra, because only then
the quantized fields will (a) be compatible with the principles of relativity
theory, and (b) never have negative energy.

14.1 Quantum Mechanics

We presume that the reader is familiar with non-relativistic quantum me-
chanics. In this section we will very shortly recapitulate five topics of
quantum mechanics, which will prove most useful when we subsequently
turn to the quantization of fields:
∗ The canonical quantization of point-particle mechanics
∗ Representations of quantum mechanics
∗ The time-evolution operator
∗ Schrödinger-picture and Heisenberg-picture
∗ The harmonic oscillator

14.1.1 Quantization of Point-Particle Mechanics

Let qj and pj with j = 1, 2, . . . , 3N be the generalized coordinates and the
canonically conjugate momenta of a classically described system of N point
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particles. The Poisson1-brackets of arbitrary quantities A and B are defined
by

{A,B}
PB
≡
∑
j

(
∂A

∂pj

∂B

∂qj
− ∂B

∂pj

∂A

∂qj

)
. (14.1)

The total derivative of a function A
(
qj(t), pj(t), t

)
with respect to time is

dA
dt =

∑
j

(
∂A

∂qj

dqj
dt + ∂A

∂pj

dpj
dt

)
+ ∂A

∂t

=(3.22)∑
j

(
∂A

∂qj

∂H

∂pj
− ∂A

∂pj

∂H

∂qj

)
+ ∂A

∂t

= {H,A}
PB

+ ∂A

∂t
. (14.2)

H is the system’s Hamiltonian. Thus in the canonical formalism, the time
dependence of a quantity A is decomposed into two parts: The canonical
time dependence (some authors call it dynamical time dependence), which
is determined by the Poisson-bracket {H,A}

PB
, and the explicit time depen-

dence (some authors call it parametric time dependence), which is expressed
by the partial derivative ∂A/∂t.
The system of N point particles has 6N + 1 variables, namely the 3N

coordinates qj(t) (which again are depending on time), the 3N momenta
pj(t) (which again are depending on time), and the time t. Any function
A
(
qj(t), pj(t), t

)
is a function of some or all of these 6N + 1 variables. This

also holds for the functions qk
(
qj(t), pj(t), t

)
and pk

(
qj(t), pj(t), t

)
, for which

the canonical formalism is making a somewhat subtle difference between
functions and variables. The functions

qk
(
qj(t), pj(t), t

)
≡ qk

(
qk(t)

)
, qk(t) (14.3a)

pk
(
qj(t), pj(t), t

)
≡ pk

(
pk(t)

)︸                                     ︷︷                                     ︸
functions

, pk(t)︸  ︷︷  ︸
variables

(14.3b)

1 named in honor of Siméon Denis Poisson, 1781 - 1840
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are considered to be functions of the variables qk(t) resp. pk(t), but not to
be functions of the variable t. Thus for these functions

dqk
dt , 0 = ∂qk

∂t

dpk
dt , 0 = ∂pk

∂t
. (14.4)

That the definitions (14.3) are reasonable becomes clear, when we compute
the total derivatives of the functions qk and pk with respect to time:

dqk
dt =

∑
j

(
∂qk
∂qj︸ ︷︷ ︸
δkj

dqj
dt︸ ︷︷ ︸
∂H
∂pj

+ ∂qk
∂pj︸ ︷︷ ︸

0

dpj
dt︸ ︷︷ ︸
− ∂H
∂qj

)
+ ∂qk

∂t︸ ︷︷ ︸
0

= {H, qk}PB
(14.5a)

dpk
dt =

∑
j

(
∂pk
∂qj︸ ︷︷ ︸

0

dqj
dt︸ ︷︷ ︸
∂H
∂pj

+ ∂pk
∂pj︸ ︷︷ ︸
δkj

dpj
dt︸ ︷︷ ︸
− ∂H
∂qj

)
+ ∂pk

∂t︸ ︷︷ ︸
0

= {H, pk}PB
(14.5b)

Our result would not be consistent with (3.22), if we would consider qk
and pk to be functions of t. Therefore definition (14.3) is necessary. The
variables qk(t) and pk(t) depend explicitly on time, while the functions qk
and pk depend on time only canonically, but not explicitly.

Canonical quantization of point-particle mechanics is the replacement of
the Poisson-brackets by commutators, which are multiplied by i/~:

{A,B}
PB
≡
∑
j

(
∂A

∂pj

∂B

∂qj
− ∂B

∂pj

∂A

∂qj

)
−→

−→ i

~
[A ,B] ≡ i

~
(AB −BA)

(14.6)

Thus equations (14.5) become

dqk
dt = i

~
[H, qk] ≡

i

~
(Hqk − qkH) (14.5a)= ∂H

∂pk
(14.7a)

dpk
dt = i

~
[H, pk] ≡

i

~
(Hpk − pkH) (14.5b)= −∂H

∂qk
, (14.7b)

and (14.2) becomes
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dA
dt = i

~
[H,A] + ∂A

∂t
. (14.8)

Only the canonical time dependence of the functions is affected by the
quantization. The explicit time dependence stays unchanged.
If H does explicitly depend on pk resp. on qk, then the right sides of

(14.7) are different from zero, and thus the commutators of H with pk resp.
qk must be different from zero as well. Therefore H, pk, and qk can’t any
more be numbers (which possibly are multiplied by units), but become non-
commuting quantities due to quantization. The commutator of qk and pl
can be computed directly by insertion of qk for A and pl for B into (14.6):

{qk, pl}PB
≡
∑
j

(
∂qk
∂pj︸ ︷︷ ︸

0

∂pl
∂qj︸︷︷︸

0

− ∂pl
∂pj︸︷︷︸
δlj

∂qk
∂qj︸ ︷︷ ︸
δkj

)
= −δkl −→

−→ i

~
[qk, pl] ≡

i

~
(qkpl − plqk) = −δkl (14.9)

In Heisenberg’s matrix mechanics, the non-commutative algebra (14.9) is
realized by representing the measurable quantities qk and pl by matrices.
In Schrödinger’s wave-mechanics, the non-commutative algebra is realized
by representing the measurable quantities qk and pl by operators, which are
acting onto wave functions. Note, that the quantities, which are inserted
into the commutator, must be measured at the same time t. (14.9) does
not give any statement on the commutator’s value, if the measurements of
qk and pl are performed at different times.
If Planck’s quantum of action is negligible compared to the action S of

the mass point, then the commutator is negligible:

[qk, pl] = qkpl − plqk
(14.9)= i~δkl ≈ 0 if ~/S � 1 (14.10)

Exactly this limiting case defines the range of applicability of classical
physics. Only in this case, the commutative algebra of numbers holds for
the coordinates and their canonically conjugate momenta. Else the non-
commutative algebra (14.9) must be applied.
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We consider the non-commutative algebra (14.6) resp. (14.9) as a law
of nature, which can not be derived. Heisenberg found it by ingenious
guessing. It can be vindicated alone by the fact, that all conclusions drawn
from it match the experimental observations in the applicability range of
non-relativistic point-particle quantum mechanics. As soon as we require
compliance with special relativity theory, the extension to (14.74) becomes
mandatory.

14.1.2 Representations of Quantum Mechanics

In the years after 1925, quantum mechanics was formulated in different,
seemingly independent representations. Dirac [39] suggested a method, by
which the systematic relations between the different representations become
transparent, and transformations between the representations can easily be
performed:
All (possibly time-dependent) elements of Hilbert space are firstly con-

sidered as “basis-independent” vectors |ψ(t)〉. Then different “coordinate
systems” are introduced in the Hilbert space due to the definition of bases
of orthogonal vectors. Let

|F1〉, |F2〉, |F3〉, . . . , |Ff 〉, . . . ∈ H (14.11)

be a complete system of orthonormal vectors, which span the Hilbert space:

〈Ff |Fg〉 = δfg ,
∑
f

|Ff 〉〈Ff | = 1 (14.12)

In this notation, |Fg〉 is a “ket-vector”, 〈Fg| is it’s dual “bra-vector”, and
the combination of the ket |Fg〉 and the bra 〈Ff | to the bracket 〈Ff |Fg〉 =
〈Fg|Ff 〉∗ defines the scalar product of the vectors |Fg〉 and |Ff 〉.
The projection operator |Ff 〉〈Ff | creates, if it is applied to an arbitrary

ket |φ〉, the projection

|Ff 〉〈Ff |φ〉 ≡ |Ff 〉φf (14.13)

of the vector |φ〉 onto the vector |Ff 〉. If the sum (14.12) over the projection
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operators equals the identity operator 1, then the orthonormal system is
called “complete”. If a system of orthonormal basis vectors is complete,
then any element |ψ(t)〉 ∈ H can be expanded with respect to this basis:

|ψ(t)〉 =
∑
f

|Ff 〉〈Ff |ψ(t)〉 ≡
∑
f

|Ff 〉ψf (t) (14.14)

The numbers ψf (t) ∈ C are the components of the vector |ψ(t)〉 in the F -
representation. They may be considered as the “coordinates” of |ψ(t)〉 in
the “coordinate system” |F1〉, |F2〉, |F3〉, . . . . Complete knowledge of the
functions ψf (t) for all f is equivalent to complete knowledge of |ψ(t)〉. All
results of the theory, which can be computed by means of |ψ(t)〉, can as
well be computed by means of the complete set of functions ψf (t).

If the basis-free state vector is normalized to 1

〈ψ(t)|ψ(t)〉 = 1 , (14.15)

then the expectation value 〈S〉 of an arbitrary operator S in the F -repre-
sentation is

〈S〉 = 〈ψ(t)|S|ψ(t)〉 =
∑
f

∑
g

〈ψ(t)|Ff 〉〈Ff |S|Fg〉〈Fg|ψ(t)〉

=
∑
f

∑
g

ψ∗f (t) 〈Ff |S|Fg〉︸         ︷︷         ︸
Sfg∈C

ψg(t) . (14.16)

Sfg ∈ C is the fg-component of the operator S in the F -Representation. If
the vectors |Fg〉 are eigenvectors of S, then only the diagonal elements of
the matrix Sfg are different from zero because of

Sfg = 〈Ff |S|Fg〉 = 〈Ff |Fg〉︸      ︷︷      ︸
δfg

Sg =
{ Sf if f = g

0 if f , g . (14.17)

Does there also exist a basis, in which Schrödinger’s wave function ψx(t) ≡
ψ(t,x) is the x-component of the basis-free state vector |ψ(t)〉? It does,
namely the eigenvectors |y〉 of the position-operator x with eigenvalues y:
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x|y〉 = y|y〉 (14.18a)

The index x of the basis |x〉 is continuous, in contrast to the discrete index
f of the basis |Ff 〉. Therefore the scalar product

〈x|y〉 ≡ δ(3)(x− y) (14.18b)

of the basis vectors cannot be the Kronecker symbol as in equation (14.12).
Dirac extended the Kronecker symbol to continuous indices by definition of
the delta function:

δ(3)(x− y) ≡ 0 if x , y (14.19a)∫
d3x δ(3)(x− y)φ(x) ≡ φ(y) (14.19b)

The integration volume must cover the point y. The expansion of the basis-
free state vector |ψ(t)〉 with respect to the vectors |x〉 is done in complete
analogy to (14.14). But because of the continuous index of the basis |x〉,
one gets an integral instead of a sum:

|ψ(t)〉 =
∫
Ω

d3x |x〉〈x|ψ(t)〉 =
∫
Ω

d3x |x〉ψ(t,x) (14.20)

The representation with the basis |x〉 is called local representation or
position-representation. It is identical to Schrödinger’s wave mechanics, and
the functions ψ(t,x) are identical to Schrödinger’s wave wave-functions. In
the local representation, the scalar product of two vectors ∈ H has the form

〈φ|ψ〉 =
∫
Ω

d3x 〈φ|x〉〈x|ψ〉 =
∫
Ω

d3xφ∗(x)ψ(x) . (14.21)

Appreciably more effort is needed, to prove that the matrix elements of
arbitrary operators in the local representation have the form
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〈φ|S|ψ〉 =

∫
Ω

d3x

∫
Ω

d3y 〈φ|x〉〈x|S|y〉〈y|ψ〉 =
∫
Ω

d3xφ∗(x)S ψ(x) .

(14.22)
The proof can be found in appendix A.19.

14.1.3 The Time-Evolution Operator

If the Hamilton operator H does not depend explicitly on time, then the
Schrödinger equation of wave mechanics

i~
∂ψ(t,x)
∂t

= Hψ(t,x) (14.23)

can formally be integrated:

ψ(t,x) = e−
i
~
(t−t0)Hψ(t0,x) (14.24)

The Hamilton operator H in the exponent is to be interpreted as a shortcut
notation for the series

e−
i
~
(t−t0)H ≡

∞∑
n=0

1
n!

(
− i

~
(t− t0)H

)n
(14.25)

with Hnψ ≡ H(. . . H(H(H(H︸                    ︷︷                    ︸
n×

ψ))) . . .) .

Using (14.24), the state function can be computed for arbitrary time t, if it
is known at time t0.

We generalize (14.24) due to the definition of the time-evolution operator
U , which is describing the evolution of the wave function in time:

ψ(t,x) ≡ U(t, t0)ψ(t0,x) (14.26)

Insertion into (14.23) results into

i~
∂U(t, t0)

∂t
ψ(t0,x) = HU(t, t0)ψ(t0,x) ,
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respectively into the operator-equation

i~
∂U(t, t0)

∂t
= HU(t, t0) . (14.27)

Only if the Hamilton operator does not depend on time, this equation has
the simple solution

U(t, t0) (14.24)= e−
i
~
(t−t0)H . (14.28a)

Without proof we state the solution of (14.27) with time-dependent Hamilton
operator:

U(t, t0) = T exp
{
− i

~

t∫
t0

dτ H(τ)
}

= T
∞∑
j=0

1
j!
(
− i

~

t∫
t0

dτ H(τ)
)j

(14.28b)

T is the time-order operator. It changes the sequence of time-dependent
operators – in this case H(τi)H(τj)H(τk) . . . – such, that younger operators
with larger time-argument are placed left of older operators with smaller
time-argument. We list some properties of the time-evolution operator:

U †(t, t0) = U−1(t, t0) (14.29a)
U(t, t0) = U(t, t1)U(t1, t0) (14.29b)

U(t, t1)U(t1, t0) = U(t1, t0)U(t, t1) (14.29c)
U(t, t0) = U−1(t0, t) =⇒ U(t0, t0) = 1 (14.29d)

[U,H] = 0 (14.29e)

In the simple case (14.28a), these properties are evident. We state without
proof that all relations (14.29) hold as well, if H is explicitly time-dependent.
Remember that the wave-function ψ(t,x) is the scalar product of the

basis-independent state vector |ψ(t)〉 and the vector |x〉 of the local base:
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ψ(t,x) (14.20)= 〈x|ψ(t)〉 (14.26)= U(t, t0)ψ(t0,x) =
(14.20)= U(t, t0)〈x|ψ(t0)〉 = 〈x|U(t, t0)|ψ(t0)〉 (14.30)

The time-evolution operator could be pulled into the bracket, because |x〉
does not depend on time. This result is suggesting a generalization of
definition (14.26):

|ψ(t)〉 ≡ U(t, t0)|ψ(t0)〉 (14.31)

Furthermore we define the time-dependent position base due to

|t,x〉 ≡ U−1(t, 0) |x〉 . (14.32)

This definition is consistent with the previous equations because of

ψ(t,x) (14.20)= 〈x|ψ(t)〉 (14.31)= 〈x|U(t, 0) |ψ(t=0)〉 =

=
(
U−1(t, 0) |x〉

)†
|ψ(t=0)〉 = 〈t,x|ψ(t=0)〉 . (14.33)

Note that the time evolution of the local basis is running inversely to the
time evolution (14.31) resp. (14.26) of the state vector |ψ(t)〉 resp. the wave
function ψ(t,x). This is consistent with the fact, that the time parameter t
in

ψ(t,x) = 〈x|ψ(t)〉 = 〈t,x|ψ〉 (14.34)
with |ψ〉 ≡ |ψ(t=0)〉

is located in the ket or in the bra, respectively. In 〈x|ψ(t)〉 the time-
dependent vector |ψ(t)〉 is projected onto the time-independent coordinates
|x〉 of the Hilbert space, i.e. this is an active translation in Hilbert space.
In 〈t,x|ψ〉 the time-independent vector |ψ〉 is projected onto the time-
dependent coordinates |t,x〉 of the Hilbert space, i.e. this is a passive
translation in Hilbert space. Because of the quite peculiar type of time
dependence, some authors deny that |t,x〉 is a time-dependent vector at all.
That isn’t a consistent point of view. Both |ψ(t)〉 and |t,x〉 clearly are time-
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dependent vectors. The difference is due to the fact, that |t,x〉 is a time-
dependent basis vector, while |ψ(t)〉 is a time-dependent “normal” vector.

The vectors of the time-dependent local base are eigenvectors of the time-
dependent position operator, provided that the time arguments t in the
vectors and in the operator are identical:

y =(14.18a) 〈y|x|y〉 =
= 〈y|U(t, 0)︸          ︷︷          ︸

〈t,y|

U−1(t, 0)xU(t, 0)︸                      ︷︷                      ︸
x(t)

U−1(t, 0) |y〉︸             ︷︷             ︸
|t,y〉

(14.35)

As the time-independent position vectors form an orthonormal basis of
Hilbert space, the time-dependent position vectors are doing this as well,
because (at same t in all vectors) they as well are orthonormal and complete:

〈t,x|t,y〉 = 〈x|U(t, 0)U−1(t, 0) |y〉 = 〈x|y〉 (14.18b)= δ(3)(x− y) (14.36a)∫
Ω

d3x |t,x〉〈t,x| =
∫
Ω

d3x |x〉U−1(t, 0)U(t, 0)〈x| =

=
∫
Ω

d3x |x〉〈x| (14.20)= 1 (14.36b)

For the method of path integrals, which will be derived in chapter 18, the
probability amplitude

U(t2, z, t1,y) ≡ 〈z|U(t2, t1) |y〉 = 〈z|U(t2, 0)U(0, t1) |y〉 =
= 〈z|U(t2, 0)U−1(t1, 0) |y〉 = 〈t2, z|t1,y〉 (14.37)

will be of central importance. This matrix element is interpreted as the
amplitude of the probability, that a point-particle of quantum mechanics,
which was observed at location y at time t1, can be detected at the later
time t2 at position z.

14.1.4 Schrödinger-Picture and Heisenberg-Picture

In section 14.1.1 we indicated the time-derivatives of the operators
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dqk H

dt
(14.7a)= i

~
[H, qk H] dpk H

dt
(14.7b)= i

~
[H, pk H]

and dAH

dt
(14.8)= i

~
[H,AH] + ∂AH

∂t
. (14.38)

They are operators in the Heisenberg-picture. Here we marked them by an
additional index H. Operators in the Heisenberg-picture are canonically
time-dependent, and possibly in addition explicitly time-dependent. Their
canonical time dependence is determined by their commutator with the
Hamilton operator, multiplied by i/~, while their partial derivatives with
respect to time reflect their possible explicit time dependence.
It’s conventional, though somewhat confusing, to change the notation of

the variables upon quantization:

qk
(
qk(t)

)
−→ qk H(t) (14.39a)

pk
(
pk(t)

)
−→ pk H(t) (14.39b)

A
(
qj(t), pj(t), t

)
−→ AH(t) (14.39c)

While for the classical functions we carefully discriminate between the
variable t, which is indicating the explicit time dependence, and the canonical
time dependence, which is mediated by the variables qj(t) and pj(t), both
types of time dependence are combined in the variable t of the operators.

Using the time-evolution operator, the operators of the Heisenberg-picture
can be transformed to operators of the Schrödinger-picture, which we mark
by an index S:

AS ≡ U(t, 0)AH(t)U−1(t, 0) possibly= e−
i
~
HtAH(t) e+ i

~
Ht (14.40)

The equals sign is “possibly” valid. It does hold if and only if the Hamilton
operator does not explicitly depend on time. In contrast, all equations of
the time-evolution operator U in this chapter hold in any case, even if that
condition is not fulfilled.
The Hamilton operator is identical in both pictures:
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HS = U(t, 0)HH U
−1(t, 0) (14.29e)= HH

possibly= e−
i
~
HtHHe

+ i
~
Ht (14.41)

Therefore the indices H or S can be skipped in case of the Hamilton operator.
We compute the total derivative of the operator AS in the Schrödinger-

picture with respect to time:

dAS

dt = dU
dt AH U

−1 + U
dAH

dt U−1 + U AH
dU−1

dt (14.42)

Because of U †(t, t0) (14.29a)= U−1(t, t0), the equation which is adjoint to

d
dt U(t, 0) = ∂

∂t
U(t, 0) (14.27)= − i

~
H U(t, 0) (14.43a)

is

d
dt U

−1(t, 0) = + i

~
H U−1(t, 0) . (14.43b)

Inserting this into (14.42) results into

dAS

dt = − i

~
H UAH U

−1︸        ︷︷        ︸
AS

+U dAH

dt︸  ︷︷  ︸
(14.38)

= i
~
[H,AH]+ ∂AH

∂t

U−1 (14.29e)
+ i

~
UAH U

−1︸        ︷︷        ︸
AS

H

= − i

~
[H,AS] + i

~
[H,AS] + U

∂AH

∂t
U−1 = ∂AS

∂t
. (14.44)

The time dependence of AS is caused solely by the explicit time dependence
of AH, while the canonical time-dependence, which is defined by i

~ [H,AH],
is exactly compensated due to the transformation (14.40) of the Operator
AH with the time-evolution operator. Note:

AH(t=0) = AS (14.45)
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Operators in the Heisenberg-picture depend canonically and
possibly explicitly on time. Operators in the Schrödinger-
picture do not depend canonically, but possibly explicitly, on
time. The operators are transformed from one picture to the
other by the time-evolution operator:

AS = U(t, 0)AH(t)U−1(t, 0)
AH(t) = U−1(t, 0)AS U(t, 0)

(14.46a)

Observables, which depend explicitly on time, are rarely encountered.
Therefore many authors mark operators in the Heisenberg- resp. in the
Schrödinger-picture not by indices H resp. S, but due to the indication resp.
not-indication of the time dependence:

A(t) ≡ AH(t) A ≡ AS

We will in most cases adopt this simplified notation. Only in this section
we keep the eye-catching indices H and S.

Definition: Eigenfunctions of operators in the Heisen-
berg-picture are considered vectors in the Heisenberg-
picture. Eigenfunctions of operators in the Schrödinger-
picture are considered vectors in the Schrödinger-picture.

(14.46b)

In the time-dependent expectation value

〈A〉(t) = 〈ψS(t)|AS |ψS(t)〉 (14.47a)
= 〈ψS(t)|U(t, 0)AH(t)U−1(t, 0) |ψS(t)〉
= 〈ψH|AH(t) |ψH〉 , (14.47b)

the canonical time dependence is shifted back and forth between the operator
and the state functions due to transformation with the time-evolution
operator U . The transformation

|ψS(t)〉 = U(t, 0) |ψH〉 = U(t, 0) |ψS(t=0)〉 (14.48)

transforms the time-independent vector |ψH〉 of the Heisenberg-picture into
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the time-dependent vector |ψS(t)〉 of the Schrödinger-picture. Inversely
formulated, we may state: The vector |ψH〉 in the Heisenberg-picture is the
vector |ψS(t = 0)〉 of the Schrödinger-picture, which was frozen at time t = 0.
Sometimes it is useful, to freeze the vector of the Schrödinger-picture not
at time t = 0, but at some other time t0 , 0:

|ψS(t− t0)〉 = U(t, t0) |t0, ψH〉 = U(t, t0) |ψS(t= t0)〉 (14.49)

t0 is not a running time-parameter, but an index which is documenting, at
what time the time-independent vector |t0, ψH〉 was frozen.

Comparing (14.47a) and (14.47b), one might guess that state vectors in
the Schrödinger-picture always were time-dependent, while state vectors in
the Heisenberg-picture were never time-dependent. But this is not generally
true. There also exist time-dependent state vectors in the Heisenberg-
picture, and time-independent state vectors in the Schrödinger-picture.

An important example are the vectors of the time-independent resp. the
time-dependent position base, which we evaluated in section 14.1.2. They are
eigenvectors of the time-independent position vector xS in the Schrödinger-
picture resp. eigenvectors of the time-dependent position vector xH(t) in the
Heisenberg-picture:

〈xS〉=

1︷                   ︸︸                   ︷ 1︷                   ︸︸                   ︷
〈yS|U(t, 0)︸           ︷︷           ︸
〈t,yH|

U−1(t, 0)xS U(t, 0)︸                       ︷︷                       ︸
xH(t)

U−1(t, 0) |yS〉︸              ︷︷              ︸
|t,yH〉

=〈xH(t)〉=y (14.50)

The state vectors

|ψH〉 =(14.48)
U−1(t, 0) |ψS(t)〉 (14.51a)

|yS〉 =(14.50)
U(t, 0) |t,yH〉 (14.51b)

obviously are time-independent, while the vectors
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|ψS(t)〉 =(14.48)
U(t, 0) |ψH〉 (14.51c)

|t,yH〉 =(14.50)
U−1(t, 0) |yS〉 (14.51d)

obviously are time-dependent. Subsequent to (14.33), we already discussed
and explained the reason of the anti-canonical time dependence of (14.51d)
versus the canonical time dependence of (14.51c).

Because of U U U−1 = U , the time-evolution operator is trivially invariant
under the time-evolution transformation. This operator does neither belong
to the Schrödinger- nor to the Heisenberg-picture, but it is standing in-
between the both pictures, and brings about the transformation between
them.

14.1.5 The Harmonic Oscillator

The energy of a classical point particle of massm with generalized coordinate
q and generalized momentum p, which is oscillating harmonically with
angular frequency ω, is

H = p2

2m + mω2q2

2 . (14.52)

To quantize this oscillator, one postulates for p and q the non-commutative
algebra

[q, p] ≡ qp− pq (14.9)= i~ . (14.53)

The dimension-less ladder operator a is defined by

a ≡
√
mω

2~ q + i

√
1

2mω~ p . (14.54a)

The operator adjoint to a is

a† =
√
mω

2~ q − i
√

1
2mω~ p . (14.54b)
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We don’t need to write q† and p† in (14.54b), because the hermitean opera-
tors q and p are self-adjoint, i. e. q† = q and p† = p. The commutator of the
ladder operators is

[a, a†] = mω

2~ q
2 − i

2~ [q, p] + 1
2mω~ p

2

− mω

2~ q
2 − i

2~ [q, p]− 1
2mω~ p

2

= − i
~

[q, p] = − i
~
i~ = 1 . (14.55)

Due to addition resp. subtraction of (14.54a) and (14.54b) one finds

q =

√
~

2mω (a† + a) (14.56a)

p = i

√
mω~

2 (a† − a) . (14.56b)

Using these equations, the Hamilton operator (14.52) can be written in the
form

H = − 1
2m

mω~

2 (a†a† − a†a− aa† + aa) +

+ mω2

2
~

2mω (a†a† + a†a+ aa† + aa)

= ~ω2 (a†a+ aa†) = ~ω(a†a+ 1
2 [a, a†]︸   ︷︷   ︸

1

) . (14.57)

Let |n〉 be an eigenvector of H with energy En:

H|n〉 = En|n〉 (14.58)

We compute the energy of the oscillator in the state a†|n〉:
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Ha†|n〉 = ~ω2 (a†a+ aa†)a†|n〉

= ~ω2 (a†aa† + aa†a†)|n〉

= ~ω2
(
a†(1 + a†a) + (1 + a†a)a†

)
|n〉

= ~ωa†|n〉+ a†
~ω

2 (a†a+ aa†)|n〉︸                     ︷︷                     ︸
=H|n〉=En|n〉

= (En + ~ω)a†|n〉 (14.59)

Thus a†|n〉 again is an eigenvector of H. In the state a†|n〉, the oscillator’s
energy is by ~ω higher than in the state |n〉. In the state a|n〉, it’s energy is

Ha|n〉 = ~ω2 (a†a+ aa†)a|n〉

= ~ω2 (a†aa+ aa†a)|n〉

= ~ω2
(
(−1 + aa†)a+ a(−1 + aa†)

)
|n〉 =

= −~ωa|n〉+ a
~ω

2 (a†a+ aa†)|n〉︸                     ︷︷                     ︸
=H|n〉=En|n〉

= (En − ~ω)a|n〉 . (14.60)

Therefore, by applying the operator a j-times onto the state |n〉 with energy
En, a state with energy En−j~ω can be constructed. But this method cannot
be repeated infinitely often. Being hermitean operators, all eigenvalues of p
and q are real. As both show up in the Hamilton operator quadratically, the
Hamilton operator cannot have negative eigenvalues. Infinite continuation
of method (14.60) is avoided by the postulate, that there must be a lowest-
energy state, called |0〉, for which

a|0〉 = 0 . (14.61)
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Due to this postulate, the energy of the lowest state – usually called “vacuum”
– is

H|0〉 = ~ω2 (a† a|0〉︸︷︷︸
=0

+aa†|0〉) = ~ω2 (−a† a|0〉︸︷︷︸
=0

+aa†|0〉) =

= ~ω2 [a, a†]︸   ︷︷   ︸
1

|0〉 = ~ω2 |0〉 . (14.62)

The energy of a quantized harmonic oscillator is at least 1
2~ω. It’s energy

can’t be zero.
Each application of the operator a† raises the oscillator’s energy by one

energy quantum ~ω (“one energy quantum is created”). Each application of
the operator a lowers the oscillator’s energy by one energy quantum ~ω (“one
energy quantum is annihilated”). Therefore a† is called creation operator,
a is called annihilation operator. Both also are called ladder operators,
because by using them, one can step up and down on the energy ladder.
We will see, that the ladder operators of quantum field theory emerge from
the coefficients of the Fourier-series expansions, which were described in
chapter 7.
Until now we didn’t give any thought to the normalization of the state

functions |n〉. The normalization is fixed by these two postulates:

〈n|n〉= 1
〈n|a†a|n〉=n

}
for n = 0, 1, 2, 3, . . . (14.63)

a†a is called particle-number operator. It’s eigenvalue n is indicating, how
many energy quanta ~ω are excited in the oscillator’s state |n〉. We define
two numbers rn and sn by

a|n〉 = rn|n− 1〉 a†|n〉 = sn|n+ 1〉 . (14.64)

The expectation value of the operator a†a in state |n〉 is
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〈n|a†a|n〉 = n = 〈an|an〉 = |rn|2〈n− 1|n− 1〉 = |rn|2

=⇒ rn =
√
n (14.65)

〈n|a†a|n〉 = n =
√
n〈n|a†|n− 1〉 =

√
nsn−1〈n|n〉

=⇒ sn−1 =
√
n , (14.66)

from which

a|n〉 =
√
n |n− 1〉 a†|n〉 =

√
n+ 1 |n+ 1〉 (14.67)

follows. The normalized eigenfunction of the n-th state thus is

|n〉 = 1√
n!

(a†)n|0〉 , (14.68)

and it’s energy is
H|n〉 = (n+ 1

2)~ω︸          ︷︷          ︸
En

|n〉 . (14.69)

14.2 The Quantization of Fields

We want to transfer the quantization method (14.9) of point-particle me-
chanics to field theory, i.e. we want to postulate for the field amplitude
ψ(t,x) and for it’s canonically conjugate momentum density π(t,x) the
same non-commutative algebra, which we defined in section 14.1.1 when
we quantized the coordinates qj and the momenta pj of point particles.
Formally this means, that we consider ψ(t,x) and π(t,x) as operators,
which are acting onto the elements |s〉 of a Hilbert space.

But the quantized qj and pj are time-independent operators, i.e. operators
in the Schrödinger-picture, while the quantized ψ(t,x) and π(t,x) are time-
dependent operators in the Heisenberg-picture. It’s not immediately clear,
how we should handle the time-coordinate when the field is being quantized,
whether for example we should postulate

[ψ(t1,x), π(t2,y)] ?= i~δ(3)(x− y)δ(t1 − t2) is wrong !
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Actually this approach is wrong. This becomes obvious, if the field operators
are transformed into the Schrödinger-picture by means of the time-evolution
operator U(t):

ψ(x) (14.46a)= U(t1, 0)ψ(t1,x)U−1(t1, 0) (14.70)

π(x) (14.46a)= U(t2, 0)π(t2,x)U−1(t2, 0) (14.71)

In the Schrödinger-picture, the commutator must definitely be

[ψ(x), π(y)] = i~δ(3)(x− y) (14.72)

because of the analogy with (14.9). We compare this equation with

[ψ(t1,x), π(t2,y)] =
= U−1(t1, 0)ψ(x)U(t1, 0)U−1(t2, 0)π(y)U(t2, 0)
− U−1(t2, 0)π(y)U(t2, 0)U−1(t1, 0)ψ(x)U(t1, 0) . (14.73)

If t2 = t1, then

[ψ(t1,x), π(t1,y)] =

= U−1(t1, 0)
(
ψ(x)π(y)− π(y)ψ(x)︸                             ︷︷                             ︸

i~δ(3)(x−y)

)
U(t1, 0) = i~δ(3)(x− y)

follows, because the time-evolution operator and the number i~δ(3)(x− y)
commute.
But in case t2 , t1, the time-evolution operators in (14.73) do not com-

pensate, and thus the commutator isn’t a number ∈ C, but an operator.
We cannot derive from the analogy with (14.9), what might be the value of
this operator. Therefore we don’t give any statement for the case t2 , t1,
but restrict in the following explicitly to the case t2 = t1.
With the indices a, b marking the components of vector- or spinor-fields,

we postulate — in analogy to (14.9) — for boson fields the non-commutative
algebra
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[ψa(t,x), πb(t,y)] ≡
≡ ψa(t,x)πb(t,y)− πb(t,y)ψa(t,x)
= i~δ(3)(x− y)δab

[ψa(t,x), ψb(t,y)] = [πa(t,x), πb(t,y)] = 0

for fields with integer spin 0, 1, 2, 3, . . . and same time
argument t in both operators.

(14.74a)

For fermion fields we postulate — deviating from (14.9) — the non-commu-
tative algebra

{ψa(t,x), πb(t,y)} ≡
≡ ψa(t,x)πb(t,y) + πb(t,y)ψa(t,x)
= i~δ(3)(x− y)δab

{ψa(t,x), ψb(t,y)} = {πa(t,x), πb(t,y)} = 0

for fields with half-integer spin 1
2 ,

3
2 ,

5
2 , . . . and same

time argument t in both operators.

(14.74b)

[ψ(t,x), π(t,y)] is called commutator, {ψ(t,x), π(t,y)} is called anti-com-
mutator. Different from the quantum mechanics of point particles, here in
addition an anticommutator shows up. The reason for this difference is,
that we want to formulate the quantum theory of fields – different from the
quantum mechanics of point particles – such, that it firstly is complying
with Special Relativity theory, and that secondly the quantized field never
will have negative energy. According to the “spin-statistics-theorem” [40]
by Pauli2 these both conditions can only be met in combination, if the
quantization rule (14.74) for bosons and fermions is different. We will not
prove the spin-statistic-theorem in general, but we will check it for the
examples of those fields, which we will quantize in the following chapters.
The canonical quantization (14.74) is not lorentz-invariant, because the

delta function is not lorentz-invariant. The delta function makes sense only
under an integral
2 Wolfgang Pauli (1900-1958) made numerous seminal contributions to quantum theory.
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V

d3x δ(3)(x− y) = 1 if y in V . (14.75)

The number 1 is lorentz-invariant. The infinitesimal volume d3x is not
lorentz-invariant, but shrinks due to relativistic length contraction by a
factor γ−1, see the notes at equation (7.22). The delta function’s dimension
is volume−1. Therefore it is stretched by the factor γ under Lorentz trans-
formations. The objective of a quantum field theory, which complies with
Special Relativity theory, seems to be challenged by (14.74). Still we try to
stick as closely as possible to the quantization rule (14.9), which Heisenberg
found by guessing in summer 1925. We even accept some deviations, which
still eventually will guide us to a quantum field theory, which is complying
with Special Relativity theory.

We can’t derive any justification for the quantization condition (14.74)
from classical physics. It is a law of nature, which was found by guessing,
and it can be justified only by the fact, that the conclusions drawn from it
are complying with all experimental observations.

14.3 No “second”Quantization

We mention the notion “second quantization”, because it is still showing
up (though with declining frequency) in many books in the context of field
quantization. This notion probably arose from the fact, that Schrödinger
formulated his wave equation, which clearly is a quantum theory, with a
classical, not quantized field ψ. When it became visible, that this ψ-field
(and the analogous fields of other quantum theories) needed quantization,
the notion “second quantization” for this procedure seemed reasonable. But
actually there exists only one quantization each in the quantum mechanics
of point particles, and in the quantum theory of fields.

The variables of classical point-particle mechanics are numbers (multiplied
by physical units), i. e. commuting quantities. To quantize point-particle
mechanics, a non-commutative algebra is postulated for these variables.
To realize this non-commutative algebra mathematically, the variables are
represented by matrices, or they are promoted to operators, which are acting
onto the elements of a Hilbert space. This is the first and only quantization
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on the way from the classical mechanics of point-particles to the quantum
mechanics of point-particles.

In the first part of this book, we described some classical fields and their
canonically conjugate momentum densities. To quantize these fields, the
non-commutative algebra (14.74) is postulated. Due to this quantization,
indirectly also the conserved quantities (like e. g. energy, momentum, charge)
of a field, which are functions of the field’s amplitude and it’s canonically
conjugate momentum density, get a non-commutative algebra. To realize
this non-commutative algebra mathematically, the field’s amplitude and it’s
canonically conjugate momentum density (and thus indirectly the products
formed from them) are promoted to operators, which are acting onto the
elements of a Hilbert space. This is the first and only quantization on the
way from classical field theory to quantum field theory.

Weizsäcker reports [41, chap. 11, section 1.f.γ], that Heisenberg forbade
him to use the notion second quantization, “because that notion will inhibit
any correct understanding of the physical meaning of that procedure”. In the
same book Weizsäcker explains, why he eventually defied that interdiction,
and not only appended a second quantization to the first quantization,
but also inserted a zeroth quantization before the first quantization. We
thoroughly follow Heisenberg’s view of quantum field theory. We define
any field first as a classical field, and then quantize it exactly once. The
misleading notion “second quantization” will not be used in this book.
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15 The Free Klein-Gordon Field

15.1 Quantization

The free Klein-Gordon field, which is not interacting with any other field, is
described by (10.8). First we consider the quantization in the Schrödinger
picture, i.e. according to (14.45) the amplitudes φ(x) ≡ φ(t=0,x) and
their canonically conjugate momentum densities π(x) ≡ π(t=0,x). For
these operators we postulate the non-commutative algebra (14.74a), because
the Klein-Gordon field’s spin is s = 0, i. e. it is a boson field. The non-
commutative algebra of φ and π is realized by the Fourier coefficients
ak, a

∗
k, bk, b

∗
k, which become operators ak, a†k, bk, b

†
k with a non-commutative

algebra, while all other factors within φ and π stay commuting numbers:

φ(x) (10.8)=
∑
k

1√
NΩ

(
ak exp{+ikx}+ b†k exp{−ikx}

)
(15.1a)

π(x) (10.14)=
∑
k

i~2ωk√
NΩ

(
a†k exp{−ikx} − bk exp{+ikx}

)
(15.1b)

The signs of the exponents are consistent with the signs in equation (10.8).
Just the time components in the exponents have disappeared. We factor
out the exponential functions, rename the wave numbers k of the conjugate
momentum density to f , and rename their space-time coordinates from x
to y:

φ(x) =
∑
k

1√
NΩ

(
ak + b†-k

)
exp{+ikx} (15.2a)

π(y) =
∑
f

i~2ωf√
NΩ

(
a†f − b-f

)
exp{−ify} (15.2b)
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These operators are inserted into (14.74a):

[φ(x), π(y)] =
∑
k,f

i~2ωf
NΩ

(
[ak, a†f ]− [ak, b-f ] +

+ [b†-k, a
†
f ]− [b†-k, b-f ]

)
exp{+i(kx− fy)} (15.3)

By comparison with the general quantization rule

[φ(x), π(y)] =(14.74a)
i~δ(3)(x− y)

=(7.9)
∑
k

i~

Ω exp{+ik(x− y)}

we find this condition for the commutators:

[ak, a†f ]− [ak, b-f ] + [b†-k, a
†
f ]− [b†-k, b-f ] = Nδkf

~ωk
(15.4)

Due to quantization, the algebra of fields, of conjugate momenta, and of
Fourier-coefficients is changed, but not their dimensions. In the lines after
(10.8) we stated, that the Fourier-coefficients of the Klein-Gordon field are
dimension-less, and that the dimension of the normalization factor N is
energy. The definition

N ≡ 2~ωk (15.5)

is consistent with those assumptions. The factor 2 is merely convention.
The adjoint of a commutator is

[a, b]† = (ab)† − (ba)† = b†a† − a†b† = [b†, a†] .

We take the adjoint of (15.4), exchange k↔ f , and add the thus achieved
term to (15.4):

[ak, a†f ] + [ak, a†f ]− [ak, b-f ]− [b†-k, a
†
f ] +

+ [b†-k, a
†
f ] + [ak, b-f ]− [b†-k, b-f ]− [b†-k, b-f ] = 4δkf
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=⇒ [ak, a†f ] + [b-f , b†-k] = 2δkf

This must hold even in case a = b. Therefore

[ak, a†f ] = [a-f , a†-k] = [bk, b†f ] = [b-f , b†-k] = δkf

must hold. Consequently, for arbitrary f and k the two commutators in
the middle of (15.4) must be zero, even in case a = b:

[ak, bf ] = [b†k, a
†
f ] = [ak, af ] = [a†k, a

†
f ] = [bk, bf ] = [b†k, b

†
f ] = 0

In total we get these rules:

[ak, a†f ] = [bk, b†f ] = δkf

[ak, af ] = [bk, bf ] = [a†k, a
†
f ] =

= [b†k, b
†
f ] = [ak, bf ] = [a†k, b

†
f ] = 0

[ak, b†f ] = [a†k, bf ] = 0 if bk , ak
In any case a , b† is presupposed!

(15.6)

Note the constraint in the last line! We allow for the choice a = b, namely
for the description of real, uncharged Klein-Gordon fields, but never for the
choice a = b†.
The quantization changed the Fourier-coefficients into Fourier-operators

with non-commutative algebra. In addition, it has two remarkable side-
effects: As long as φ(x) was a state-function of quantum mechanics, it’s
normalization factor N could be chosen arbitrarily, provided the constraints
(7.2) were respected. Due to quantization, the normalization is uniquely
fixed as

1
N

(
[ak, a†f ] + [bk, b†f ]

) (15.5),(15.6)= δkf
~ωk

. (15.7)

Secondly — different from the coefficients of a Fourier-series expansion in
classical physics — all Fourier-operators ak, a†k, bk, b

†
k for all wave numbers
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k must be different from zero because of (15.6), and their commutator is
equal for all k:

ak, a
†
k, bk, b

†
k , 0

[ak, a†k] = [bk, b†k] = 1

}
for arbitrary k (15.8)

Thus the field operators (15.1) differ significantly from classical Fourier-
expansions, and this difference is caused by the quantization condition
(14.74).

15.2 Field Operators in the Heisenberg Picture

So far we used the time-independent field operators φ(x) and φ†(x) in
the Schrödinger picture. For the investigation of time-dependent processes
it is often advantageous to change to the Heisenberg picture. We pre-
suppose in the following, that the Hamilton operator is not explicitly
time-dependent. Thus the time-evolution operator has the simple form
U(t, 0) = exp{−(i/~)Ht}.

φ(x) ≡ φ(t,x) (14.46a)= exp{+ i

~
Ht}φ(x) exp{− i

~
Ht} (15.1)=

=
∑
k

1√
2~ωkΩ

(
exp{+ i

~
Ht}ak exp{− i

~
Ht}︸                                   ︷︷                                   ︸

ak(t)

exp{+ikx}+

+ exp{+ i

~
Ht}b†k exp{− i

~
Ht}︸                                   ︷︷                                   ︸

b†
k
(t)

exp{−ikx}
)
. (15.9)

To find the time-dependent Fourier operators ak(t) and b†k(t) in the Heisen-
berg picture, we first compute

[H, ak] =
∑
f

~ωf
(
a†fafak − aka

†
faf

)
=

=
∑
f

~ωf
(
a†fafak − (δfkaf + a†fafak)

)
= −~ωkak (15.10a)
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[H, a†k] =
∑
f

~ωf
(
a†fafa

†
k − a

†
ka
†
faf

)
=

=
∑
f

~ωf
(
(a†fδfk + a†ka

†
faf )− a†ka

†
faf

)
= +~ωka†k . (15.10b)

This can be written in the form

Hak = ak(H − ~ωk) (15.11a)

Ha†k = a†k(H + ~ωk) . (15.11b)

Iteration of this procedure results into

Hnak = Hn−1ak(H − ~ωk) = ak(H − ~ωk)n (15.12a)

Hna†k = a†k(H + ~ωk)n . (15.12b)

From this we conclude for the exponential functions:

exp{ i
~
Ht} ak =

∞∑
n=0

1
n!
( i
~
t
)n
Hnak

= ak

∞∑
n=0

1
n!
( i
~
t
)n

(H − ~ωk)n =

= ak exp{ i
~
Ht} exp{−iωkt} (15.13a)

exp{ i
~
Ht} a†k = a†k exp{ i

~
Ht} exp{+iωkt} (15.13b)

We derived these relations under the assumption, that the Hamilton operator
H is not explicitly time-dependent. Without proof we state, that these
relations hold as well with explicitly time-dependent H:

ak(t) = U−1(t, 0) ak U(t, 0) = ak exp{−iωkt} (15.14a)

a†k(t) = U−1(t, 0) a†k U(t, 0) = a†k exp{+iωkt} (15.14b)
bk(t) = U−1(t, 0) bk U(t, 0) = bk exp{−iωkt} (15.14c)
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b†k(t) = U−1(t, 0) b†k U(t, 0) = b†k exp{+iωkt} (15.14d)

Thus the field operator in the Heisenberg picture is

φ(x) =
∑
k

1√
2~ωkΩ

(
ak(t) exp{+ikx}+ b†k(t) exp{−ikx}

)
=
∑
k

1√
2~ωkΩ

(
ak exp{−ikx} + b†k exp{+ikx}

)
. (15.15a)

By the same method, the field operators

φ†(x) (15.1)=
∑
k

1√
2~ωkΩ

(
a†k exp{+ikx}+ bk exp{−ikx}

)
(15.15b)

π(x) (15.1)=
∑
k

i~

√
~ωk
2Ω

(
a†k exp{+ikx} − bk exp{−ikx}

)
(15.15c)

π†(x) (15.1)= −
∑
k

i~

√
~ωk
2Ω

(
ak exp{−ikx} − b†k exp{+ikx}

)
(15.15d)

can be derived. From comparison with the classical fields (10.13) and
(10.14) it’s obvious, that we could have arrived directly at the field oper-
ators in the Heisenberg picture, if we had simply replaced the (not time-
dependent) Fourier coefficients ak, a∗k, bk, b∗k in the formulas of the classical
time-dependent) fields by the (again not time-dependent) Fourier operators
ak, a

†
k, bk, b

†
k.

The time- and position-dependent operators φ(x) = φ(t,x) etc. are
suggesting a fundamental consideration: In the quantum mechanics of
point-particles, time and space are treated differently, because there is a
position operator (which is identical to the position vector in the position
representation), but there is no time operator. Time is merely a parameter
in quantum mechanics.
In relativity theory, time and position are equivalent components of a

four-vector. If we want to construct a quantum theory, which is compatible
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with relativity theory, i. e. in which the appropriate balance in-between time
and position is preserved, then we either must make time to an observable
quantity, which is — like position — represented by an operator, or we must
degrade position to a mere parameter like time.

We did choose the second alternative: In the field operators φ(x) = φ(t,x)
etc., the position x is, exactly like the time t, merely a parameter, but no
operator. With both t and x now reduced to parameters, the theory has
become a field theory. It’s not just a coincidence, that the quantum theory,
which is compatible with relativity theory, is being constructed as a field
theory.

15.3 Conserved Quantities

Replacing the classical Fourier-coefficients in (10.17) by the quantized
Fourier-operators (15.6), we get these components of the quantized ES-
tensor:

T ρσ (10.17)=
∑
k,f

c2~2

2Ω~√ωkωf

[
i2(kρfσ + fρkσ)

(
− a†kaf exp{+i(k − f)x}+ a†kb

†
f exp{+i(k + f)x}+

+ bkaf exp{−i(k + f)x} − bkb†f exp{−i(k − f)x}
)
−

− gρσi2kµfµ
(

− a†fak exp{+i(f − k)x}+ a†fb
†
k exp{+i(f + k)x}+

+ bfak exp{−i(f + k)x} − bfb†k exp{−i(f − k)x}
)

+

+ gρσ
m2c2

~2

(
a†kaf exp{+i(k − f)x}+ a†kb

†
f exp{+i(k + f)x}+

+ bkaf exp{−i(k + f)x}+ bkb
†
f exp{−i(k − f)x}

)]
(15.16)

Integration over the normalization volume Ω leads to
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T ρσ ≡
∫
Ω

d3x T ρσ (10.22)=
∑
k

c2~2

~ωk
kρkσ

(
a†kak + bkb

†
k

)
(15.17a)

=(15.6)∑
k

c2~2

~ωk
kρkσ

(
a†kak + b†kbk + [bk, b†k]︸    ︷︷    ︸

1

)
. (15.17b)

Now we need to discriminate in-between discrete and continuous fields.
A field is called “discrete”, if it has a discrete substrate. Example: The
substrate of the field of sound waves (phonons) in a solid is the discrete
crystal grid of the atoms, which are constituting the solid.

∑
k therefore

runs in case of phonon fields (and all other discrete fields) only over the first
Brillouin zone. Wave vectors k of other Brillouin zones would be redundant;
hence they are ignored in the summation. Consequently (15.17) is always
finite in case of discrete fields.

In case of continuous fields, however, (15.17) diverges, because continuous
fields have no discrete substrate. Therefore the sum in (15.17) is running up
to infinitely large wave numbers. Due to

∑
k[bk, b†k] =∞, there is an infinite

adder to each component of T ρσ. This holds true even in the vacuum state
|0〉, in which no field quantum at all is excited, i. e. in which due to

〈0|a†kak|0〉 = 〈0|b†kbk|0〉
(14.63)= 0

two of the three terms in (15.17b) are zero.
All elementary quantum fields (e. g. the electron/positron field, the elec-

tromagnetic field, and all other fields of the standard model of elementary
particles), but no other fields, are continuous quantum fields. “Elementary
quantum field” and “continuous quantum field” therefore are synonymous
notions.

In [42], good reasons are listed for the assumption, that the computation
of the ES-tensor according to (10.15) is correct only in case of classical and
discrete Klein-Gordon fields, but not in case of elementary Klein-Gordon
fields. Instead of (10.15) we postulate ad-hoc, i. e. as a law of nature, for
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classical and discrete Klein-Gordon fields:

T ρσ = ∂L
∂(∂ρφ) ∂

σφ+ ∂σφ∗
∂L

∂(∂ρφ∗)
− gρσL (15.18a)

elementary Klein-Gordon fields:

T ρσ = ∂L
∂(∂ρφ) ∂

σφ+ ∂σφ∗
∂L

∂(∂ρφ∗)
− gρσL − Y (15.18b)

Y ≡ the sum of all terms in (15.18a) which do not depend
on the particle-number operators a†k ak or b†k bk

(15.18a) is identical to (10.15). (15.18b), on the other hand, has not been
derived but was found by guessing, i. e. it is a law of nature. Like any
law of nature, (15.18) can be justified by nothing else than the fact, that
it complies with all experiments and observations. It is proved in [42],
that (15.18) meets this criterion, while (10.15) is disproved by astronomical
observations, and furthermore doesn’t comply with special relativity theory.
As an alternative to (15.18b), some authors postulate “normal order” of

the operators in (15.17a), which is marked by colons:

: aka†k : ≡ a†kak for bosons (15.19a)

: aka†k : ≡ − a†kak for fermions (15.19b)

Normal order means, that in case of elementary fields all operator products
are — ignoring (15.6) — re-arranged such, that all creation operators
are placed left of the annihilation operators. Furthermore a factor −1 is
inserted each time when a fermion creation operator is swapped with a
fermion annihilation operator. In case of Klein-Gordon fields, normal order
is indeed equivalent to (15.18b). But in case of elementary fields with
spontaneously broken symmetry (the Higgs field, described in chapter 29 ,
is an example for that type of fields) only (15.18b) gives correct results.
Furthermore normal order is merely a formal trick, while (15.18) is suggested
by plausible physical reasons, explicated in [42].
Using (15.18), we get instead of (15.17) this ES-tensor:
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T ρσ ≡
∫
Ω

d3x T ρσ =
∑
k

c2~2

~ωk
kρkσ ·

· {
(
a†kak + b†kbk + 1

)
for discrete fields(

a†kak + b†kbk
)
for elementary fields

(15.20a)

(15.20b)

The vacuum expectation value of (15.20) is

〈0|T ρσ|0〉 (15.20)=

=


∑
k

c2~2kρkσ

~ωk

(7.18)=
∑
k

c~kρkσ√
k2 +m2c2/~2

for discrete fields.

0 for elementary fields.
(15.21)

m is the mass of one quantum or anti-quantum of the Klein-Gordon field.
Note that we are discussing complex Klein-Gordon fields in this section. In
section 15.7 we will find different results for real Klein-Gordon fields.
The Hamilton operator H ≡ T 00 of the Klein-Gordon field is

H =
∑
k

~ωk ·
{

(a†kak + b†kbk + 1) for discrete fields.
(a†kak + b†kbk) for elementary fields.

(15.22)

This result should be compared to the Hamilton operator (14.57) of the
harmonic oscillator of point-particle quantum mechanics ! The Hamilton
operator of the Klein-Gordon field is the sum of the Hamilton operators
of infinitely many harmonic oscillators. For each wave number k, which
is compatible with the boundary conditions of the normalization volume,
there exist two harmonic oscillators, whose ladder operators are named ak
and a†k resp. bk and b†k. Note that there is no zero-point energy in case of
elementary fields.
The physical momentum operator P j ≡ T 0j/c of the Klein-Gordon field

is
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P j =
∑
k

~kj ·
{

(a†kak + b†kbk + 1) for discrete fields.
(a†kak + b†kbk) for elementary fields.

(15.23)

Angular-momentum operator: will be supplemented in a future release of
this book, if I get around to do that . . .

If in classical physics a particle with charge q interacts with a cloud of N
particles which have charge q′ each, then there will be a force between the
test particle and the cloud, which is proportional to qQ with Q = Nq′. In
quantum field theory, however, the particle will not interact with the cloud
at once, but it will interact with the constituent particles of the cloud one
by one. The interaction cross section for the scattering of the test particle
by one single cloud particle is proportional to qq′, and the probability for
such interaction to happen is proportional to N . The total charge Q of the
cloud, however, never shows up in any computation of quantum field theory.
Therefore the conserved charge of the quantized Klein-Gordon field

Q
(A.91)= −q

∑
k

(a†kak − b
†
kbk − [bk, b†k]︸    ︷︷    ︸

1

) (15.24)

which is computed in appendix A.13 , is not of much relevance for quantum
field theory. In particular we don’t need to worry about the unphysical
commutator term, because it never becomes effective in any computation.
Q is a conserved quantity. Hence particles and antiparticles can only be
created or annihilated in pairs of one particle and one antiparticle. Why,
then, do exist in our universe much more particles than antiparticles? I
don’t know, nor does anybody else. This is one of the open MEGA-questions
of physics.
In section 14.1.5, we defined |0〉 as the vacuum state of a harmonic

oscillator. The state with n excited quanta, which is created by applying n
times the creation operator onto the vacuum state, was called

|n〉 (14.68)= 1√
n!

(a†)n|0〉 . (15.25)

The eigenvalue of the particle-number operator
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a†a|n〉 (14.63)= n|n〉 (15.26)

is indicating, how many quanta are excited in the oscillator’s state |n〉.
We will use an analogous nomenclature for the Klein-Gordon field. As

we are dealing with infinitely many oscillators of the types a and b, we add
two further indices. |0〉 is again the vacuum state, and

|nbknafnag〉 =
(b†k)nbk(a†f )naf (a†g)nag√

nbk!naf !nag!
|0〉 (15.27)

is a state of the Klein-Gordon field, in which nbk quanta of type b with wave
number k, naf quanta of type a with wave number f , and nag quanta of
type a with wave number g are excited. Because of

bf |0〉 = ag|0〉
(14.61)= 0 , (15.28)

the application of the particle-number operators results into

a†gag|nbknafnag〉
(14.63)= nag|nbknafnag〉 (15.29)

b†kbk|nbknafnag〉
(14.63)= nbk|nbknafnag〉 (15.30)

a†kak|nbknafnag〉
(14.63)= 0 . (15.31)

To save writing efforts, we will constrain our considerations to elementary
Klein-Gordon fields in the sequel. It’s easy to extend the formulas to discrete
fields, if needed. The Hamilton operator, the momentum operator, and the
charge operator are composed of particle-number operators. Therefore the
state vector |nbknafnag〉 is as well an eigenstate of these operators:

H|nbknafnag〉
(15.22)=

∑
l

~ωl
(
a†lal + b†l bl

)
|nbknafnag〉 =

=
(
nbk~ωk + naf~ωf + nag~ωg

)
|nbknafnag〉 (15.32)

As we stipulated
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~ωk
(7.18)= +

√
~2k2 +m2c4 ≥ 0 , (15.33)

and as nak ≥ 0 and nbk ≥ 0 for arbitrary k, surely H|s〉 ≥ 0 can never
become negative for arbitrary state functions |s〉. This holds as well for fields
φ ∼ exp{+ikx}, which without quantization would have negative energy
due to the energy operator i~d/dt of point-particle quantum mechanics.
Application of the momentum operator results into

P |nbknafnag〉
(15.23)=

∑
l

~l
(
a†lal + b†l bl

)
|nbknafnag〉

=
(
nbk~k + naf~f + nag~g

)
|nbknafnag〉 , (15.34)

and application of the charge operator results into

Q|nbknafnag〉
(A.91)= −q

∑
l

(
a†lal − b

†
l bl
)
|nbknafnag〉

=
(
nbkq − nafq − nagq

)
|nbknafnag〉 . (15.35)

At same wave number, quanta of type a and of type b have same energy
and same momentum. The energy of quanta of either type always is larger
or equal zero. As we presupposed the validity of the frequency-wavenumber
relation (7.17) of special relativity theory, the rest mass of each field-quantum
is identical, no matter whether it’s type is a or b. Preliminary1 we interpret
the parameter m, which shows up in the Klein-Gordon equation, as the rest
mass of a single quantum. The total rest mass of the Klein-Gordon field
thus is an integer multiple of m. In the state |nbknafnag〉, it’s total rest
mass is m · (nbk + naf + nag). Each quantum of type a has the charge −q,
and each quantum of type b has the charge +q. The total charge of the
Klein-Gordon field is an integer multiple of ±q. In the state |nbknafnag〉,
it’s total charge is q · (nbk − naf − nag).

1 In section 22, we will renormalize the mass and the charge of the field, and will thereby
significantly modify the interpretation of these parameters.
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15.4 Quanta of the Klein-Gordon field

It’s common to use the name “particles” for the field quanta. Particles
of type b are the antiparticles of the particles of type a. Particles and
antiparticles differ by the sign of all of their charges. With respect to all
other properties they are identical. In particular the mass of particles and of
antiparticles is positive. If a particle is not charged at all (like for example
the photon, the quantum of the electromagnetic field), then it doesn’t have
an antiparticle.

It must not be overlooked, that this usage of the notion “particle” differs
significantly from the same notion in everyday speech. Field quanta are no
“things”. Therefore Bose-Einstein statistics hold for the quanta of the Klein-
Gordon field, while for things — even if they are arbitrarily small things —
Maxwell-Boltzmann statistics hold.
The field quanta |1ak〉 or |1bk〉 with sharply defined momentum ~k and

sharply defined energy ~ωk are completely de-localized. They can be found
with equal probability anywhere in the normalization volume. A quantum
|1ax〉 of type a or a quantum |1bx〉 of type b, which is localized at position
x, can be constructed by application of the field operators (15.15) with
t ≡ 0 (i. e. the field operators in the Schrödinger picture) onto the vacuum.
Respecting ak |0〉 = bk |0〉 = 0, one gets

|1ax〉 ≡ φ†(x) |0〉 (15.15)=
∑
k

a†k |0〉︸   ︷︷   ︸
|1ak〉

exp{−ikx}√
2~ωkΩ

(15.36a)

|1bx〉 ≡ φ(x) |0〉 (15.15)=
∑
k

b†k |0〉︸  ︷︷  ︸
|1bk〉

exp{−ikx}√
2~ωkΩ

. (15.36b)

In section 14.1.5, we normalized the state functions |n〉 of the harmonic
oscillator of quantum mechanics by 〈n|n〉 = 1. Accordingly, we now choose

〈0|0〉 ≡ 1 (15.37a)
〈1af |1ak〉 = 〈1bf |1bk〉 ≡ δfk , 〈1af |1bk〉 = 0 , (15.37b)
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and compute

〈1ay|1ax〉 = 〈1by|1bx〉 =
∑
k,f

exp{+i(fy − kx)}
Ω2~√ωfωk

δfk

=
∑
k

exp{+ik(y − x)}
2~ωkΩ , 〈1ax|1by〉 = 0 . (15.37c)

This result differs from the delta function

1
Ω
∑
k

exp{±ik(y − x)} (7.9)= δ(3)(y − x)

by the factor 2~ωk in the denominator. The advantage of this definition
will become visible in the four-dimensional extension of (15.37c), which will
be computed next.
Time-dependent field quanta |1axt〉 and |1bxt〉, which are localized at x,

can be constructed by application of the time-dependent field operators
(15.15) onto the vacuum:

|1ax〉 = |1axt〉 ≡ φ†(x) |0〉 =
∑
k

exp{+ikx}√
2~ωkΩ

a†k |0〉︸   ︷︷   ︸
|1ak〉

(15.38a)

|1bx〉 = |1bxt〉 ≡ φ(x) |0〉 =
∑
k

exp{+ikx}√
2~ωkΩ

b†k |0〉︸  ︷︷  ︸
|1bk〉

. (15.38b)

The particle is localized in space only, but not in time, because there is only
a sum over k, but no integral over k0. The time t in (15.38) is a running
parameter. The state functions |1ax〉 and |1bx〉 are Eigenfunctions of the
time-dependent position operator x(t):

x(t)|1byt〉 = y|1byt〉 (15.39)

They can be transformed into the Eigenfunctions of the time-independent
position operator by
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|1ax〉 =(14.32) exp{− i
~
Ht} |1axt〉

=(15.38a)∑
k

exp{−ikx} exp{+iωkt}√
2~ωkΩ

exp{− i
~
Ht} |1ak〉︸                     ︷︷                     ︸

exp{−iωkt} |1ak〉

=
∑
k

exp{−ikx}√
2~ωkΩ

|1ak〉 . (15.40)

This is again concordant with (15.36a).
The matrix elements of the field quanta (15.38) are

〈1ayτ |1axt〉 = 〈0|φ(yτ)φ†(xt) |0〉 =

=
∑
f ,k

exp{−i(fy − kx)}
Ω2~√ωfωk

〈1af |1ak〉︸        ︷︷        ︸
δfk

=
∑
k

exp{−ik(y − x)}
2~ωkΩ (15.41a)

〈1byτ |1bxt〉 = 〈0|φ†(yτ)φ(xt) |0〉 =

=
∑
f ,k

exp{−i(fy − kx)}
Ω2~√ωfωk

〈1bf |1bk〉︸        ︷︷        ︸
δfk

=
∑
k

exp{−ik(y − x)}
2~ωkΩ (15.41b)

〈1byτ |1axt〉 = 0 (15.41c)

These matrix elements are Lorentz-invariant, because the argument of the
exponential function — being a product of Lorentz vectors — is Lorentz-
invariant, and the same holds for the product ~ωkΩ, as discussed at the end
of chapter 7 .

15.5 The quantized Greens Function

In section 12.1 we described Greens functions as classical waves, which
are spreading from sources j(y) according to Huygen’s principle, and then
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superpose at space-time point x. Their quantized form follows from the
matrix elements, which have been computed in the previous section. The
matrix element

〈0|φ(x)φ†(y) |0〉 (15.41a)= 〈1ax|1ay〉 =

=
∑
k

exp{−ik(x− y)}
Ω2~ωk

(12.11a)= Ga(x− y) (15.42a)

is interpreted as the probability amplitude of a process, in which a particle
of type a (the antiparticle of b) is created at time y0 at position y, then
moves to x, and there is annihilated at time x0. The matrix element

〈0|φ†(y)φ(x) |0〉 (15.41b)= 〈1by|1bx〉 =

=
∑
k

exp{−ik(y − x)}
Ω2~ωk

(12.11b)= Gb(y − x) (15.42b)

is interpreted as the probability amplitude of a process, in which a particle
of type b (the antiparticle of a) is created at time x0 at position x, then
moves to y, and there is annihilated at time y0. Comparison of (15.42) with
(12.11) and (12.14) results into the quantized propagator

G(x− y) =x
0,y0

θ(x0 − y0)Ga(x− y) + θ(y0 − x0)Gb(y − x)
= θ(x0 − y0)〈0|φ(x)φ†(y) |0〉+

+ θ(y0 − x0)〈0|φ†(y)φ(x) |0〉
≡ 〈0|Tφ(x)φ†(y) |0〉 . (15.43)

For the time-order operator T in the last line holds the following

Definition: The time-order operator T always orders the op-
erators within a product according to their sequence in time,
starting with the latest factor (t maximal) at the left side, and
ending with the earliest factor (t minimal) at the right side. A
factor (−1) is to be inserted for each permutation of two fermion
operators (but not for a permutation of boson operators).

(15.44)
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The Klein-Gordon field, which we are considering in this chapter, is a boson
field.
The Huygens wave, which is spreading from the past (y0) to the present

(x0), is due to quantization converted to a particle, which is described by
the propagator Ga(x−y), and is spreading from the past (y0) to the present
(x0). The Huygens wave, which is spreading from the future (y0) to the
present (x0), is due to quantization converted to an antiparticle, which is
described by the propagator Gb(y − x), and is spreading from the present
(x0) to the future (y0). The spreading of waves forward and backwards
in time in the classical term (12.3) is re-shaped to a plausible picture due
to the concept of anti-matter. We will see immediately, that furthermore
the waves, which are spreading — from the viewpoint of classical physics
— outside the forward- or backwards-lightcones, not only are acceptable in
quantum field theory, but indeed are necessary to make quantum theory
and relativity theory mutually compatible.
G(x−y), and Ga(x−y), and Gb(y−x) all are called propagators, because

all of them are describing the propagation of fields in-between different
points in space-time. The propagators Ga(x−y) and Gb(y−x) are solutions
of the homogeneous equation (12.1), while the propagator G(x − y) is a
solution of the inhomogeneous equation (12.4). G(x− y) is the Feynman-
propagator, which is playing a central role in the description of interacting
quantum fields.

15.6 Causality

For the subject of this section, the notion “microcausality” is widely used.
The prefix “micro” is meaningless, microcausality is nothing other than
causality. Relativity theory postulates, that an event at space-time point x
and an event at space-time point y can not affect each other, if the distance
between x and y is space-like. The distance is space-like, if x is not in the
forward- or backwards-lightcone of y, i.e. if (x− y)2 < 0.

The events, in whose causal dependence – or rather causal independence –
we are interested, are the creation or annihilation of particles at different
points of four-dimensional space-time. Let the Klein-Gordon field be in
state |s〉. Due to φ(x)|s〉, a particle a is annihilated and it’s antiparticle



298 15 The Free Klein-Gordon Field

b is created at time x0/c at position x. Due to φ†(y)|s〉, a particle a is
created and it’s antiparticle b is annihilated at time y0/c at position y. If
the relation of the space-time points x and y is space-like, then the events
at x and y can not influence one another. Therefore the expectation value
of their commutator must be zero:

〈s| [φ(x), φ†(y)] |s〉 =

=
∑
k,f

1
2Ω~√ωk ωf

(
〈s| [ak, a†f ]︸     ︷︷     ︸

δkf

|s〉 exp{−i(kx− fy)}

− 〈s| [bf , b†k]︸     ︷︷     ︸
δkf

|s〉 exp{−i(fy − kx)}
)

=
∑
k

1
2Ω~ωk

(
exp{−ik(x− y)} − exp{−ik(y − x)}

)
〈s|s〉

=(15.42) (
Ga(x− y)−Gb(y − x)

)
〈s|s〉 (15.45)

The commutator firstly is no operator but a number. Therefore it can be
factored out of the product 〈s|s〉. The commutator secondly is lorentzinvari-
ant, because the product Ω~ωk is — as discussed between (7.21) and (7.26)
— lorentzinvariant, and the same holds for the scalar product k(x−y) of two
Lorentz four-vectors. We compute the commutator in a primed coordinate
system′, in which x′0 − y′0 = 0 . Note that such a coordinate system only
exists because the relation of the space-time points x and y is space-like,
that is to say (x − y)2 < 0. If y would be in the forward- or backwards-
lightcone of x, then x′0 − y′0 = 0 could not be achieved by any proper
Lorentz transformation.

[φ′(x′), φ′†(y′)] =
∑
k′

1
2Ω′~ωk′

·

·
(

exp{+ik′(x′ − y′)} − exp{−ik′(x′ − y′)}
)

= 0 (15.46)

As the sum is running symmetrically over all positive and negative k′, and
because ωk′ = ω-k′ , we may exchange k′ and −k′ in the second summand.
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Thus the commutator is indeed zero, in compliance with relativity theory.

If the Klein-Gordon field’s quantization had been done with the anticom-
mutator (14.74b), but not with the commutator (14.74a), then the result of
(15.45) would not be zero, violating the causality criterion of relativity the-
ory. The causality criterion of relativity theory is forcing us to quantize all
fields with integer spin (inclusive spin zero) due to the commutator (14.74a),
and to quantize all fields with half-integer spin due to the anticommutator
(14.74b). We just proved this rule for the example of the Klein-Gordon field
(spin 0), and we will confirm it again for the example of the Dirac field (spin
1
2). We will not outline the general proof of that rule, which also is called
the “spin-statistics-theorem”.
The result

〈s| [φ(x), φ†(y)] |s〉 (15.45)=

=
(
Ga(x− y)︸          ︷︷          ︸

,0

−Gb(y − x)︸         ︷︷         ︸
,0

)
〈s|s〉

(15.46)
(x−y)2<0= 0 (15.47)

is suggesting the following interpretation: The commutator’s expectation
value is zero, if the relation of the space-time points x and y is space-like.
But it is quite remarkable, how this result is accomplished. The probability
amplitude Ga(x− y) for a particle of type a (which is the antiparticle of b),
to spread — in apparent contradiction to relativity theory — faster than
light from y to x, is different from zero. And the probability amplitude
Gb(y−x) for a particle of type b (which is the antiparticle of a), to spread —
in apparent contradiction to relativity theory — faster than light from x to y,
is different from zero. But as both probability amplitudes are exactly equal,
the commutator’s probability amplitude — that is to say the probability
amplitude of a measurable interaction in-between the space-time points x
and y — is zero, in compliance with relativity theory.
In case of an uncharged (real) Klein-Gordon field, b = a, b† = a†, i.e.

this field has no anti-field. In this case, the compliance with the causality
criterion is secured due to the exchange of two particles of type a between
the space-time points x and y.

The particles, which are moving — seemingly not impressed by relativity
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theory — with arbitrary velocity, are “virtual” particles. That is to say,
they are existing on the theorist’s paper, but they are not observed by a
particle detector. Particles and antiparticles, which are observed by means
of appropriate detectors, always are moving at a velocity ≤ the speed of
light. The ontological status of virtual particles is controversial. Whether
“out there” something is existing, which corresponds to (15.47), or whether
that formula is merely an abstract mathematical tool for the computation
of the probability of observed events, but has no immediate correlation in
reality2, can not be clarified by experiments. Observed particles and virtual
particles are behaving fundamentally different.

15.7 The real Klein-Gordon Field

Thus far, all considerations in this chapter were related to the complex,
charged Klein-Gordon field. The simplification to the real field isn’t diffi-
cult. The field equation and the conserved quantities of the classical (not
quantized) real field have been compiled in section 10.5.
The field equation (10.34) of the classical real field is identical to the

field equation (10.11a) of the classical complex field. Therefore the field-
operators of the quantized real field follow from (15.1) resp. (15.15) due to
exchange of bk by ak and exchange of b†k by a†k:

φ(x) (15.15a)=
∑
k

1√
2~ωkΩ

(
ak exp{−ikx} + a†k exp{+ikx}

)
(15.48a)

The canonically conjugate momentum density (10.14) of the classical com-
plex field is transcribed to the canonically conjugate momentum density
(10.35) of the classical real field due to exchange of φ∗ by φ in equation
(10.14b). In case of the quantized fields, this is again corresponding to the
2 It is extremely difficult (if not impossible), to give a plausible definition of reality,
without running into circular arguments. Remarkably, the definition of the notion
reality is completely superfluous for physics. Physics is not describing, what it’s objects
are, but how it’s objects mutually are interacting, and what their structural relations
are. Physics is “explaining” the structural relations of observations due to the structural
relations of physical objects. Whether a physical object is “real”, is irrelevant for
physics.
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replacements bk → ak and b†k → a†k:

π(x) (15.15c)=
∑
k

i~

√
~ωk
2Ω

(
a†k exp{+ikx} − ak exp{−ikx}

)
(15.48b)

Which modifications of the ES-tensor (15.20) of the complex Klein-Gordon
field are needed, to get the respective result for the real Klein-Gordon field?
From the comparison of the ES-tensor (10.16a) of the complex classical
Klein-Gordon field and the ES-tensor (10.36) of the classical real Klein-
Gordon field we conclude, that simply bk must be replaced by ak and b†k by
a†k, and that a multiplier 1/2 must be inserted, to get the ES-tensor of the
real field:

T ρσ ≡
∫
Ω

d3x T ρσ = 1
2
∑
k

c2~2

~ωk
kρkσ ·

· {
(
2a†kak + 1

)
for discrete fields (15.49a)

2a†kak for elementary fields (15.49b)

Thereby we get this vacuum expectation value:

〈0|T ρσ|0〉 =

=


∑
k

c2~2kρkσ

2~ωk
(7.18)=

∑
k

c~kρkσ

2
√
k2 +m2c2/~2

for discrete fields.

0 for elementary fields.
(15.50)

The vacuum expectation values of the ES-tensor differ from the respective
result (15.21) of the charged field by nothing than the factor 1/2 . This
difference is caused by the fact, that both the zero-point oscillations of the
discrete field and the zero-point oscillations of the discrete anti-field add to
(15.21), while the real field has no anti-field. For elementary Klein-Gordon
fields the vacuum expectation values of the ES-tensor are zero, no matter
whether the fields are complex or real.
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16 The Free Dirac Field

16.1 Quantization

The Dirac field’s spin is 1
2 . Thus the quantization method (14.74b) must

be applied. The field amplitudes and the Fourier-coefficients of the Dirac
equation’s general solutions become operators upon quantization:

ψ(x) (8.83a)=
∑
k,r

1√
ΩN

(
,rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)
(16.1a)

The same holds for the canonically conjugate momentum density:

π(y) (8.83b)= i~ψ†(y) =
∑
f ,s

i~√
ΩN

(
sa†f

suf† exp{+ify}+ sbf
svf† exp{−ify}

)
(16.1b)

r, s = 1, 2 are the polarization indices of the fields. These operators must
meet the canonical quantization condition

{ψa(t,x), πb(t,y)} ≡ ψa(t,x)πb(t,y) + πb(t,y)ψa(t,x) =

=
∑
k,f ,r,s

i~

ΩN
[
{ rak ,sa†f}

ruka
suf†b exp{−i(kx−fy)}+

+ { rak ,sb−f} ruka sv
−f†
b exp{−i(k0x0 +f0y0 − kx+fy)}+

+ { rb†k ,
sa†−f}

rvka
su−f†b exp{+i(k0x0 +f0y0 − kx+fy)}+

+ { rb†k ,
sbf} rvka sv

f†
b exp{+i(kx−fy)}

] (14.74b)= i~δ(3)(x− y)δab . (16.2)

The indices a, b are marking the spinor-components of the fields, and the
time argument t must be identical in both operators. As the summations
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are running symmetrically over all wavenumbers k and f , the sequence of
terms could be changed in the second and third term on the left side. On
the left side of the equation, the delta-function

δ(3)(x− y) (7.9)= 1
Ω
∑
k

exp{±ik(x− y)} (16.3)

can be identified. Consequently the anticommutators must be ∼ δkf . But
then the second and third term on the left side of (16.2) are time-dependent,
while the right side is independent of time. Thus we must have

{ rak ,sb−k} = { rb†k ,
sa†−k} = 0 . (16.4a)

Now we use the relations
2∑
r=1

(
ruka

ruk†b + rv−ka
rv−k†b

) (A.61)= 2~ωk δab

2∑
r=1

2∑
s=1

(
ruk†a

sukb + rvk†a
svkb + ru−k†a

su−kb + rv−k†a
sv−kb

) (A.61)= anything ,

which have been proved in appendix A.10 . Thus the condition (16.2) can
be met with

{ rak ,sa†f} = δkfδrs , { rb†k ,
sbf} = δkfδrs (16.4b)

and

N = 2~ωk . (16.4c)

In compliance with (16.4) we postulate these anticommutator relations for
the Dirac field:

{ rak ,sa†f} = { rbk ,s b†f} = δkfδrs

{ rak ,saf} = { rbk ,s bf} = { rak ,s bf} = { ra†k ,
s bf} = 0

(16.5a)

(16.5b)
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The non-commutative algebra (16.5a) is enforced by (16.4b), but (16.5b)
goes well beyond what is enforced by (16.4a). Thus (16.5) is a minimal
assumption: We postulate non-commutative algebra of the Fourier-operators
only if enforced by the quantization condition (16.2). Furthermore, even
if we stick to the reasonable rule that Fourier-coefficients and Fourier-
operators shall be dimension-less, it is quite arbitrary that we assigned to
the normalization (16.4c) the numerical factor 2, instead to assigning to the
condition (16.5a) the numerical factor 1/2 .

Again, as for the Klein-Gordon field, the i~δ(3)(x−y) in the commutator
relation (16.2) has mutated into a Kronecker symbol δkf in the commutator
relation (16.5). As a new feature, the Kronecker symbol δab of the spinor
components in the commutator relation (16.2) has mutated to a Kronecker
symbol δrs of the polarization indices in the commutator relation (16.5).

And again we note the remarkable side-effects of quantization: The field’s
normalization can’t any more be chosen arbitrarily. Instead the products of
the normalization factor and the Fourier operators (16.5) are uniquely fixed
due to the commutator relation (16.2). In particular, all Fourier operators
for arbitrary wave numbers k and arbitrary spin variables r are different
from zero.

16.2 Conserved Quantities

The components of the Dirac field’s energydensity-stress tensor (ES-tensor)
are

T ρσ =(8.86)
i~c ψγρdσψ . (16.6)

Inserting the quantized fields ψ(x) = (16.1a), and

ψ†(x) (16.1a)=
∑
f ,s

1√
2~ωfΩ

(
sa†f

suf† exp{+ifx}+ sbf
svf† exp{−ifx}

)
,

(16.7)

dσψ(x) (16.1a)=
∑
k,r

ikσ√
2~ωkΩ

(
− rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)
,
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one finds

T ρσ = −
∑
f ,s,k,r

c kσ

2Ω√ωkωf

(
− sa†f

rak
suf†γ0γρ ruk exp{+i(f − k)x}+

+ sa†f
rb†k

suf†γ0γρ rvk exp{+i(f + k)x}−

− sbf
rak

svf†γ0γρ ruk exp{−if + k)x}+

+ sbf
rb†k

svf†γ0γρ rvk exp{−if − k)x}
)
. (16.8)

Integrating this result in three-dimensional position space over the normal-
ization volume Ω leads to

T ρσ ≡
∫
Ω

d3x T ρσ (8.94)=
∑
k,s

c2~2kρkσ

~ωk

(
sa†k

sak − sbk
sb†k

)
=

=(16.5)∑
k,s

c2~2kρkσ

~ωk

(
sa†k

sak + sb†k
sbk− sbk

sb†k −
sb†k

sbk︸                    ︷︷                    ︸
−{ sbk ,sb

†
k
}

(16.5)
= −1

)
(16.9a)

=
∑
k,s

c2~2kρkσ

~ωk

(
sa†k

sak − sb†k
sbk− sbk

sb†k + sb†k
sbk︸                    ︷︷                    ︸

−[ sbk ,sb
†
k
] = ?

. (16.9b)

Like we have done in case of the Klein-Gordon field, we interpret the Fourier-
operators a†k and b†k as creation operators, and the Fourier-operators ak and
bk as annihilation operators, of field quanta of types a and b. The particle-
number operators a†kak and b†kbk have the eigenvalues 0, 1, 2, 3, . . ., but no
negative eigenvalues. The eigenvalues equal the number of excited field
quanta of the respective types. Therefore∑

k,r

~ωk
(
ra†k

rak + rb†k
rbk
)
|s〉 ≥ 0 (16.10)

is positive definite in any state |s〉 of the field. As we quantized the Dirac
field by means of the anticommutator-relation (14.74b), we can identify in
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(16.9a) the anticommutator (16.5) of the Fourier-operators. If we instead
had postulated the commutator relation (14.74a) for the Dirac field, then
we would have got a commutator-relation for the Fourier-operators as well,
and then the Hamilton operator of the Dirac field would have — see (16.9b)
— both positive and negative eigenvalues. The spin-statistic-theorem [40]
requires, that all fields with half-integer spin must be quantized by means
of the anti-commutator relation (14.74b). Then and only then the field’s
energy will never become negative.

Just as in equation (15.17) of the Klein-Gordon field, there is a constant
adder in (16.9a) due to the non-vanishing commutators. And again, just
like in (15.18) for the case of the Klein-Gordon field, we postulate as a law
of nature that (16.9a) is valid only in case of discrete Dirac fields, but that
all terms, which do not depend on the particle-number operators ra†k rak or
rb†k

rbk must be removed in case of elementary Dirac fields:

classical and discrete Dirac fields:

T ρσ = ∂L
∂(∂ρψ) ∂

σψ + ∂σψ
∂L

∂(∂ρψ)
− gρσL (16.11a)

elementary Dirac fields:

T ρσ = ∂L
∂(∂ρψ) ∂

σψ + ∂σψ
∂L

∂(∂ρψ)
− gρσL − Y (16.11b)

Y ≡ the sum of all terms in (16.11a) which do not depend
on the particle-number operators ra†k rak or rb†k rbk

Discrete Dirac fields seem not to exist in our universe, but we want to keep
our formulas as general as possible. Thus we get for Dirac fields this ES-
tensor:
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T ρσ ≡
∫
Ω

d3x T ρσ =
∑
k,s

c2~2kρkσ

~ωk
·

· {
(
sa†k

sak + sb†k
sbk − 1

)
for discrete fields(

sa†k
sak + sb†k

sbk
)
for elementary fields

(16.12a)

(16.12b)

In particular, the Hamilton operator H ≡ T 00 is

H =
∑
k,s

~ωk ·
{

(sa†k sak + sb†k
sbk − 1) for discrete fields

(sa†k sak + sb†k
sbk) for elementary fields,

(16.13)

and the operator P j ≡ T 0j/c of the j-component of physical momentum is

P j =
∑
k,s

~kj ·
{

(sa†k sak + sb†k
sbk − 1) for discrete fields

(sa†k sak + sb†k
sbk) for elementary fields.

(16.14)

Angular momentum operator: Will be added in a later version of this
book, if I should find the time to do that . . .
For the operator of the Dirac field’s conserved charge

Q
(A.92)=

∑
k,r

q
(
ra†k

rak − rb†k
rbk + { rb†k ,

rbk}︸         ︷︷         ︸
1

)
, (16.15)

which is computed in appendix A.14, the same remarks apply which have
been made already in the lines before and after (15.24).
Considering the non vanishing commutators, which are showing up in

the conserved quantities of discrete Dirac fields, a peculiar dissymmetry
between field and anti-field attracts attention: In (16.9) and (16.15), it’s
both times the anti-field with the operators b, but not the field with the
operators a, which brings about the non vanishing commutators. Might this
dissymmetry be related to the dissymmetry in the Lagrangian L = (8.24),
in which derivatives of ψ, but no derivatives of ψ show up? At the end of
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section 8.6, we defined the alternative Lagrangian L′ = (8.99), in which the
fields ψ and ψ are showing up more symmetrically than in L = (8.24). From
L′ resulted more symmetrical canonically conjugate momentum densities
(8.101), and the more symmetrical energy density

H′ (8.104)= − i~c2 (d0ψ)γ0ψ + i~c

2 ψγ0d0ψ , (16.16a)

and the more symmetrical physical momentum density

P ′j (8.105)= i~

2
_
ψγ0djψ − (dj

_
ψ) i~2 γ

0ψ (16.16b)

of the classical (not quantized) Dirac field. But the computation of the
Hamilton operator and the momentum operator, based on (16.16), which is
elaborated in appendix A.16, results again into exactly the same operators
(16.12a) with exactly the same non vanishing commutators.

No change at all of the conserved quantities is achieved due to the more
symmetric Lagrangian L′ = (8.99) versus L = (8.24)! The dissymmetry
between field and anti-field in (16.9a) and (16.15) is not caused by a dis-
symmetry in the Lagrangian. We could have seen that already, when we
quantized the Klein-Gordon field, whose Lagrangian (10.10) and canonically
conjugate momenta (10.14) are as symmetrical as possible in the fields φ and
φ∗. Still we found that also in the conserved quantities of the Klein-Gordon
field the non vanishing commutators are always built with the operators b
of the anti-fields, but not with the operators a of the fields. See (15.17b).

Instead the formal cause for the dissymmetry is this: The field operators
always have the form

ψ = . . . a . . .+ . . . b† . . . , ψ† = . . . a† . . .+ . . . b . . . .

The operators of the conserved quantities never are products of the form
ψ . . . ψ† . . .. Instead they always are products of the form

. . . ψ† . . . ψ . . . = . . . a†a . . .+ . . . a†b† + . . . ba . . .︸                      ︷︷                      ︸
0

+ . . . bb† . . . .
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The mixed terms in all cases are zero, and the non vanishing commutators
are in all cases caused by the terms . . . bb† . . ..

We conclude this section with the computation of the vacuum expectation
values of the ES-tensor:

〈0|T ρσ|0〉 (16.12)=

=


∑
k

−2c2~2kρkσ

~ωk

(7.18)=
∑
k

−2c~kρkσ√
k2 +m2c2/~2

for discrete fields

0 for elementary fields
(16.17)

The factor 2 results from the summation over the polarization index, and
the factor (−1) is caused by the quantization of fermion fields with the
anti-commutator relation (14.74b). The vacuum expectation values of the
(hypothetical) discrete Dirac field differ by the factor −2 from the vacuum
expectation values (15.21) of the complex (i. e. charged) discrete Klein-
Gordon field, and by a further factor 2 (i. e. in total by the factor −4) from
the vacuum expectation values (15.50) of the real discrete Klein-Gordon
field.
The vacuum expectation values of the ES-tensors of elementary Dirac

fields are zero.

16.3 Quanta of the Dirac Field

We define the states

|1ark〉 ≡ ra†k|0〉 |1brk〉 ≡ rb†k|0〉 (16.18)

as one-particle-states of the Dirac field, in which one particle a or one
antiparticle b with wave number k is excited in spin state r. These are
eigenstates of the Hamilton operator, of the momentum operator, and of
the charge operator (and of further operators). The normalization of these
states is lorentz-invariant because of
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〈1asf |1ark〉 = 〈0| saf ra†k|0〉 =(16.5) 〈0|0〉︸  ︷︷  ︸
1

δrs δfk − 〈0| ra†k
saf |0〉︸             ︷︷             ︸

0

〈1bsf |1brk〉 =(16.5) δrs δfk

〈1bsf |1ark〉 =(16.5) 0 . (16.19)

One-particle-functions, which are eigenstates of the time-dependent position
operator, can be created due to application of the components of the field
operators

ψ(x) =(16.1a)
∑
k,r

1√
2~ωkΩ

(
rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)
ψ(x) =

∑
k,r

1√
2~ωkΩ

(
ra†k

rūk exp{+ikx}+ rbk
rv̄k exp{−ikx}

)
onto the vacuum state:

|1ax〉α ≡ ψα(x) |0〉 =
∑
k,r

|1ark〉 rūkα
exp{+ikx}√

2~ωkΩ
(16.20a)

|1by〉β ≡ ψβ(y) |0〉 =
∑
f ,s

|1bsf 〉 svfβ
exp{+ify}√

2~ωfΩ
(16.20b)

α, β = 1, 2, 3, 4 are the indices of the four spinor components. One-particle-
functions, which are eigenstates of the time-independent position operator,
can be created due to application of the time-independent operators in the
Schrödinger-picture:
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|1ax〉α ≡ ψα(x) |0〉 =
∑
k,r

|1ark〉 rūkα
exp{−ikx}√

2~ωkΩ
(16.20c)

|1bx〉α ≡ ψα(x) |0〉 =
∑
k,r

|1brk〉 rvkα
exp{−ikx}√

2~ωkΩ
(16.20d)

Note, that the spin of these localized particles is not well-defined. The
adjoint state functions are created per definition due to the components of
the adjoint spinors:

|1ax〉α = ψα(x) |0〉 =⇒ 〈1ax|α ≡ 〈0|ψα(x) (16.21a)
|1by〉β = ψβ(y) |0〉 =⇒ 〈1by|β ≡ 〈0|ψβ(y) (16.21b)

The state functions are defined component by component, because oth-
erwise ψ(x) |0〉 would be a row spinor, while ψ(x) |0〉 would be a column
spinor. That would result in a meaningless difference in-between particle
and antiparticle. In particular, the norm-square would be in one case a
4× 4 spinor-matrix, in the other case a spinor-scalar. Therefore we arrange
the following

Definition: Any |ket〉 of a spinor field is a row spinor.
Any 〈bra| of a spinor field is a column spinor.

(16.22)

Hence any 〈bra|ket〉 of a spinor field is a spinor-matrix, but not a spinor-
scalar.
Not the complete |kets〉, but their single |spinor-components〉α therefore

are to be considered as the elements of the countable infinite-dimensional
Hilbert space of state-functions. The scalar-product 〈bra|ket〉αβ is a bilinear
map of the Hilbert space, whose elements are the |spinor-components〉α,
onto the field of complex numbers. The products 〈bra|ket〉 are 4 × 4-
dimensional spinor-matrices, whose 16 elements are complex numbers. In
the following section we will see, that the definitions (16.21) and (16.22)
are mandatory, to achieve consistency with the definition (12.27) of the
Feynman-propagator of the classical Dirac field.
We now are going to compute the squares of the vectors (16.20). The

components
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〈1ax|1ay〉αβ = 〈0|ψα(x)ψβ(y) |0〉 =

=
∑
f ,k,s,r

〈1asf |1ark〉︸           ︷︷           ︸
δrs δfk

sufα
rūkβ

exp{−i(fx− ky)}
Ω2~√ωfωk

=

=
∑
k,r

rukα
rūkβ

exp{−ik(x− y)}
Ω2~ωk

(16.23)

are defining the 4× 4 spinor matrix

〈1ax|1ay〉 = 〈0|ψ(x)ψ(y) |0〉 =
∑
k,r

ruk rūk
exp{−ik(x− y)}

Ω2~ωk
. (16.24)

And the components

〈1by|1bx〉αβ = 〈0|ψα(y)ψβ(x) |0〉

=
∑
f ,k,s,r

〈1bsf |1brk〉︸          ︷︷          ︸
δrs δfk

sv̄fα
rvkβ

exp{−i(fy − kx)}
Ω2~√ωfωk

=
∑
k,r

rv̄kα
rvkβ

exp{−ik(y − x)}
Ω2~ωk

(16.25)

are defining the 4× 4 spinor matrix

〈1by|1bx〉 = 〈0|ψ(y)ψ(x) |0〉 (16.22)=
∑
k,r

rvk rv̄k
exp{−ik(y − x)}

Ω2~ωk
. (16.26)

Contained within these matrices are the 4× 4 spinor matrices

2∑
r=1

ruk rūk
(8.77a)= cγµpµ +mc2 (16.27a)

2∑
r=1

rvk rv̄k
(8.77b)= −(−cγµpµ +mc2) , (16.27b)

which we already encountered in the investigation of the classical Dirac field
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in section 8.5. They have not been modified by the field’s quantization. By
insertion, we find

〈1ax|1ay〉 =
∑
k

(c~γµkµ +mc2) exp{−ik(x− y)}
2~ωkΩ (16.28a)

〈1by|1bx〉 = −
∑
k

(−c~γµkµ +mc2) exp{−ik(y − x)}
2~ωkΩ (16.28b)

〈1ax|1by〉 =(16.19) 0 . (16.28c)

These matrix elements are lorentz-invariant. From the respective matrix
elements (15.41) of the Klein-Gordon field, they differ by the spinor matrices
±(±c~γµkµ + 1mc2).

16.4 The quantized Greens-function

The 4× 4 spinor matrix

〈1ax|1ay〉 = 〈0|ψ(x)ψ(y) |0〉 (16.28a)=
∑
k

(c~γµkµ +mc2) exp{−ik(x− y)}
2~ωkΩ

(16.29)

is interpreted as the probability amplitude for the creation of a particle at
time y0 at position y and it’s subsequent annihilation at time x0 at position
x. The 4× 4 spinor matrix

〈1by|1bx〉 = 〈0|ψ(y)ψ(x) |0〉 (16.28b)=

= −
∑
k

(−c~γµkµ +mc2) exp{−ik(y − x)}
2~ωkΩ (16.30)

is interpreted as the probability amplitude for the creation of an antiparticle
at time x0 at position x and it’s subsequent annihilation at time y0 at
position y. We compare these matrices with the Feynman-propagator of
the classical Dirac field, which was derived in section 12.2:
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S(x− y) (12.27)= θ(x0 − y0)
∑
k

(+γµcpµ +mc2) exp{−ik(x− y)}
Ω2~ωk

+

+ θ(y0 − x0)
∑
k

(−γµcpµ +mc2) exp{−ik(y − x)}
Ω2~ωk

Thus obviously

S(x− y) = θ(x0 − y0)〈0|ψ(x)ψ(y) |0〉+
− θ(y0 − x0)〈0|ψ(y)ψ(x) |0〉

= 〈0|Tψ(x)ψ(y) |0〉

(16.31)

is the Feynman-propagator of the quantized Dirac field. In the last line the
time-order operator is used, which has been defined in (15.44).

16.5 Causality

Like we have done for the Klein-Gordon field in section 15.6, we now want
to check also for the Dirac field, that the criterion of causality of Special
Relativity Theory is not violated. Thats not obvious, because in the
classical Greens function we admitted waves, which are propagating faster
than light. Let x and y be two space-time points with space-like distance,
i.e. (x− y)2 < 0. Creation and annihilation of particles at these two space-
time points must not mutually interfere. Formally this does mean, that
their anti-commutator must be zero. (As the Dirac field has been quantized
according to (14.74b) with the anti-commutator, we must in the present
investigation again use the anti-commutator.)

Let the Dirac field be in state |s〉. Due to ψ(x)|s〉, at time x0/c at position
x a particle a is annihilated and it’s antiparticle b is created. Due to ψ(y)|s〉,
at time y0/c at position y a particle a is created and it’s antiparticle b is
annihilated. The expectation value of their anti-commutator is



16.5 Causality 315
〈s| {ψ(x), ψ(y)} |s〉 =

= 〈s|s〉
(∑

k

(c~γµkµ +mc2) exp{−ik(x− y)}
2~ωkΩ

−
∑
k

(−c~γµkµ +mc2) exp{−ik(y − x)}
2~ωkΩ

)
. (16.32)

As the commutator isn’t an operator, it could be extracted out of the
product 〈s|s〉. And because the commutator is lorentz-invariant, it can be
transformed — without changing it’s value — into a primed coordinate
system′, in which x′0 − y′0 = 0 . Such a coordinate systems does exist,
because the relation of the space-time points x and y is space-like.

{ψ′(x′), ψ ′(y′)} =

=
∑
k′

(c~γ0k′0 − c~γ · k′ +mc2) exp{+ik′(x′ − y′)}
2~ωk′Ω′

−
∑
−k′

(−c~γ0k′0 − c~γ · k′ +mc2) exp{−ik′(y′ − x′)}
2~ωk′Ω′

In the last line, the sum over −k′ was computed, respecting ω−k′ = ωk′ .
Because of ck′0 = ωk′ and (7.9), one finds

{ψ′(x′), ψ ′(y′)} = γ0 δ(3)(x′ − y′) . (16.33)

Therefore the commutator indeed is zero provided x′ , y′, in compliance
with Relativity Theory.

If we had quantized the Dirac field not by means of the anti-commutator
(14.74b) but by means of the commutator (14.74a), then consequently we
would also have to perform the present computation with the commutator,
and achieve instead of (16.33) the result

[ψ′(x′), ψ ′(y′)] =
∑
k′

(−c~γ · k′ +mc2)
~ωk′

exp{+ik′(x′ − y′)}
Ω′ .

The causality criterion of Relativity Theory would be violated, because this



316 16 The Free Dirac Field

result can be different from zero even in case of x′ , y′. The criterion of
causality of Relativity Theory enforces the quantization of all fields with
integer spin (including spin zero) by means of the commutator (14.74a),
and the quantization of all fields with half-integer spin by means of the anti-
commutator (14.74b). We have confirmed this rule for the example of the
Klein-Gordon field (spin 0) in section 15.6, and we now confirmed it again
for the example of the Dirac field (spin 1

2).
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17 The Free Gauge-FieldA(x)

In section 4.5, we identified the gauge field of the electrically charged Dirac
field with the potential field

A(x) =
(
φ(x)/c
A(x)

)
(17.1)

of Maxwell’s electrodynamics. Furthermore we found the combined La-
grangian (4.120) of the Dirac field and it’s gauge field. The Lagrangian of
the free field A(x) follows from (4.120) by switching the Dirac field off:

L (4.120)= − 1
4µ0

FστF
στ (17.2a)

In this Lagrangian,

Fστ
(4.114)
≡ dσAτ − dτAσ (17.2b)

is the electromagnetic field strength tensor. We had good reasons to con-
struct the Lagrangian as the product of rotational terms: By that method,
the invariance of the theory under local phase-transformations could be
guaranteed. At the same time, considerable side-effects are resulting from
this form of L for the quantization of A. These side effects become obvious
already, when we compute the canonically conjugate momentum densities:

π0 ≡ ∂L
c∂(d0A0) =

= − 1
4µ0

∂

c∂(d0A0)(dσAτ − dτAσ)(dσAτ − dτAσ) = 0 (17.3a)
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πj ≡ ∂L
c∂(d0Aj)

= − 1
4µ0

∂

c∂(d0Aj)
(dσAτ − dτAσ)(dσAτ − dτAσ)

= − 1
4µ0c

(
(d0Aj − djA0)− (djA0 − d0Aj)

)
· 2

= + 1
µ0c

(−d0A
j − djA0) (4.127a)= + 1

µ0c2E
j (17.3b)

The null-component of A(x) can not be quantized canonically, because it’s
conjugate momentum density is zero. This again is caused by the fact, that
L is a product of the rotational terms dσAτ − dτAσ. Only the three space-
like components of A(x) can be quantized canonically. Note, that according
to (17.3) the contravariant components of π(x) are canonically conjugate to
the covariant components of A(x).

In section 17.3 we will — when investigating the spin of photons — supply
the proof of the integer spin of the gauge field’s quanta. Therefore the
gauge field must be quantized according to (14.74a). We postulate (only
preliminary !) the non-commuative algebra

[Aj(t,x),πl(t,y)] = 1
µ0c2 [Aj(t,x), El(t,y)] =

= i~δ(3)(x− y)gj l only preliminary ! , (17.4)

in which both factors in the commutator are to be inserted with identical
time t. This quantization rule is marked as “only preliminary”, because it is
inconsistent. The sources of the electric field E are the charges of the Dirac
field’s quanta. As we switched off the Dirac field for the computation of the
free field A, the electric field E is free of sources, and thus it’s divergence is
zero:

∇ · E = 0

Therefore the divergence with respect to the coordinate y on the left side
of (17.4) is zero as well:
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d
dyl [Aj(t,x), πl(t,y)] = 1

µ0c2 [Aj(t,x), dEl(t,y)
dyl︸         ︷︷         ︸

0

] = 0 (17.5a)

But the divergence of the right side of (17.4) is not zero:

d
dyl δ

(3)(x− y)gj l =(7.9) d
dyj

1
Ω
∑
k

exp{ik(x− y)}

= − 1
Ω
∑
k

ikj exp{ik(x− y)} , 0 (17.5b)

17.1 Canonical Quantization

From the fact, that the factors of L have the form of rotational terms, further
complications are arising: A is invariant under the gauge transformation

Aν(x) −→ A′ν(x) = Aν(x) + dνf(x) , (17.6)

where f(x) can be an arbitrary analytical function. “Analytical” does mean,
that

dσdτf = dτdσf .

The gauge transformation leaves the field-strength tensor — and conse-
quently all observable quantities — invariant due to

F ′στ = dσAτ + dσdτf − dτAσ − dτdσf = Fστ .

Due to this gauge-invariance, the four-divergence

dνA′ν = dν(Aν + dνf) = dνAν + dνdνf

of the field A can be chosen arbitrarily due to an appropriate definition of
dνdνf . Choosing

dνdνf ≡ −dνAν =⇒ dνA′ν = 0 , (17.7)
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one gets the Lorentz-gauge, which reduces the field’s degrees of freedom
from four to three. Specifying in addition

dνdνf ≡ −dνAν and d0f ≡ −A0 =⇒

=⇒ A′0 = 0 and ∇ ·A′ = 0 , (17.8)

the field’s degrees of freedom are reduced to two. The free gauge field A(x)
has only two linearly independent components, but it must be transformed
as a vector-field with four space-time dimensions when the coordinate system
is changed. The fact that two redundant components, which can be fixed
arbitrarily due to gauge transformations, must be dragged through all
equations, is the real cause for the peculiar difficulties, which we are facing
in the quantization of this field.
The gauge (17.8) is called Coulomb-gauge or radiation-gauge. It’s ad-

vantage is, that the field’s both redundant, only seemingly independent
components are fixed. In particular the null-component has disappeared,
which — see (17.3a) — can anyway not be quantized canonically for purely
formal reasons. The disadvantage of the Coulomb-gauge is, that the man-
ifest Lorentz-covariance is lost, because in (17.8) not all four space-time
coordinates are handled symmetrically, but the time coordinate is treated
special. When we in the sequel quantize A(x) in the Coulomb-gauge, then
it is not obvious, whether our results are compatible with Special Relativity
Theory. To prove the Lorentz-invariance of our results, we therefore will
quantize the gauge field in section 17.4 once again by another method.

In addition to the unit vectors defined in section K.5, we define a further
system e

(0)
k , e

(1)
k , e

(2)
k , e

(3)
k of four orthonormal four-dimensional unit vectors.

The orientation of the three space-like unit vectors depends on the wavenum-
ber vector k of the field A(x), while the unit vectors in time-direction in
both systems are identical:
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e

(α)
k · e

(β)
k = gαβ , e

(0)
k = e(0)

e
(α)
k =

(
e

(α)0
k

e
(α)
k

)
, e

(1)
k × e

(2)
k = e

(3)
k = k

|k|

with α = 0, 1, 2, 3 and β = 0, 1, 2, 3 (17.9a)

Only e
(0)
k and e

(3)
k are uniquely determined due to these relations. The

remaining indeterminacy of the two other vectors is of no importance for
the moment being. Furthermore we add to the definition a phase-factor ϕα,
which may be chosen differently for each coordinate:

ε
(α)
k ≡ e(α)

k exp{iϕα} (17.9b)

The field equation

dνF νρ
(4.125)= µ0j

ρ with ρ = 0, 1, 2, 3 ,

which we derived in section 4.5, assumes for the source-free (jρ = 0) field
with (17.2b) the form

dνdνAρ − dρ dνAν︸  ︷︷  ︸
(17.7)

= 0

= 0 with ρ = 0, 1, 2, 3 .

Because of A0 (17.8)= 0, in the Coulomb-gauge only the three equations

dνdνAj = 0 with j = 1, 2, 3 (17.10)

are non-trivial. Each of the three equations has the form of the Klein-
Gordon equation (10.2) of a field with mass zero. Therefore a solution of
equation (17.10) can be immediately transferred from the Klein-Gordon
field. Using the unit vectors (17.9), the solution can be written as



322 17 The Free Gauge-Field A(x)

A(x) (10.8)=
∑
k

2∑
v=1

1√
NΩ

(
ε

(v)
k c

(v)
k exp{−ikx}+ ε(v)∗

k c
(v)∗
k exp{+ikx}

)
.

(17.11)

Here we are using the three-dimensional, boldface-printed unit vectors,
because the time-like component A0 is zero in the Coulomb-gauge. And the
summation is running only over the both polarization vectors ε(1)

k and ε(2)
k ,

because only these components, but not ε(3)
k , meet the condition

∇ ·A (17.8)= 0 =⇒ ε
(v)
k · k = 0

of the Coulomb-gauge. The free field A(x) has no longitudinal component.
It’s polarization is always transversal (elliptical or circular or linear).
We want to avoid the need to consider innumerous distinctions of cases.

Therefore we will perform the quantization of the field A(x) only for linearly
polarized waves

A(x) =
∑
k

2∑
v=1

1√
NΩ

e
(v)
k

(
c

(v)
k exp{−ikx}+ c

(v)∗
k exp{+ikx}

)
. (17.12)

Waves with elliptical polarization, which propagate in direction of the x3-
axis, can be described by adding to a wave, which is linearly polarized in
x1-direction and propagating in x3-direction, another wave which is linearly
polarized in x2-direction and propagating in x3-direction, where both waves
have same amplitude and a phase difference of ϕ:

A(elliptical) =
√

1
2

(
e

(1)
k A1 + e(2)

k A2 exp{iϕ}
)

(17.13)

In the special case ϕ = ±π/2, one gets left- or right-circular polarized waves.
We will construct the field-operators of elliptically- resp. circular-polarized
fields by that method, after we have quantized linearly polarized fields and
found their field-operators.
As the gauge field A(x) is not charged, it is real. Therefore we are

dealing with the Fourier-coefficients c(v)∗
k , but there are no coefficients d(v)∗

k
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being different from c

(v)∗
k . As the dimension of A is momentum·charge-1,

and because the Fourier-coefficients as usual shall be dimensionless, the
dimension of the normalization factor N must be charge2·momentum-2·vol-
ume-1. We choose the definition

N ≡ 2~ωk
µ0c2~2

, (17.14)

by which the field becomes

Aj
(K.13a)= e(j)·A =

∑
k

2∑
v=1

√
µ0c2~2

2~ωkΩ(e(v)
k ·e

(j)) ·

·
(
c

(v)
k exp{−ikx}+ c

(v)∗
k exp{+ikx}

)
(17.15a)

with j = 1, 2, 3. The momentum density canonically conjugate to Al(y) is

πl(y) =(17.3b)= 1
µ0c2E

l(y) (4.127a)= 1
µ0c

(−d0A
l − dl A0︸︷︷︸

(17.8)
= 0

)

= −1
µ0c

∑
f

2∑
u=1

√
µ0c2~

2ωfΩ if0(e(u)
f ·e

(l)) ·

· (−c(u)
f exp{−ify}+ c

(u)∗
f exp{+ify}) . (17.15b)

With f0 = ωf/c and Aj = −Aj , the commutator of Aj and πl becomes

[Aj(t,x), πl(t,y)] =
∑

k,v,f ,u

i~

2Ω

√
ωf
ωk

(e(v)
k ·e

(j))(e(u)
f ·e

(l)) ·

·
(
− [c(v)

k , c
(u)
f ] exp{−i(kx+ fy)}

+ [c(v)
k , c

(u)∗
f ] exp{−i(kx− fy)}

− [c(v)∗
k , c

(u)
f ] exp{+i(kx− fy)}

+ [c(v)∗
k , c

(u)∗
f ] exp{+i(kx+ fy)}

)
. (17.16)

We have quantized the Klein-Gordon field and the Dirac field by postulating
a non-commutative algebra for their field amplitudes and their canonically
conjugate momenta according to (14.74). From those relations, the algebra of
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the Fourier-operators (which were interpreted as creation- and annihilation-
operators of field quanta) could be computed. After our attempt, to quantize
the gauge field A(x) in the same manner, has failed in (17.4), we now proceed
in opposite sequence. We promote the Fourier-coefficients to operators c(v)

k

and c(v)†
k , and postulate for them a non-commutative algebra. From that

we then will derive the algebra of the operators A(x) and π(x).
Considering (15.6) and (16.5), it seems reasonable to postulate this alge-

bra:

[c(v)
k , c

(u)†
f ] = δkf gv

u

[c(v)
k , c

(u)
f ] = [c(v)†

k , c
(u)†
f ] = 0

with u = 1, 2 and v = 1, 2

(17.17)

We emphasize, that this quantization specification can not be “derived”.
Like the general quantization specification (14.74), it was found by guessing,
and can be justified only by the fact, that the theory, which was derived
from it, turns out successful and correct in all experimental tests.
Inserting (17.17) into (17.16) results into

[Aj(t,x), πl(t,y)] =
∑
k

2∑
v=1

i~

2Ω(e(v)
k ·e

(j))(e(v)
k ·e

(l))
(

exp{+ik(x− y)}+ exp{−ik(x− y)}
)
. (17.18)

As A and π must be inserted into the commutator with x0 = y0, the time-
coordinate has disappeared form the exponential functions. Furthermore
the sequence of summands may be changed, because the sum is running
symmetrically over all positive and negative wavenumbers k:
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[Aj(t,x), πl(t,y)] = i~

2Ω
∑
k

2∑
v=1

exp{+ik(x− y)}
(
(e(v)
k ·e

(j))(e(v)
k ·e

(l)) + (e(v)
-k ·e

(j))(e(v)
-k ·e

(l))
)

= i~
1
Ω
∑
k

exp{+ik(x− y)}︸                              ︷︷                              ︸
δ(3)(x−y)

2∑
v=1

(e(v)
k ·e

(j))(e(v)
k ·e

(l)) . (17.19)

Here e(v)
-k = −e(v)

k for v , 0 has been used.
To evaluate the last factor, we expand the space-like unit vectors e(j) and

e(l) with respect to the space-like polarization vectors:

e(j) (K.13b)=
3∑
v=1

(e(v)
k ·e

(j))e(v)
k e(l) (K.13b)=

3∑
u=1

(e(u)
k ·e

(l))e(u)
k

Thus the product of these both vectors is

e(j)·e(l) =(K.13c)
gj
l =

3∑
v=1

3∑
u=1

(e(v)
k ·e

(j))(e(u)
k ·e

(l)) e(v)
k ·e

(u)
k︸       ︷︷       ︸

gvu

=
3∑
v=1

(e(v)
k ·e

(j))(e(v)
k ·e

(l)) .

From that follows
2∑
v=1

(e(v)
k ·e

(j))(e(v)
k ·e

(l)) = gj
l − (e(3)

k ·e
(j))(e(3)

k ·e
(l))

= gj
l − ( k

|k|
·e(j))( k

|k|
·e(l))

= gj
l + kjk

l

k2 . (17.20)

This is inserted into (17.19):
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[Aj(t,x), πl(t,y)] = i~∆j
l(x− y) (17.21)

Here the “transversal delta-function”

∆j
l(x− y) ≡ 1

Ω
∑
k

(
gj
l + kjk

l

k2

)
exp{+ik(x− y)} (17.22)

has been used, which should be compared to the “usual” delta function in
the form (7.9). The divergence of the transversal delta function is zero:

dj∆j
l(x− y) = 1

Ω
∑
k

(
dl + kjk

l

k2 dj
)

exp{ik(x− y)} =

= 1
Ω
∑
k

(
ikl + i kj

kj

k2︸  ︷︷  ︸
−1

kl
)

exp{ik(x− y)} = 0 (17.23)

Here we returned to the divergence −dj ≡ dj ≡ d/dxj with respect to
the coordinate x. The divergence with respect to the coordinate y is
zero as well. If the right-handed coordinate system xj , xl, xm is rotated
such that km = |k| and kj = kl = 0 , then (17.21) simplifies to (17.4).
With other orientations of the coordinate system, the term +kjkl/k2 in
(17.21) is compensating, that the field A(x) does not have a longitudinal
component. Thus (17.21) is “in a sense” identical to the general quantization
rule (14.74a). The additional term +kjkl/k2 merely makes allowance to the
fact, that due to the gauge invariance (17.6) only two of the four components
of the free field A(x) are independent.

17.2 Conserved Quantities

The electromagnetic field’s Lagrangian is

L =(17.2) − 1
4µ0

(dµAν − dνAµ)(dµAν − dνAµ) . (17.24)

The electromagnetic field is an elementary, i. e. a continuous, field. Different
from the cases of the Klein-Gordon field and the Dirac field, we do not
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assume that there might exist a discrete electromagnetic field, but consider
exclusively the elementary field. Like in (15.18) and in (16.11), we postulate
that in case of the electromagnetic field as well all terms in the ES-tensor
(energydensity-stress tensor), which do not depend on the particle-number
operators, must be removed.

classical electromagnetic field:

T στ (4.32)= ∂L
∂(dσAρ)

dτAρ− gστL

= − 1
µ0

(dσAρ − dρAσ) dτAρ − gστL (17.25a)

quantized electromagnetic field:

T στ = ∂L
∂(dσAρ)

dτAρ− gστL − Y

= − 1
µ0

(dσAρ − dρAσ) dτAρ − gστL − Y (17.25b)

Y ≡ the sum of all terms in (17.25a), which do not
depend on the particle-number operators c(u)†

k c
(u)
k

Because of A0 ≡ 0, the Lagrangian may be written in the form

L = − 1
2µ0

(
(dσAj)dσAj − (djAl)dlAj

)
. (17.26)

Inserting the field operators (17.15a), the ES-tensor becomes
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T στ = − Y − 1
µ0

∑
k,f

2∑
u,v=1

µ0c
2~2

2~Ω√ωkωf
i2
[

−
3∑
j=1

(e(v)
k ·e

(j))(e(u)
f ·e

(j)) ·

·
(
− kτ c(v)

k exp{−ikx}+ kτ c
(v)†
k exp{+ikx}

)
·

·
(
− fσc(u)

f exp{−ifx}+ fσc
(u)†
f exp{+ifx}

)
+

+ (1− gσ0)
3∑
j=1

(e(v)
k ·e

(j))(e(u)
f ·e

(σ)) ·

·
(
− kτ c(v)

k exp{−ikx}+ kτ c
(v)†
k exp{+ikx}

)
·

·
(
− f jc(u)

f exp{−ifx}+ f jc
(u)†
f exp{+ifx}

)
+

+
3∑
j=1

gστ

2 (e(v)
k ·e

(j))(e(u)
f ·e

(j)) ·

·
(
− kρc(v)

k exp{−ikx}+ kρc
(v)†
k exp{+ikx}

)
·

·
(
− fρc(u)

f exp{−ifx}+ fρc
(u)†
f exp{+ifx}

)
+

+
3∑
j=1

3∑
l=1

gστ

2 (e(u)
f ·e

(l))(e(v)
k ·e

(j)) ·

·
(
− fjc(u)

f exp{−ifx}+ fjc
(u)†
f exp{+ifx}

)
·

·
(
− klc(v)

k exp{−ikx}+ klc
(v)†
k exp{+ikx}

)]
. (17.27)

Here the summation symbols have been written explicitly, because we don’t
sum automatically over the bracketed names (v) of the unit vectors. Note
that e(σ) = 0 for σ = 0. As a reminder the factor (1− gσ0) was inserted.

Now we rotate the coordinate system such, that it becomes congruent to
the system which is aligned to the polarization of the field A(x):
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(e(u)
k ·e

(j)) (K.13c)= gu
j and k =

 0
0
k3

 (17.28)

That simplifies the ES-tensor to

T στ = − Y − 1
µ0

∑
k,f

2∑
u,v=1

µ0c
2~2

2~Ω√ωkωf
i2
[

− fσkτ
(
− c(v)

k exp{−ikx}+ c
(v)†
k exp{+ikx}

)
·

·
(
− c(v)

f exp{−ifx}+ c
(v)†
f exp{+ifx}

)
+

+ (1− gσ0)gσufvkτ ·

·
(
− c(v)

k exp{−ikx}+ c
(v)†
k exp{+ikx}

)
·

·
(
− c(u)

f exp{−ifx}+ c
(u)†
f exp{+ifx}

)
+

+ gστ

2 kρf
ρ
(
− c(v)

k exp{−ikx}+ c
(v)†
k exp{+ikx}

)
·

·
(
− c(v)

f exp{−ifx}+ c
(v)†
f exp{+ifx}

)
+

+ gστ

2 fvk
u
(
− c(u)

f exp{−ifx}+ c
(u)†
f exp{+ifx}

)
·

·
(
− c(v)

k exp{−ikx}+ c
(v)†
k exp{+ikx}

)]
. (17.29)

fv = ku = 0 due to (17.28). Thus only two terms survive.

T στ = −Y + 1
Ω
∑
k,f

2∑
v=1

c2~2

2~√ωkωf

(
− fσkτ + gστ

2 kρf
ρ
)
·

·
(

+ c
(v)
k c

(v)
f exp{−i(k + f)x} − c(v)

k c
(v)†
f exp{−i(k − f)x}

− c(v)†
k c

(v)
f exp{+i(k − f)x}+ c

(v)†
k c

(v)†
f exp{+i(k + f)x}

)
Integrating over the total normalization volume Ω, one finds the operator
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T στ ≡
∫
Ω

d3x T στ . (17.30)

To make use in this integral of the Kronecker-symbol in the form (16.3), we
invert in two terms the signs of f . This is possible, as the sum is running
over all positive and negative f . Using ω-k = ωk, one finds

T στ = −Y Ω +
∑
k

2∑
v=1

c2~2

2~ωk

(
− kσkτ + gστ

2 kρk
ρ
)
·

·
(

+ c
(v)
k c

(v)
−k exp{−i2k0x0} − c(v)

k c
(v)†
k −

− c(v)†
k c

(v)
k + c

(v)†
k c

(v)†
−k exp{+i2k0x0}

)
. (17.31)

The frequency 2k0c of the Zitterbewegung (see the discussion at (8.93)) can
be arbitrarily low for the mass-less electromagnetic field. Thus these terms
can not be simply ignored on grounds of their high frequency, as we did in
case of the Dirac field and the Klein-Gordon field. We still can neglect these
terms for the following reason: The operator c(v)†

k c
(v)†
−k creates a photon with

wave-number k and polarization v, and creates a photon with wave-number
−k and polarization v. These two photons mutually compensate exactly, i. e.
the term with this operator has no net effect, and can be skipped. For the
same reason, the term with the operator c(v)

k c
(v)
−k has not net effect and can

be skipped. Furthermore kρkρ = 0, as the electromagnetic field is massless.
Thus the operator simplifies further to

T στ = −Y Ω +
∑
k

2∑
v=1

c2~2

2~ωk
kσkτ

(
c

(v)†
k c

(v)
k + c

(v)
k c

(v)†
k

)
,

and thus we get:

T στ ≡
∫
Ω

d3x T στ =
∑
k

2∑
v=1

c2~2

~ωk
kσkτ c

(v)†
k c

(v)
k (17.32)
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Using ck0 = ωk, we get in particular the Hamilton operator

H ≡ T 00 =
∑
k

2∑
v=1
~ωkc

(v)†
k c

(v)
k (17.33)

and the momentum operator

P j ≡ 1
c
T 0j =

∑
k

2∑
v=1
~kjc

(v)†
k c

(v)
k . (17.34)

In section 5.7 we derived the three space-like conserved angular momenta

M jl (5.104)=
∫
Ω

d3x
(
xjP l − xlPj

)
︸                          ︷︷                          ︸

orbital angular momentum

+
∫
Ω

d3xS0jl

︸          ︷︷          ︸
spin

(17.35)

with jl = 23, 31, 12

for arbitrary vector fields, which are defined in four-dimensional space-time.
As long as we are only considering (like we have done so far) plane waves
which are de-localized over all space, the orbital angular momenta will be
zero, because in the integral

∫
Ω d3x over all position space, the contributions

of +xj and −xj will just compensate. But even with plane waves, there
exists a spin which is different from zero:

S0jl =(5.99) 1
c

∂L
∂(d0Aj)

Al − 1
c

∂L
∂(d0Al)

Aj
(17.3b)= πjAl − πlAj

By insertion of the field-operators (17.15), the spin can be computed:
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S0jl =(17.3b) − i~

2Ω
∑
k,f

2∑
u,v=1

√
ωf
ωk
·

·
(
(e(u)
f ·e

(j))(e(v)
k ·e

(l))− (e(u)
f ·e

(l))(e(v)
k ·e

(j))
)
·

·
(
− c(u)

f exp{−ifx}+ c
(u)†
f exp{+ifx}

)
·

·
(
c

(v)
k exp{−ikx}+ c

(v)†
k exp{+ikx}

)
(17.36)

We multiply the both last lines, and exchange in two of the four terms f by
−f . That may be done, because the summation is running symmetrically
over all positive and negative f :

S0jl = − i~

2Ω
∑
k,f

2∑
u,v=1

(
√
ωf
ωk

(
(e(u)
f ·e

(j))(e(v)
k ·e

(l))− (e(u)
f ·e

(l))(e(v)
k ·e

(j))
)

(
− c(u)

f c
(v)†
k exp{−i(f0 − k0)x0} exp{+i(f − k)x}

+ c
(u)†
f c

(v)
k exp{+i(f0 − k0)x0} exp{−i(f − k)x}

)
−
√
ω-f
ωk

(
(e(u)
-f ·e

(j))(e(v)
k ·e

(l))− (e(u)
-f ·e

(l))(e(v)
k ·e

(j))
)

(
− c(u)

-f c
(v)
k exp{−i(f0 + k0)x0} exp{+i(−f + k)x}

+ c
(u)†
-f c

(v)†
k exp{+i(f0 + k0)x0} exp{−i(−f + k)x}

))
When we now integrate over the total normalization volume, then we get
the Kronecker-symbol because of

δkf
(7.12)= 1

Ω

∫
Ω

d3x exp{−i(k − f)x} . (17.37)

Considering e(u)
-k = −e(u)

k , we get the spin-operator
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Sjl ≡
∫
Ω

d3xS0jl = − i~2
∑
k

2∑
u,v=1(

(e(u)
k ·e

(j))(e(v)
k ·e

(l))− (e(u)
k ·e

(l))(e(v)
k ·e

(j))
)

(
− c(u)

k c
(v)†
k + c

(u)†
k c

(v)
k + c

(u)
-k c

(v)
k exp{−i(2k0)x0}

− c(u)†
-k c

(v)†
k exp{+i(2k0)x0}

)
. (17.38)

It’s visible from the second line, that the sum over the indices u and v is
skew-symmetric. Consequently, the both terms with exponential functions
vanish for the following reason: As the summation is symmetrically over
all positive and negative k, and as k0 according to (7.18) is identical for
k and for −k, and as the Fourier-operators with different Index (1) or (2)
commute according to (17.17), we have∑

k

(
c

(1)
-k c

(2)
k − c

(2)
-k c

(1)
k

)
exp{−i(2k0)x0} =

=
∑
k

(
c

(1)
-k c

(2)
k − c

(1)
-k c

(2)
k

)
exp{−i(2k0)x0} = 0 . (17.39)

Therefore the operator simplifies to

Sjl = i~

2
∑
k

2∑
u,v=1

(
(e(u)
k ·e

(j))(e(v)
k ·e

(l))− (e(u)
k ·e

(l))(e(v)
k ·e

(j))
)
·

·
(
c

(u)
k c

(v)†
k − c(u)†

k c
(v)
k

)
. (17.40)

The unit vectors e(j) are aligned to the axes of the laboratory coordinate
system. The unit vectors e(u)

k are by definition

e
(1)
k × e

(2)
k = e

(3)
k

(17.9)= k

|k|
(17.41)

aligned to the field’s wavenumber-vector. The sequel evaluation of (17.40)
will be simpler and clearer, if the laboratory system with the unit vectors
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e(j) is rotated such, that it becomes congruent with the system of unit
vectors e(u)

k . Then

e(j) ≡ e(j)
k for j = 1, 2, 3 . (17.42)

In the rotated coordinate system, the field propagates in direction of the
x3-axis. Because u and v only assume the values 1 and 2, all spin-operators
with j = 3 or l = 3 then are zero, and only S12 = −S21 is different from
zero.

S12 = −S21 = i~
∑
k

(
c

(1)
k c

(2)†
k − c(1)†

k c
(2)
k

)
(17.43)

Different from the energy- and momentum-operators, which we evaluated
before, this spin-operator does not have the form of a particle-number
operator c(u)+

k c
(u)
k . Therefore it’s significance is not obvious. This difficulty

appears, because — as emphasized at (17.13) — we considered only linear
polarized waves, when we quantized the field. Waves with circular polariza-
tion, which are propagating in direction of the x3-axis, can be constructed by
adding to a wave, which is linearly polarized in x1-direction and propagating
in x3-direction, another wave, which is linearly polarized in x2-direction
and propagating in x3-direction, with same amplitude and phase difference
±π/2:

A(L/R) =
√

1
2

(
A(1) +A(2) exp{±iπ/2}

)
=
√

1
2

(
A(1) ± iA(2)

)
Thus the creation-operators of right- and left-circular polarized photon are

c
(R)†
k ≡

√
1
2

(
c

(1)†
k + ic

(2)†
k

)
(17.44a)

c
(L)†
k ≡

√
1
2

(
c

(1)†
k − ic(2)†

k

)
. (17.44b)

The inverse formulae are

c
(1)†
k =

√
1
2

(
c

(R)†
k + c

(L)†
k

)
(17.45a)
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c
(2)†
k = −i

√
1
2

(
c

(R)†
k − c(L)†

k

)
. (17.45b)

Using these operators, (17.43) can be written as

S12 = −S21 = +~
∑
k

1
2

(
+ c

(R)
k c

(R)†
k − c(R)

k c
(L)†
k + c

(L)
k c

(R)†
k − c(L)

k c
(L)†
k

+ c
(R)†
k c

(R)
k − c(R)†

k c
(L)
k + c

(L)†
k c

(R)
k − c(L)†

k c
(L)
k

)
. (17.46)

Inserting the definitions (17.44), and using the relations (17.17), the com-
mutators

[c(R)
k , c

(R)†
k ] = 1

2

(
[c(1)
k , c

(1)†
k ] + [c(2)

k , c
(2)†
k ]

)
= 1 (17.47a)

[c(L)
k , c

(L)†
k ] = 1

2

(
[c(1)
k , c

(1)†
k ] + [c(2)

k , c
(2)†
k ]

)
= 1 (17.47b)

[c(R)
k , c

(L)†
k ] = 1

2

(
[c(1)
k , c

(1)†
k ]− [c(2)

k , c
(2)†
k ]

)
= 0 (17.47c)

[c(L)
k , c

(R)†
k ] = 1

2

(
[c(1)
k , c

(1)†
k ]− [c(2)

k , c
(2)†
k ]

)
= 0 (17.47d)

can be computed. Thus one finds

S12 = −S21 =

= +~
∑
k

1
2

(
2c(R)†
k c

(R)
k + [c(R)

k , c
(R)†
k ]− [c(L)

k , c
(L)†
k ]︸                               ︷︷                               ︸

0

−2c(L)†
k c

(L)
k

)
,

and the operator for the conserved spin of a field, which is propagating in
direction of the positive x3-axis, becomes

=S12 + ~
∑
k

(
c

(R)†
k c

(R)
k − c(L)†

k c
(L)
k

)
. (17.48)
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17.3 Photons

For the sake of a simple and clear notation, we continue to use — according
to (17.42) — a coordinate system, whose x3-axis is rotated into the direction
of the field’s propagation. When the creation operators c(1)†

f and c(2)†
f are

acting onto the vacuum state |0〉, they create photons, which are propagating
in parallel to the x3-axis, which are linear polarized in parallel to the x1-
resp. x2-axis, and whose wavenumber is f :

c
(1)†
f |0〉 = |1f1〉 c

(2)†
f |0〉 = |1f2〉 (17.49)

The large 1 in the state-functions signifies as usual, that 1 quantum of the
field is excited to this state. The normalization of these state-functions is
Lorentz-invariant:

〈1ku|1fv〉 = 〈0| c(u)
k c

(v)†
f |0〉 = 〈0|0〉︸  ︷︷  ︸

1

[c(u)
k , c

(v)†
f ] + 〈0| c(v)†

f c
(u)
k |0〉︸               ︷︷               ︸

0

=(17.17) δkf gvu (17.50)

Circular polarized photons are created by

c
(R)†
f |0〉 = |1fR〉 =

√
1
2

(
c

(1)†
f + ic

(2)†
f

)
|0〉

=
√

1
2

(
|1f1〉+ i|1f2〉

)
(17.51a)

c
(L)†
f |0〉 = |1fL〉 =

√
1
2

(
c

(1)†
f − ic(2)†

f

)
|0〉

=
√

1
2

(
|1f1〉 − i|1f2〉

)
. (17.51b)

The inverse relations are

|1f1〉 =
√

1
2

(
|1fR〉+ |1fL〉

)
(17.52a)

|1f2〉 = −i
√

1
2

(
|1fR〉 − |1fL〉

)
. (17.52b)
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The circular polarized photons are eigenstates of the spin operator S12 with
eigenvalues ±~ :

S12 |1fR〉 = +~ |1fR〉 (17.53a)
S12 |1fL〉 = −~ |1fL〉 (17.53b)

Remarkably the photon’s spin does not depend on the value of the wavenum-
ber. It’s spin-component in direction of propagation always is +~ or −~,
it’s spin-component in a direction, which is orthogonal to the direction of
propagation, is always zero. Physically more correct is the wording: If the
spin of a photon is measured, then it’s value is always ±~ parallel to the
photon’s direction of propagation. It would not be correct to say, that each
photon “has” that spin. If a photon has been reflected from a plane glass
surface under the Brewster-angle, then it has a well-defined transversal
polarization, for example in space direction x2. The state function of this
photon is |1f2〉. The expectation value of it’s spin is

〈1f2|S12|1f2〉
(17.52b)= 1

2

(
〈1fR|S12|1fR〉 − 〈1fR|S12|1fL〉−

− 〈1fL|S12|1fR〉+ 〈1fL|S12|1fL〉
)

=

= 1
2~
(

+ 〈1fR|1fR〉︸          ︷︷          ︸
1

+ 〈1fR|1fL〉︸         ︷︷         ︸
0

−〈1fL|1fR〉︸         ︷︷         ︸
0

−〈1fL|1fL〉︸         ︷︷         ︸
1

)
= 0 . (17.54)

This is not to say, that a photon in state |1f2〉 has spin zero. If the spin of a
large set of photons is measured, which all have been prepared in the state
|1f2〉, then one will find the results +~ and −~ with equal frequency. The
result zero is never observed, when the spin of arbitrarily prepared photons
is measured.

There is no one-photon-eigenstate of the spin operator S12 with eigenvalue
~ = 0. If the spin of a massive particle is J , then the spin’s projection onto
an arbitrary axis can assume one of the values J, J − ~, J − 2~, . . . ,−J . For
the photon, the value zero is missing, because it’s rest mass is zero. It’s
a consequence of the vanishing rest mass of the photon, that it is either
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approaching the observer at the speed of light, or it is moving off from the
observer at the speed of light. The observer can not transform himself into
a coordinate system, in which he could “see the photon from the side” and
measure the spin projection zero. Even though the projection of the spin
onto the axis of propagation of the photon can only assume two values, the
spin’s value is 1~. Thus the photon is a boson, and therefore the gauge field
A(x) has been quantized according to (14.74a).
We define the operator

L12|1k1〉 = +1|1k1〉 L12|1k2〉 = −1|1k2〉 . (17.55)

This operator is describing the measurement of the linear polarization of
photons. The expectation value of the linear polarization of a photon, which
has been prepared in a state with circular polarization, is

〈1kR|L12|1kR〉
(17.51a)= 1

2

(
〈1k1|L12|1k1〉+ i〈1k1|L12|1k2〉+

− i〈1k2|L12|1k1〉+ 〈1k2|L12|1k2〉
)

= 1
2

(
+ 〈1k1|1k1〉︸        ︷︷        ︸

1

−i 〈1k1|1k2〉︸        ︷︷        ︸
0

−i 〈1k2|1k1〉︸        ︷︷        ︸
0

−〈1k2|1k2〉︸        ︷︷        ︸
1

)
= 0 . (17.56)

Circular polarized photons are either reflected or transmitted, if they impinge
under the Brewster-angle onto a flat glass surface. In case of reflection, they
are linearly polarized after the measurement, say in x2-direction, and the
result of the measurement is the eigenvalue −1 of the operator L12. In case
of transmission, the photons are transversally polarized in direction x1 after
the measurement, and the result of the measurement is the eigenvalue +1
of the operator L12. The expectation value 0 in (17.56) does say, that both
results will be observed with same frequency.
The linear polarized photons are eigenstates of the energy operator and

of the momentum operator:
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H|1f1〉
(17.33)=

∑
k

2∑
v=1
~ωkc

(v)†
k c

(v)
k |1f1〉 = ~ωf |1f1〉 (17.57a)

P l|1f1〉
(17.34)=

∑
k

2∑
v=1
~klc

(v)†
k c

(v)
k |1f1〉 = ~f l|1f1〉 (17.57b)

Circular polarized photons are as well eigenstates of the energy operator
and of the momentum operator:

H |1fR〉 = H 1
2

(
|1f1〉+ i|1f2〉

)
= ~ωf 1

2

(
|1f1〉+ i|1f2〉

)
= ~ωf |1fR〉 (17.58a)

P l |1fR〉 = P l 1
2

(
|1f1〉+ i|1f2〉

)
= ~f l 1

2

(
|1f1〉+ i|1f2〉

)
= ~f l |1fR〉 (17.58b)

Choosing a phase angle different from ±π/2 in (17.44), elliptically polarized
photons can be created, which are neither eigenstates of the spin operator
S12 nor eigenstates of the operator L12 of linear polarization. Even these
ellipticall polarized photons are eigenstates of the energy-operator H and of
the momentum operators P j .
All photons considered so far are completely de-localized. That means,

that they can be found with equal probability at any point in the normaliza-
tion volume Ω. In section 17.5, we will dwell on the description of localized
photons.

17.4 Covariant Quantization

It’s far from obvious, that the results of the previous sections are compat-
ible with Special Relativity Theory. In particular the fact, that the null-
component A0(x) ≡ 0 is vanishing identically in the Coulomb gauge might
indicate the opposite. Therefore we will now investigate a sophisticated
method of quantization, which Gupta1 and Bleuler2 detected independently

1 Suraj N. Gupta (∗ 1924)
2 Konrad Bleuler (1912 - 1992)
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in 1950. The essential trick of this method is, not to quantize immediately
the gauge field A(x), but to consider instead a field Ã(x) . A(x), which is
defined due to the following Lagrangian density:

L̃≡− 1
4µ0

(
F̃στ F̃

στ + 2(dσÃσ)dτ Ãτ
)

F̃στ ≡dσÃτ − dτ Ãσ .
(17.59)

Due to the second term, by which L̃ differs from L = (17.2), the field Ã(x) is
not gauge-invariant. In particular it’s null-component Ã0(x) . 0 is different
from zero, and can be quantized canonically.
In the sequel, we will perform the quantization of Ã(x) in a manifestly

lorentzinvariant manner. It will turn out, that the transversal components of
the field operators of the quantized field Ã(x) and the respective components
of the field operators of the quantized gauge field A(x) are identical. In
contrast, the time-like and the longitudinal components of the field operators
of A(x) are zero, while the respective components of the operators of the
quantized field Ã(x) in general are different from zero.

The “unphysical” components of the operators Ã, due to which they differ
from the operators A, will not be purged out later-on, because that would
lead back to canonical quantization. Instead the “unphysical” parts of the
state functions |z〉 of the operators Ã will be purged out by an appropriate
condition. The operators Ã, and the operators of the conserved quantities
derived from them, will give the same results with the remaining “physical”
parts of the state functions, as the canonically derived operators of the
gauge field A.

To realize this program systematically, we derive from the Lagrangian by
means of

∂L̃
∂(dσÃτ )

= − 1
4µ0

(
(dσÃτ − dτ Ãσ)− (dτ Ãσ − dσÃτ ) + 2gστdνÃν

)
· 2 =

= 1
µ0

(−dσÃτ + dτ Ãσ − gστdνÃν) ∂L̃
∂Ãτ

= 0

the field equation
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dσ
∂L̃

∂(dσÃτ )
− ∂L̃
∂Ãτ

= 1
µ0

(−dσdσÃτ +dτdσÃσ − dτdνÃν︸                         ︷︷                         ︸
0

)− 0 (3.37a)= 0

=⇒ dσdσÃτ = 0 . (17.60)

Only the field A(x), but not the field Ã(x), is invariant under the gauge
transformation (17.6). But due to the additional second term in the La-
grangian (17.59), the same field equation holds for Ã(x) without a gauge
transformation, as for A(x) with the Coulomb-gauge (17.8). Hence also for
Ã(x) the Ansatz

Ã
(17.12)=

∑
k

3∑
α=0

√
µ0c2~

2ωkΩe
(α)
k

(
c

(α)
k exp{−ikx}+ c

(α)∗
k exp{+ikx}

)
(17.61)

can be used. But as Ã(x) in general has four components which are
different from zero, we now must use the thin printed unit vectors with
four components, and the summations must run over all four space-time-
coordinates, because the equations

A0 (17.8)= 0 and ∇ ·A (17.8)= 0

do not hold for Ã(x). The longitudinal and the time-like components of Ã
can be different from zero.
The components of the momentum density π̃(x), which is canonically

conjugated to Ã(x), are

π̃τ
(17.3)= ∂L̃

c∂(d0Ãτ )
(17.60)= 1

cµ0
(−d0Ãτ + dτ Ã0 − g0τdνÃν) . (17.62)

Inserting (17.61), and using

Ãλ
(K.10b)=

3∑
κ=0

gλκe(κ) · Ã , (17.63)

results into
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π̃τ (y) =
∑
f

3∑
β=0

3∑
κ=0

(e(κ) · e(β)
f )

√
~

µ02ωfΩ ·

· i
(
− f0gτκ + f τg0κ − g0τfκ

)
·

·
(
− c(β)

f exp{−ify}+ c
(β)∗
f exp{+ify}

)
. (17.64)

To quantize the field, we postulate for

Ãµ
(K.10c)= e(µ) · Ã (17.65)

and for π̃τ in compliance with the general rule (14.74a) this non-commutative
algebra:

[Ãµ(t,x), π̃τ (t,y)] = i~δ(3)(x− y)gµτ

[Ãµ(t,x), Ãτ (t,y)] = [π̃µ(t,x), π̃τ (t,y)] = 0
(17.66a)
(17.66b)

It is proved in appendixA.15, that the following commutator-relations of
the Fourier-operators follow from (17.66):

[c(α)
k , c

(β)†
f ] = −gαβ δkf

[c(α)
k , c

(β)
f ] = [c(α)†

k , c
(β)†
f ] = 0

(17.67a)
(17.67b)

The transversal components (α = 1 and α = 2) of these commutator-
relations are identical to (17.17). Note the strange negative sign of the time-
like commutator

[c(0)
k , c

(0)†
f ] = −g00 δkf = −δkf .

We will return to that immediately, but firstly we derive the operators of
energy and of momentum of the quantized field Ã(x). The energy-density
operator is

H̃ (4.35)= ∂L̃
∂(d0Ã)

d0Ã− L̃ = π̃σ(x) ˙̃
Aσ(x)− L̃ . (17.68)
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It is shown in appendix A.17, that from (17.68) the Hamilton-operator

H̃ ≡
∫
Ω

d3x H̃ = −
∑
k

3∑
α=0

3∑
β=0

gαβ ~ωk c
(α)†
k c

(α)
k (17.69)

follows. The momentum density of the field Ã(x) is

P̃j (4.35)= 1
c

∂L̃
∂(d0Ã)

djÃ = π̃τ (x) djÃτ (x) . (17.70)

In appendix A.18 it is shown, that from this equation the momentum
operator

P̃ j =
∫
Ω

d3x P̃j = −
∑
k

3∑
α=0

3∑
β=0

gαβ~kj c
(α)†
k c

(α)
k (17.71)

follows.
If one would exchange in these operators

∑3
α=0 by

∑2
α=1, then H̃ would

become identical to H = (17.33), and P̃ j would become identical to P j =
(17.34). Still without substantial modifications, the field Ã(x) is not suited
to describe the photon field, because it was an essential pre-condition for the
quantization of this field, that it’s time-like and it’s longitudinal components
can be different from zero. Therefore this field has negative energy, if
more quanta are excited with time-like polarization than with space-like
polarization. That is of course physically not sensible.

A second, though more formal problem arises due to the negative sign of
the time-like commutator (17.67). |0〉 is the quantized field’s vacuum state.
The vacuum state is characterized by

c
(α)
k |0〉 = 0 .

Application of the creation operator

c
(α)†
k |0〉 = |1(α)k〉 (17.72)
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onto the vacuum state creates a state, in which one quantum with polariza-
tion α and wavenumber k is excited. The norm of this state is

〈1(β)f |1(α)k〉 = 〈0|c(β)
f c

(α)†
k |0〉 − 〈0|c(α)†

k c
(β)
f |0〉︸    ︷︷    ︸

0

=

= 〈0| [c(β)
f , c

(α)†
k ] |0〉 (17.67)= −gβαδfk 〈0|0〉︸  ︷︷  ︸

1

. (17.73)

If the quantum’s polarization is time-like, then the norm is negative. It is
quite difficult to find a reasonable interpretation of quantum fields with
state functions, which may have positive or negative norm.
All these problems are caused by the additional term

2(dσÃσ)dτ Ãτ ,

by which the Lagrangian (17.59) of the field Ã differs from the Lagrangian
(17.2) of the gauge field A. The problems can not be solved by forcing
onto the field Ã the condition dσÃσ(x) ≡ 0, because then we would have
Ã(x) ≡ A(x), and the just accomplished quantization (17.66) would be lost.
It was the idea of Gupta and Bleuler, to force a restrictive condition not
onto the operators, but onto the state functions. The restrictive condition
is:

A state function |z〉 is admissible, if and only if it
fulfills the condition

〈z| dσÃσ |z〉 = 0 .

Inadmissible state functions are to be discarded from
the theory.

(17.74)

Note, that this is a covariant formulated condition. It does not change under
an arbitrary rotation of the four-dimensional space-time coordinate system.
It is the essential guideline of this quantization method, to adhere strictly
to manifest Lorentz-invariance at any point of the procedure. To analyze
the meaning and consequences of condition (17.74), consider the term
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dσÃσ(x) (17.11)=

=
∑
k

3∑
v=0

1√
NΩ

(
− ikε(v)

k c
(v)
k exp{−ikx}+ ikε

(v)∗
k c

(v)†
k exp{+ikx}

)
.

The second summand is the adjoint of the first one. Therefore the condition
(17.74) is fulfilled, once it is fulfilled for the second summand:

∑
k

3∑
v=0

kε
(v)∗
k 〈z| c(v)†

k |z〉 exp{+ikx} = 0

=⇒
3∑
v=0

ke
(v)
k 〈z| c

(v)†
k |z〉 = 0 .

Here all superfluous factors have been discarded. In the laboratory system,
the coordinates of k are k = (k0, k1, k2, k3). The condition becomes more
transparent, if the coordinate system is rotated such, that it becomes
congruent with the system which is aligned to the wave vector k, and spanned
by the unit vectors e(v)

k . Then the components of k are k = (|k|, 0, 0, |k|)
because of k2 = (k0)2 − k2 = 0, and condition (17.74) simplifies — using
(K.10a) — to

3∑
v=0

gvuk
u〈z| c(v)†

k |z〉 = 0

=⇒ 〈z| c(0)†
k − c(3)†

k |z〉 = 0 . (17.75)

Therefore a state of the field, in which an arbitrary number of photons with
wave number k is excited, meets the criterion (17.74), if and only if it’s
form is

|z〉 =
(
n1c

(1)†
k + n2c

(2)†
k + n03(c(0)†

k − c(3)†
k )

)
|0〉 (17.76)

with arbitrary numbers n1, n2, n03 ∈ N .

|z〉 is an eigenfunction of the Hamilton operator. In this state, the field’s
energy is
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H̃ |z〉 (17.69)= −
∑
f

3∑
α=0

3∑
β=0

gαβ ~ωf

c
(α)†
f c

(α)
f

(
n1c

(1)†
k + n2c

(2)†
k + n03(c(0)†

k − c(3)†
k )

)
|0〉

= ~ωk(−n03 + n1 + n2 + n03) = ~ωk(n1 + n2) . (17.77)

The unphysical adders to the energy (and to other observables), which are
caused by photons with time-like or longitudinal polarization, mutually
compensate, if the field’s states comply with the criterion (17.74). The
problem of state functions with negative norm is solved as well. To see this,
we compute the scalar product of two admissible state functions:

〈z′|z〉 = 〈0|
(
n′1c

(1)
k′

+ n′2c
(2)
k′

+ n′03(c(0)
k′
− c(3)†

k′
)
)

·
(
n1c

(1)†
k + n2c

(2)†
k + n03(c(0)†

k − c(3)†
k )

)
|0〉

= n′1n1〈0| [c(1)
k′
, c

(1)†
k ] |0〉+ n′2n2〈0| [c(2)

k′
, c

(2)†
k ] |0〉+

+ n′03n03( 〈0| [c(0)
k′
, c

(0)†
k ] |0〉+ 〈0| [c(3)

k′
, c

(3)†
k ] |0〉)

= n′1n1δk′k + n′2n2δk′k + n′03n03(−δk′k + δk′k) (17.78)

Here the commutators have been inserted as in the example of (17.73).
All commutators which are zero, have been discarded immediately. The
“unphysical” part n03(c(0)†

k − c(3)†
k ) |0〉 of admissible state functions is or-

thogonal to any admissible state function, and it is even orthogonal to itself.
The state functions(

n1c
(1)†
k + n2c

(2)†
k

)
|0〉 and(

n1c
(1)†
k + n2c

(2)†
k + n03(c(0)†

k − c(3)†
k )

)
|0〉

can by no means be discerned physically from another, because they lead to
identical measurement results and identical scalar products. Therefore the
state functions with same transversal parts and different longitudinal and
time-like parts may be considered as an equivalence-class. One of them (for
example the one with n03 = 0) may be appointed to be the representative
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of this class.

Due to the condition (17.74), Ã(x) and A(x) can’t be discerned any more.
Therefore most authors skip the different notation of the fields. We as well
will henceforth use the notion A(x) for the field Ã(x). The fact that the
field has been quantized manifestly covariant due to (17.66), then is visible
in the formulas only due to the polarization indices 0 and 3.

17.5 The Photon-Propagator

In section 17.3 we described delocalized photons, which can be detected
at any point in the normalization volume Ω with same probability. The
analysis of localized photons has been postponed to this section, because we
want to do this my means of the covariantly quantized field (see previous
section).

Localized photons can be created due to application of the field operator’s
components

Aν(x) (17.11)=
∑
k

3∑
α=0

√
µ0c2~2

2~ωkΩ

·
(
ε
(α)ν
k c

(α)
k exp{−ikx}+ ε

(α)ν∗
k c

(α)†
k exp{+ikx}

)
(17.79)

onto the vacuum. Because of c(v)
k |0〉 = 0 one gets

|1x〉ν ≡ Aν(x) |0〉 =

=
∑
k

3∑
α=0

√
µ0c2~2

2~ωkΩ ε
(α)ν∗
k c

(α)†
k |0〉︸     ︷︷     ︸
|1kα〉

exp{+ikx} . (17.80)

There is a complex phase factor in the polarization vectors, which have been
defined in (17.9). Therefore the photons have an arbitrary, but well defined
polarization, even if that is not documented in the simple notation |1x〉.
The vector |1x〉 has four space-time components, because all components of
the operator A(x) may be different from zero. |1x〉ν could be interpreted
as the component of a line-vector, whose norm-square is a matrix, or as



348 17 The Free Gauge-Field A(x)

the component of a column-vector, whose norm-square is a scalar. With
regard to definition (16.22) in case of the Dirac field one decides for the first
alternative, due to the following

Definition: Any |ket〉 of a vector field is to be considered a
line-vector. Any 〈bra| of a vector field is to be considered a
column-vector.

(17.81)

|1x〉ν is the ν-component of a photon’s state function, which at time x0/c
is localized (though not exactly) at x. We compute the matrix element

〈1y|1x〉µν = 〈0|Aµ(y)Aν(x) |0〉 =

=
∑
f ,k

3∑
α,β=0

µ0c
2~2

Ω2~√ωfωk
ε
(β)
f µ ε

(α)∗
k ν 〈1fβ|1kα〉︸         ︷︷         ︸

(17.73)
= −gαβ δkf

exp{−i(fy − kx)}

〈1y|1x〉µν = −
∑
k

µ0c
2~2

2~ωk Ω

3∑
α,β=0

gαβ ε
(β)
k µε

(α)∗
k ν exp{−ik(y − x)} .

Now we switch due to µ, ν → σ, τ into a coordinate system, which is —
same as the coordinate system α, β — aligned to the field A. In this system

ε
(β)
k σε

(α)∗
k τ =(17.9)

gστ g
β
σ g

α
τ (17.82a)

3∑
α,β=0

gαβ ε
(β)
k σε

(α)∗
k τ = gστ . (17.82b)

Now the coordinate system is rotated back due to σ, τ → µ, ν. Thus one
gets

〈1y|1x〉µν = −gµν µ0c
2~2

∑
k

exp{−ik(y − x)}
2~ωk Ω (17.83)

Only the diagonal elements of the matrix 〈1y|1x〉 are different from zero.
Even in the case x0 = y0, there isn’t the delta function
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δ(3)(y − x) (7.9)=
∑
k

exp{+ik(y − x)}
Ω .

in (17.83). The additional factor ωk in the denominator is prohibiting
the exact localization of a photon (which anyway physically would not be
realistic). At the same time, this factor in the denominator is securing the
Lorentz-invariance of the matrix element (17.83), as has been discussed at
the end of chapter 7.
The photon is localized only in space, but not in time, because the

summation is running only over k, but there is no integration over k0. The
time t here is a running parameter. The localized photon’s state function
|1tx〉 is an eigenfunction of the time-dependent position-operator x(t):

x(t)|1ty〉 = y|1ty〉 (17.84)

The photon |1ty〉 has a well defined position and a well defined polarization;
it’s energy and momentum are undetermined.

In case of y0 > x0, the matrices of the localized photons with the elements

〈1y|1x〉µν = 〈0|Aµ(y)Aν(x) |0〉 = (17.83)

are interpreted as the probability amplitude of the event, that a photon is
created at time x0/c at position x, then propagates to the position y, and
eventually is annihilated there at time y0/c. By comparison of the classical
propagator (12.34) with (17.83) it becomes obvious, that the quantized
propagator is:

Dµν(y − x) = 〈0|T Aµ(y)Aν(x) |0〉 =
∑
k

−gµν µ0c
2~2

2~ωk Ω

·
(
θ(y0 − x0) exp{−ik(y − x)}+ θ(x0 − y0) exp{−ik(x− y)}

)
(17.85)

T is the time-order operator, which has been defined in (15.44). Due to
comparison with (12.33), one finds the propagator in wavenumber-space:
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D̃µν(k) = −igµν µ0~c

k2 + iε′
(17.86)

Note: Due to condition (17.74), no observable quantity changes, if the
propagator is defined by

D̃L
µν(k) = −i µ0~c

k2 + iε′

(
gµν − L

kµkν
k2

)
with constant L ∈ R. Clever choice of L can simplify some computations.
Therefore definitions of the propagator with L , 0 are frequently encountered
in the literature. But in this book, we will exclusively use (17.86).
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18 Path Integrals

In section 14.1.1 the transition from classical mechanics of point particles
to quantum mechanics was achieved due to the replacement of the Poisson-
brackets by the products of i/~ and the commutators:

{A,B}
PB
≡
(∂A
∂p

∂B

∂q
− ∂B

∂p

∂A

∂q

)
−→

(14.6)−−−−−→ i

~
[A ,B] ≡ i

~
(AB −BA) (18.1)

In the following chapters this method of “canonical quantization” then was
generalized to several classical fields.

Dirac[43] indicated that it might be advantageous, to base quantum theory
onto the Lagrangian instead of the Hamiltonian, which is in the center of
the canonical formalism. The Lagrangian seemed to him more fundamental
than the Hamiltonian for several reasons. In particular, the Lagrangian can
be formulated relativistically invariant, while the Hamiltonian, being the
quantity canonically conjugate to time, is not relativistically invariant from
the outset.
〈tN ,xN |t0,x0〉 is the quantum mechanical probability amplitude, that a

particle can be observed at time tN at position xN , if it has been observed
at time t0 at position x0. Dirac suggested, to compute this probability
amplitude as follows:

〈tN ,xN |t0,x0〉 = exp
{ i
~
S
}

= exp
{ i
~

tN∫
t0

dt L(t)
}

(18.2)

In this ansatz, S is the action and L is the Lagrangian of the classical particle.
Thus, different from canonical quantization, no non-commutative algebra
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is postulated. The matrix element is computed by means of the classical,
commutative functions S resp. L. In spite of the commutative algebra,
Dirac’s proposal (18.2) is not classical physics, but true quantum theory.
No classical probability is computed here, but a probability-amplitude.
Something like that does exist in quantum theory only. We will dwell on
that in the next section in more detail.
Feynman [44] adopted Dirac’s idea, and elaborated it to the method of

path integrals. In the next section, reasons for Dirac’s proposal (18.2) will
be given, and the concept of path integrals will be derived for the example
of non-relativistic point particles. In the subsequent sections, the path
integrals of relativistic invariant scalar fields will be discussed.

18.1 Point Particles

We encountered the probability amplitude, which is showing up in Dirac’s
quantization proposal (18.2), already in section 14.1.3. It is the matrix
element of the time-evolution operator U(tN , t0):

U(tN ,xN , t0,x0) (14.37)= 〈tN ,xN |t0,x0〉 = 〈xN |U(tN , t0) |x0〉 (18.3)

The probability-density

W (tN ,xN , t0,x0) ≡
∣∣∣U(tN ,xN , t0,x0)

∣∣∣2 (18.4)

is is the square of the absolute value of the probability amplitude. And the
probability, to find the particle at time tN in the volume V , if it has been
observed at time t0 at position x0, is∫

V

d3xN W (tN ,xN , t0,x0) . (18.5)

The probability is dimension-less. The probability density’s dimension is
volume−1, and the probability amplitude’s dimension is volume−1/2.

Consider some point of time tj in-between t0 and tN . The probability
amplitude, that the particle can be observed at time tj at position xj , if it has
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been observed at time t0 at position x0, is U(tj ,xj , t0,x0). The probability
amplitude, that the particle can be observed at time tN at position xN ,
if it has been observed at time tj at position xj , is U(tN ,xN , tj ,xj). If
one abstains from observing the particle’s position at time tj , then the
probability-density to detect it at time tN at position xN is, according to
classical physics:

W classical(tN ,xN , t0,x0) =

=
∫

d3xjW (tN ,xN , tj ,xj) ·W (tj ,xj , t0,x0) =

=
∫

d3xj
∣∣∣U(tN ,xN , tj ,xj)

∣∣∣2 · ∣∣∣U(tj ,xj , t0,x0)
∣∣∣2 (18.6a)

This integral is running over all positions xj , where the particle possibly
could be found, if it’s position at time tj would be observed (but actually
one does not try to observe it). According to quantum mechanics, the
probability-density in this case is instead

W (tN ,xN , t0,x0) =

=
∣∣∣ ∫ d3xj U(tN ,xN , tj ,xj) · U(tj ,xj , t0,x0)

∣∣∣2 (18.6b)

,

∫
d3xj

∣∣∣U(tN ,xN , tj ,xj)
∣∣∣2 · ∣∣∣U(tj ,xj , t0,x0)

∣∣∣2
In the quantum-mechanical probability-density (18.6b), there are interfer-
ences between the particles trajectories over the different possible interme-
diate points xj . In the classical probability-density (18.6a), there are no
interferences, because the integrand is positive for all xj . (18.6b) is in accord
with experimental observation. (18.6a) is an acceptable approximation, if
Planck’s quantum of action is negligible in comparison to the action S of the
particle (~/S � 1). Feynman considered the interference of the probability
amplitudes to be the most characteristic feature of quantum theory. In
classical physics, there exist the notion of probability (resp. probability-
density), but the concept of probability amplitudes, which are capable of
interference, is an exclusive quantum-theoretical idea. Therefore it seemed
most adequate to Feynman, that Dirac’s quantization-proposal (18.2) is
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heading without any detour for that central notion of quantum theory.

18.1.1 The most general Case

In the sequel, we will give reasons for Dirac’s quantization proposal (18.2),
and we will state it more precisely. Consider a point particle, which has
been observed at time t0 at position x0. The probability amplitude, that it
can be detected at time tN at position xN is

U(tN ,xN , t0,x0) (14.37)= 〈tN ,xN |t0,x0〉 = 〈xN |U(tN , t0) |x0〉 =

= 〈xN | exp{− i
~

(tN − t0)H} |x0〉 . (18.7)

Here the simple time-evolution operator

U(t, t0) = e−
i
~
(t−t0)H (18.8)

has been assumed, which is correct only if the Hamilton operator does not
explicitly depend on time. We will stick to that assumption for all the
reminder of this chapter. Furthermore we assume the Hamilton operator
H
(
x,p

)
of the point particle to be an arbitrary, not further specified function

of the position operator x and the momentum operator ~k ≡ p. Note, that
in the case of point particles the conjugate momenta are identical to the
physical momenta.
The particle’s state functions |t,x〉 are eigenfunctions of the time-de-

pendent position operator, while the state functions |x〉 are eigenfunctions
of the time-independent position operator, see (14.35). Furthermore we
will use time-independent state functions |k〉 of the particle, which are
eigenfunctions of the time-independent momentum operator ~k.
We divide the time interval inbetween t0 and tN into N pieces

τ ≡ tN − t0
N

. (18.9)

Though it isn’t important for any of the following arguments, it will save us
from a lot of paperwork, if we choose all N parts to have equal length. We
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write the time-evolution operator in the form

exp{− i
~

(tN − t0)H} = exp{− i
~
Hτ} . . . exp{− i

~
Hτ}︸                                       ︷︷                                       ︸

N×

, (18.10)

and insert inbetween the N factors N − 1 times the projector

1 =
∫
Ω

d3xj |xj〉〈xj | . (18.11)

j is running from 1 inbetween the factors at the very right in steps of one
up to N − 1 inbetween the factors at the very left:

U(tN ,xN , t0,x0) =
∫
Ω

d3xN−1 . . .

∫
Ω

d3xj . . .

∫
Ω

d3x1

N−1∏
j=0
〈xj+1| exp{− i

~
Hτ}|xj〉 (18.12)

Note, that there are N matrix elements, but only N − 1 integrals. While
xN and x0 are showing up in the matrix elements, no integral is running
over them. The Hamilton operator in the exponent is to be understood as
an abbreviation for the series

exp{− i
~
Hτ} ≡

∞∑
n=0

1
n!
(
− i

~
Hτ

)n
= 1− i

~
Hτ ± . . . . (18.13)

Firstly, we compute the linear matrix element

〈xj+1|H|xj〉 . (18.14)

The Hamilton operator H in the most general case is a polynomial of
the operators x and k, which we will re-arrange in a tricky fashion. We
demonstrate the kind of re-arrangement for two examples:
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xk −→ 1
2(xk + xk − kx︸        ︷︷        ︸

commutator

+kx) = 1
2(xk + kx) + f(K) (18.15a)

x2k −→ 1
4(x2k + 2xkx+ kx2) + g(K) (18.15b)

f(K) and g(K) are functions of the commutator of the operators x and k.
The product kx would be arranged like (18.15a). The products xkx and
kx2 would be arranged like (18.15b). In general, the polynomial of position-
and momentum-operators, of which H is consisting, is re-arranged such, that
the terms are containing in the center the different powers of the momentum
operator, and to the left and to the right of them symmetric polynomials
of the position operator, which have the coefficients of a binomial series
expansion. In addition there are terms, which are consisting of functions of
their commutators. To illustrate this somewhat complex rule, let’s consider
an example:

〈xj+1|x2k|xj〉
= 〈xj+1|14(x2k + 2xkx+ kx2)|xj〉+ g(K)〈xj+1|xj〉
= 1

4(x2
j+1 + 2xj+1xj + x2

j )〈xj+1|k|xj〉+
+ g(K)δ(3)(xj+1 − xj) (18.16)

The momentum operator’s matrix element is

〈xj+1|k|xj〉 =
∑
kj

〈xj+1|k|kj〉〈kj |xj〉 =
∑
kj

kj〈xj+1|kj〉〈kj |xj〉 .

The sum is running of all wave numbers kj , which are compatible with the
normalization onto the finite volume Ω (see section 7). Using

|xj〉
(15.36a)=

∑
k

exp{−ikxj}√
Ω

|k〉 =⇒

=⇒ 〈kj |xj〉 =
∑
k

exp{−ikxj}√
Ω

〈kj |k〉︸    ︷︷    ︸
δkjk

= exp{−ikjxj}√
Ω

, (18.17)
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and using the delta function

δ(3)(xj+1 − xj)
(7.9)= 1

Ω
∑
kj

exp{+ikj(xj+1 − xj)} , (18.18)

one gets

〈xj+1|x2k|xj〉
(18.16)= (18.19)

= 1
Ω
∑
kj

((xj+1 + xj
2

)2
kj + g(K)

)
exp{+ikj(xj+1 − xj)} .

Accordingly, one finds for arbitrary Hamilton operators as the linear matrix
element

〈xj+1|H(x,k)|xj〉
(18.16)=

= 1
Ω
∑
kj

E
(xj+1 + xj

2 ,kj
)

exp{+ikj(xj+1 − xj)} , (18.20)

and as the matrix element of the Hamilton operator in the exponential

〈xj+1| exp{− i
~
H(x,k) τ}|xj〉 =

= 1
Ω
∑
kj

exp
{
− i

~
E
(xj+1 + xj

2 ,kj
)
τ
}

exp{+ikj(xj+1 − xj)}

= 1
Ω
∑
kj

exp
{
τ
i

~

(
~kj

xj+1 − xj
τ

− E
(xj+1 + xj

2 ,kj
))}

. (18.21)

The function E has exactly the same polynomial structure as the Hamilton
operator. Wherever in H a power of the position operator x is showing up,
there is in E the same power of the number (xj+1 + xj)/2. Wherever in
H a power of the wavenumber operator k is showing up, there is in E the
same power of the eigenvalue kj . In addition, there may be in E a constant
term g(K), which is caused by the commutators which are created due to
the re-arrangement (18.15).
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This matrix element is inserted into the product (18.12):

U(tN ,xN , t0,x0) (18.12)=

=
∫
Ω

d3xN−1
1
Ω
∑
kN−1

. . .

∫
Ω

d3x1
1
Ω
∑
k1

1
Ω
∑
k0

N−1∏
j=0

exp
{
τ
i

~

(
~kj

xj+1 − xj
τ

− E
(xj+1 + xj

2 ,kj
))}

=
∫
Ω

d3xN−1
1
Ω
∑
kN−1

. . .

∫
Ω

d3x1
1
Ω
∑
k1

1
Ω
∑
k0

exp
{ i
~

N−1∑
j=0

τ

(
~kj

xj+1 − xj
τ

− E
(xj+1 + xj

2 ,kj
))

︸                                                            ︷︷                                                            ︸
tN∫
t0

dt

(
p(tj)ẋ(tj)−E

(
x(tj+1)+x(tj)

2 ,k(tj)
))

}
(18.22)

As there are only numbers but no operators in this equation, the product
of the exponential functions could be replaced by the exponential function
of a sum.
With very large N , and accordingly — see (18.9) — very small τ , the

sum in the exponent becomes in good approximation the integral over the
particles Lagrangian:

L
(3.20)= pẋ− E (18.23)

This integral, which is the particles action S, is known to us already from
chapter 3:

S
(3.2)=

tN∫
t0

dt L
(
x(t), ẋ(t), t

)
(18.24)

There it was our starting point for the derivation of the equation of motion
of classical point particles by means of Hamilton’s principle of least action.
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The product of the N − 1 integrals, which in (18.22) are taken at times

t1, . . . , tN−1 over the normalization volume Ω, is called path integral. No
particular name exists for the product of the N sums, which are computed
at the times t0, . . . , tN−1 over all possible wavenumbers. But there exists
for this product — same as for the path integral — a special notation:

U(tN ,xN , t0,x0) (18.22)=

=
∫
Ω

d3xN−1
1
Ω
∑
kN−1

. . .

∫
Ω

d3x1
1
Ω
∑
k1

1
Ω
∑
k0

exp
{ i
~

N−1∑
j=0

τ

(
~kj

xj+1 − xj
τ

− E
(xj+1 + xj

2 ,kj
))

︸                                                            ︷︷                                                            ︸
tN∫
t0

dt L(t)

}
(18.25a)

≡
∫

[x0→xN ]

Dx(t)
∫ Dk(t)

(2π)3N exp
{ i
~
S[x(t)]

}
(18.25b)

The action’s argument is written in square brackets, to emphasize that
[x(t)] does not mean a point in position-space, but the complete path of
the particle from x0 to xN over the N − 1 intermediate points xj . It is
obvious from (18.24), that the action does not depend on a point, but on
the complete path. Furthermore, to achieve a homogeneous notation, we
changed in (18.25b) due to

∫ Dk(t)
(2π)3N ≡

N−1∏
j=0

∫ dkj
(2π)3 ≈

N−1∏
j=0

1
Ω
∑
kj

(18.26)

to the normalization over an infinite volume.
Figure 18.1 is the clumsy attempt, to illustrate the path integral graphi-

cally. To keep things simple, N = 3 has been assumed here, while in real
applications N will be a “very large” number. At time t0 the particle is at
position x0, at time t3 it is at position x3. At times t1 and t2 it is anywhere
in the normalization volume, because in (18.25a) the integrals

∫
Ω d3x(t1)
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Fig. 18.1 : Some paths from x0 to x3

and
∫

Ω d3x(t2) are running over the complete normalization volume Ω. For
simplicity, instead of the continuum of the infinitely many positions, where
the particle might be at times t1 and t2, only 5 possible positions each have
been indicated in the left sketch. Each line, which is connecting x0 with
x3 over arbitrary intermediate points x1 and x2, is called a “path”. In
the left sketch, 25 different paths inbetween x0 and x3 are indicated. In
the right sketch, three of them are marked by colors for clarity. The path
integral is an integral not only over the indicated 25 paths, but over the
whole continuum of all paths, on which the particle can possibly travel from
x0 to x3.

The path integral must not be confused with a contour integral. Therefore
it’s differential is not marked by d but by D:

∫
[x0→xN ]

Dx(t) ,
xN∫
x0

dx (18.27)

The path integral is not an integral over a continuum of points, which as a
whole constitute a path from x0 to xN , but over a continuum of complete
paths. Each single of these paths — like for example each of the three
colored paths in the right sketch of figure 18.1 — is connecting the point
x0 with the point xN . This is specified by [x0 → xN ] below the integral
symbol. While one can develop some vague idea, what is meant by an
integration over a continuum of paths, there does not exist a mathematically
sound definition of the integration measure Dx(t), and no mathematically
elaborated theory, how to handle such integrals.
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The same holds for the product∫ Dk(t)

(2π)3N ≡
1
Ω
∑
kN−1

. . .
1
Ω
∑
k0

.

of the sums over k. Each single summation is running over all (countable
infinitely many) wavenumbers, which are compatible with the normalization
onto the finite volume Ω. But nobody can compute a continuum of sums, i. e.
the limit N →∞, which is indicated by

∫
Dk, is not defined mathematically,

and infeasible in reality.
(18.25b) is nothing other than a symbolic notation for (18.25a). Whenever

one actually needs to compute a path integral, one reverts to (18.25a). As
there doesn’t exist an analytical method for the computation of a continuum
of integrals or summations, one chooses the number of supporting points N
as large as possible, but always finite.
Comparing (18.25) with Dirac’s simple ansatz (18.2), one recognizes the

essential extension due to Feynman: He is considering not only one single
path between the points, at which the particle is found at times t0 and tN ,
but is summing up all paths, along which the particle can possibly move.

The path integral is a beautiful example for the saying, that “the extremes
are mutually touching”. One of the guidelines, which led Heisenberg to the
detection of quantum mechanics, was the insight that the classical picture of
the “orbit” is meaningless for a quantum particle, and must be purged out of
the formalism. In constrast, Feynman assigns to the particle infinitely many
orbits, which are weighted by the factor exp{iS[x(t)]/~}, and arrives by
that method at the same result ! Feynman’s infinitely many orbits (=paths)
and Heisenberg’s path-less formalism clearly both are irreconcilable with
the classical picture of one path.

18.1.2 The Summation over k

Until now we allowed for Hamilton-operators H(x,k), which are arbitrary
polynomials of the position operator x and the momentum operator ~k. In
the special case
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H(x,k) ≡ ~
2k2

2m + V (x) (18.28)

one gets the probability density

U(tN ,xN , t0,x0) (18.22)=

=
∫
Ω

d3xN−1
1
Ω
∑
kN−1

. . .

∫
Ω

d3x1
1
Ω
∑
k1

1
Ω
∑
k0

exp
{ i
~

N−1∑
j=0

τ

(
~kj

xj+1 − xj
τ

− ~
2

2mk
2
j

)}

exp
{
− i

~

N−1∑
j=0

τV
(xj+1 + xj

2
)}

. (18.29)

The round bracket in the second exponential function is the argument
of V . As kj and xj are no operators but eigenvalues, the exponential
function could be split into two factors. The sums over kj can be computed
analytically — respecting (7.5) — by means of the formula for Gauß’s
integral with purely imaginary argument, which is indicated in appendix
A.23. Thus one finds the probability amplitude

U(tN ,xN , t0,x0) =
∫
Ω

d3xN−1 . . .

∫
Ω

d3x1

1
(2π)3N

(π2m
iτ~

) 3N
2 exp

{N−1∑
j=0

−(xj+1 − xj)22m
4iτ~

}

exp
{
− i

~

N−1∑
j=0

τV
(xj+1 + xj

2
)}

. (18.30)

Defining the function

C(N) ≡ 1
(2π)3N

(π2m
iτ~

) 3N
2
, (18.31)
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which does depend on N due to the exponents and due to τ = (18.9), one
eventually gets the probability amplitude in the form

U(tN ,xN , t0,x0) = C(N)
∫
Ω

d3xN−1 . . .

∫
Ω

d3x1

exp
{ i
~

N−1∑
j=0

τ

(
m

2
(xj+1 − xj

τ

)2
− V

(xj+1 + xj
2

))}
. (18.32)

The squared round bracket is a factor, while the non-squared round bracket
following V is the argument of V . Again one can identify

N−1∑
j=0

τ

(
m

2
(xj+1 − xj

τ

)2
− V

(xj+1 + xj
2

))

≈
N−1∑
j=0

τ
(
Ekin(tj)− Epot(tj)

)

≈
tN∫
t0

dt L
(
x(t), ẋ(t)

)
= S[x(t)] , (18.33)

and apply the symbolic notation for the path integral:

U(tN ,xN , t0,x0) = C(N)
∫
Ω

d3xN−1 . . .

∫
Ω

d3x1

exp
{ i
~

N−1∑
j=0

τ

(
m

2
(xj+1 − xj

τ

)2
− V

(xj+1 + xj
2

))
︸                                                           ︷︷                                                           ︸

tN∫
t0

dt L
(
x(t),ẋ(t)

)
}

(18.34a)

≡ C(N)
∫

[x0→xN ]

Dx(t) exp
{ i
~
S[x(t)]

}
(18.34b)
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This formula differs from (18.25) only due to the replacement of the product
of the sums over k by the factor C(N) = (18.31). For N →∞, this factor
would diverge. This is but a further reason to restrict to a finite number
N of integrals. Equation (18.34b), which is suggesting a continuum of
integrals, is nothing other than a symbolic notation for equation (18.34a),
which contains only a finite number of N − 1 discrete integrals.

In the sequel, we will use only (18.34), but not any more (18.25). In case
of the simple Hamilton operator (18.28) we could compute the factor C(N)
analytically. We assume, that for arbitrary Hamilton operators at least a
numerical computation of C(N) will always be possible, and that C(N) —
with finite N — will always be a finite number different from zero. In actual
application we will never need to compute C(N) explicitly, because a factor
C(N), which is finite and different from zero, can be simply eliminated from
the computations of matrix elements due to appropriate normalization.

18.1.3 A Toy-Model

With increasing N , i. e. with increasing number of intermediate points of
time tj , which are inserted inbetween t0 and tN , the paths do not become
smoother. Just the contrary: The paths evolve to more and more extreme
fever-charts, because x can make arbitrary jumps through the normalization
volume in the time interval tj+1− tj . The paths are no differentiable curves,
but so-called Markov chains.
If the (virtual, that is to say: not observed) particle is making wide

jumps in the time interval from tj to tj+1, then it’s kinetic energy, and thus
the action S, may assume gigantic values. One might consider, whether
the possibility (xj+1 − xj)/(tj+1 − tj) > c must be prevented by means
of additional restrictions. But that’s not necessary, because remarkably
not the paths with gigantic action, but the paths with smallest action are
marking the largest contributions to U(tN ,xN , t0,x0). To make this fact
obvious, we now will explicitly compute a simple toy model.

For the numerical computation it will be helpful, to introduce a constant
M with the dimension of mass, and to define the dimension-less position
operator
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Xj ≡

√
M

2~τ xj . (18.35)

Thus one gets

U(tN ,xN , t0,x0) (18.34a)= C ·
(2~τ
M

)N−1
2

︸                 ︷︷                 ︸
C̃

∫
Ω

d3XN−1 . . .

∫
Ω

d3X1

exp
{
i
N−1∑
j=0

(
m

M
(Xj+1 −Xj)2 − τ

~
V

)}
. (18.36)

We define a potential energy, which is independent of position:

V (x) ≡ 15 ~
τ

(18.37)

(V stays to be time-independent, because τ is a constant, not a running time
parameter.) As a most simple model we consider a particle, that is observed
at time t0 at position x0 and at time t2 at position x2 . In-between we insert
only one single time-point t1, at which the particle may be anywhere in the
normalization volume Ω. Furthermore we confine the model for simplicity
to one space dimension only. We choose

X0 ≡ 4 X2 ≡ 6 . (18.38)

Insertion into (18.36) gives the result

U(t2, x2, t0, x0) = C̃

∫
Ω1/3

dX1

exp
{
i
(m
M

(4−X1)2 + m

M
(6−X1)2 − 30

)}
. (18.39)

We let the PC compute this model for two particles with different masses,
namely
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m ≡ 0.8M −→ see figure 18.2 (18.40a)
m ≡ 2.4M −→ see figure 18.3 . (18.40b)

Suggestion: Open this book in addition in a second window of the reader,
so that you can see this text and figures 18.2 and 18.3 at the same time.
The real part and the imaginary part of

exp
{ i
~
S[x1]

}
= exp

{
i
(m
M

(4−X1)2 + m

M
(6−X1)2 − 30

)}
are displayed in figures 18.2 and 18.3 for paths over different intermediate
positions X1 in the respective bottom parts. The action S is minimal for the
path over X1 = 5. For paths over other points X1 the action is increasing
quadratically, resulting into faster and faster oscillations of exp{iS[x1]/~}.
U(t2, x2, t0, x0)/C̃ is the (not normalized) probability amplitude for the

particle to move from x0 to x2 — along whichever intermediate point x1. If
we are asking for the relative probability of the particle not to move along an
arbitrary path, but along one certain path close to one certain intermediate
point x1, then we must not integrate in (18.39) over the total normalization
volume, but only over the narrow neighborhood of this special point of
interest x1. This has been done in the upper graphs respectively in the both
figures 18.2 and 18.3, see the formulas indicated in the graphs. These green
printed curves are displaying the relative (not normalized) probabilities for
the particle to pass through that certain point x1 on it’s way from x0 to x2.
It’s worthwhile to compare the both figures closely. They only differ in

the masses of the particles, which is 3× larger for the particle of figure
18.3 as compared to the particle of figure 18.2. This difference is resulting
into a significantly higher probability for the lighter particle, to deviate
appreciably from the path of minimal action (i. e. the path touching X1 = 5)
than for the heavier particle. The smaller the ratio ~/S, the smaller become
the green curves in figures 18.2 and 18.3, and the smaller will therefore
the particle’s deviations from the path of least action be. In the classical
limit, Planck’s quantum of action becomes negligible versus the action S of
the system under consideration (~/S � 1). In this limit, the green curve
becomes a sharp needle of negligible width, and the particle will move with
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Fig. 18.2 : Model with m = 0.8M
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Fig. 18.3 : Model with m = 2.4M
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certainty along the path with minimal action. This is exactly what is stated
by Hamilton’s principle, from which we derived in chapter 3 the classical
equations of motion. Hamilton’s principle of least action, which had to be
accepted in the frame of classical physics as a not derivable law of nature,
thus gets a plausible explanation due to quantum mechanics.

18.1.4 Matrix Elements of the Position Operator

Until now we computed matrix elements of the time-evolution operator. In
the next section we will extend the method of path integrals to fields, and
then we will need to evaluate matrix elements of field operators. As field
operators (i. e. the quantized amplitudes of classical fields) are the field-
theoretic counterparts of the position operators of point-particle quantum
mechanics, it will be useful to clarify upfront, how matrix elements of the
position operator of point-particle mechanics can be computed by means of
path integrals.
For that purpose, we insert into the right side of (18.34a) the classical

function xa ≡ x(ta) with t0 < ta < tN :

C(N)
∫
Ω

d3xN−1 . . .

∫
Ω

d3xa . . .

∫
Ω

d3x1

x(ta) exp
{ i
~

tN∫
t0

dt L
(
x(t), ẋ(t)

)}
(18.41)

While it was simple and convenient in the derivation of (18.34), to split the
time interval from t0 to tN into N pieces of equal length, this was not really
necessary. Therefore one can arrange one of the N − 1 integrals in (18.41)
to run over the coordinate xa ≡ x(ta), no matter where exactly the point
of time ta is located in the continuum t0 < ta < tN .

Now we make use of the fact, that in the path integral there are only N−1
space integrals over the intermediate points of the paths, but no integrals
over the boundary points x0 and xN . If one splits the path integral at xa,
then xa becomes the boundary of two path integrals, while the integral over
xa does not belong to either of both:
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(18.41) =
∫
Ω

d3xa

(
C(N − a)

∫
[xa→xN ]

Dx(t) exp
{ i
~
S[x(t)]

})
·

· x(ta)
(
C(a)

∫
[x0→xa]

Dx(t) exp
{ i
~
S[x(t)]

})
(18.42)

As there are only commutating classical functions in the path integrals,
but no operators, the factors could be permuted. Now we make use of the
identity of the two path integrals with the matrix elements of the time-
evolution operator. Furthermore we insert the position operator of quantum
mechanics into the second line of the following equation, and mark it due
to a ĥat for clarity:

(18.42) =
∫
Ω

d3xa 〈tN ,xN |ta,xa〉x(ta) 〈ta,xa|t0,x0〉

=
∫
Ω

d3xa 〈tN ,xN | x̂(ta) |ta,xa〉〈ta,xa|t0,x0〉

= 〈tN ,xN | x̂(ta) |t0,x0〉 . (18.43)

In the last line, the completeness relation

1 =
∫
Ω

d3xa |ta,xa〉〈ta,xa| (18.44)

of the base vectors has been used. Under the condition t0 < ta < tN one
thus gets in total

〈tN ,xN | x̂(ta) |t0,x0〉 =

= C(N)
∫

[x0→xN ]

Dx(t)x(ta) exp
{ i
~
S[x(t)]

}
. (18.45)

In applications, one wants to know the normalized matrix element
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〈tN ,xN | x̂(ta) |t0,x0〉
〈tN ,xN |t0,x0〉

=

=

∫
[x0→xN ]

Dx(t)x(ta) exp
{
i
~S[x(t)]

}
∫

[x0→xN ]
Dx(t) exp

{
i
~S[x(t)]

} (18.46)

in which the factor C(N) has been canceled. The left side of this equation
is the normalized matrix element of the position operator x̂(ta), computed
by the formalism of canonically quantized point-particle mechanics. The
right side is the same quantity, but now computed by means of a normalized
path integral. All factors on the right side are classical functions with
commutative algebra, including the position function x(ta). The matrix
element of the position operator x̂(ta) is identical to the path integral over
the classical position function x(ta), weighted by the factor exp{iS/~}.

If a second position function x(tb) with t0 < tb < tN and tb , ta is inserted
into the path integral, then one gets automatically the matrix element of
the time-ordered position operators:

〈tN ,xN |T x̂(ta)x̂(tb) |t0,x0〉
〈tN ,xN |t0,x0〉

=

=

∫
[x0→xN ]

Dx(t)x(ta)x(tb) exp
{
i
~S[x(t)]

}
∫

[x0→xN ]
Dx(t) exp

{
i
~S[x(t)]

} (18.47a)

=

∫
[x0→xN ]

Dx(t)x(tb)x(ta) exp
{
i
~S[x(t)]

}
∫

[x0→xN ]
Dx(t) exp

{
i
~S[x(t)]

} (18.47b)

In the path integral, the sequence of position functions doesn’t matter, as
they are classical, commutating functions. But the splitting of the path
integral according to (18.42)



18.2 The creating Functional W [J ] 371

(18.42) =⇒
∫
Ω

d3xa

∫
Ω

d3xb

(
C(N − a)

∫
[xa→xN ]

Dx(t) exp
{ i
~
S[x(t)]

})

x(ta)
(
C(a− b)

∫
[xb→xa]

Dx(t) exp
{ i
~
S[x(t)]

})

x(tb)
(
C(b)

∫
[x0→xb]

Dx(t) exp
{ i
~
S[x(t)]

})
(18.48)

into three pieces [x0 → xb], [xb → xa], and [xa → xN ], is correct only,
if t0 < tb < ta < tN . In the case tb > ta, ta and tb must be permuted in
(18.48). Therefore one gets on the left side of (18.47) inevitably always the
time-ordered product of the position operators. The same does hold, if the
products of more than two position operators are computed.

18.2 The creating Functional W [J ]

Functions f(x) = y map numbers x onto numbers y. Functionals g[f(x)] = y
map functions f(x) onto numbers y. The definition of the functional integral

∫
[x(t0)→x(tN )]

Dx(t) f [x(t),k(t)]
(18.25)
≡

N−1∏
j=1

∫
Ω

d3x(tj) f [x(tj),k(tj)]

∫
[k(t0)→k(tN )]

Dk(t)
(2π)3N f [x(t),k(t)]

(18.25)
≡

N−1∏
j=1

1
Ω
∑
k(tj)

f [x(tj),k(tj)]

with tN > tN−1 > . . . > t1 > t0 (18.49)

has been used already repeatedly in this chapter. In the sequel, we also
will need the functional derivative. The derivative of a function f(x) with
respect to the variable x is written as df(x)/dx. For the extension of the
derivative to the functional derivative

δF [f(y)]
δf(x) ,
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the symbol d is replaced by the symbol δ. With respect of the analogy

dxi
dxj

= δij ,

one defines

δf(y)
δg(x) ≡ δfgδ

(4)(x− y) . (18.50)

Furthermore we fix by definition, that the chain rule shall be applied in
the functional derivative in exactly the same manner as in the derivative of
functions. Two examples:

δ

δf(x)

∫
d4y f(y)φ(y) = φ(x)

δ

δf(x) exp
{ i
~

∫
d4y f(y)φ(y)

}
= i

~
φ(x) exp

{ i
~

∫
d4y f(y)φ(y)

}
By means of an auxiliary function J(t), which is not specified in detail, the
creating functional W [J(t)] is defined. Sometimes it is called vacuum-to-
vacuum amplitude1.

W [J(t)] ≡ C(N)
∫
Ω

d3xN−1 . . .

∫
Ω

d3x1

exp
{ i
~

tN∫
t0

dt
(
L+ x(t)J(t)

)}
(18.51)

W [J(t)] differs from (18.34a) by the source term x(t)J(t) in the exponent.
Therefore

1 The explanation of this name can be found in [7, section 11.5].
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δW [J(t)]
δJ(ta)

∣∣∣∣
J=0

= C(N)
∫
Ω

d3xN−1 . . .

∫
Ω

d3x1
i

~
x(ta) exp

{ i
~

tN∫
t0

dt L
}

= i

~
· (18.41) , (18.52)

and because of (18.46) we have in general

〈tN ,xN |T x̂(ta) . . . x̂(tz)︸               ︷︷               ︸
m operators

|t0,x0〉 =
(~
i

)m δmW [J(t)]
δJ(ta) . . . δJ(tz)

∣∣∣∣
J=0

with tN > tj > t0 for j = a . . . z . (18.53)

18.3 Klein-Gordon Field

We now want to extend the method of path integrals from point-particle
mechanics to the scalar Klein-Gordon field. Our starting point is the
transition amplitude

〈x(tN ) |x(t0) 〉 (18.34)= C(N)
∫

[x(t0)→x(tN )]

Dx(t) exp
{ i
~

tN∫
t0

dt L
(
x(t), ẋ(t)

)}

with
∫

[x(t0)→x(tN )]

Dx(t)
(18.34)
≡

N−1∏
j=1

∫
Ω

dx(tj) . (18.54)

Replacing the particle’s x(t) by the field amplitude ψ(t,x), one gets

〈ψ(tN ,x)|ψ(t0,x)〉 =

= C(N)
∫

[ψ(t0,x)→ψ(tN ,x)]

Dψ(t,x) exp
{ i
~

tN∫
t0

dt
∫
Ω

d3xL
(
ψ(t,x), dµψ(t,x)

)}
. (18.55a)

Instead of the particle’s Lagrangian, here the volume integral over the field’s
Lagrangian density has been inserted. The boundaries [ψ(t0,x)→ ψ(tN ,x)]
of the path integral are indicating, that at all positions x in the normalization
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volume Ω the field’s configurations shall be integrated from time t0 to time
tN . We cannot actually compute this integral, unless we have a definition
of the path integral as a product of “normal” integrals. The definition in
(18.54) is based on the discretization of the argument of the function x(t).
In order to formulate the according definition for the path integral (18.55a),
both arguments of the function ψ(t,x) need to be discretized.

For that purpose, we split the normalization volume Ω into R partial
volumes of equal size with center coordinates xr, and define

∫
[ψ(t0,x)→ψ(tN ,x)]

Dψ(t,x) ≡
R∏
r=1

N−1∏
j=1

∫
{ψ(tj ,xr)}

dψ(tj ,xr) . (18.55b)

The integral
∫
Dψ is nothing other than a symbolic notation for the product

of these R · (N − 1) integrals. R and N shall be chosen as large as possible.
But they certainly must be finite, because with infinite R and/or infinite N
we could write down the path integral, but we would not be able to compute
it.

The boundaries {ψ(tj ,xr)} are indicating, that the integration is running
over all values, which ψ can possibly assume at time tj and position xr,
i. e. all complex numbers with finite modulus. The boundaries ψ(t0,xr)
and ψ(tN ,xr) are fix for all R volume cells. From the evaluation of point-
particle mechanics we learned, that the field will preferentially evolve such
in the time interval t0 and tN , that the integral of action will be a minimum.
Therefore only those values will in the end significantly contribute to the
“integral over all complex numbers” ψ(tj ,xr), which differ only slightly from
the value ψ(tj−1,xr) of the previous integration step, and which are in-
between ψ(t0,xr) and ψ(tN ,xr).
We will not compute the factor C(N). Instead we make the plausible

assumption, that it is finite and different from zero. Therefore it can be
canceled due to an appropriate normalization of the state function |ψ(t,x)〉.

The useful formalism with the creating functionalW [J ] can be transferred
without further problems from the point-particles to the Klein-Gordon field:
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W [J(x)]
(18.51)
≡ C(N)

∫
[ψ(t0,x)→ψ(tN ,x)]

Dψ(x) exp
{ i
~

tN∫
t0

dt
∫
Ω

d3x
(
L+ ψ(x)J(x)

)}
(18.56)

Now the matrix elements of arbitrary products of field operators can be
constructed:

〈ψ(tN ,x)|T ψ(xa) . . . ψ(xz)︸                 ︷︷                 ︸
m operators

|ψ(t0,x)〉 (18.53)=
(~
i

)m δmW [J(x)]
δJ(xa) . . . δJ(xz)

∣∣∣∣
J=0

with tN > tj > t0 for j = a . . . z (18.57)

The factors ψ(xa) . . . ψ(xz) in the matrix element on the equation’s left side
are operators, while the factors ψ(x) on the equation’s right side resp. in
(18.56) are not-quantized classical field amplitudes.

In section 15.5 we have computed the quantized propagator

G(x− y) (15.43)= 〈0|Tψ(x)ψ†(y) |0〉

of the Klein-Gordon field. For the computation of the scattering amplitudes
of interacting fields, again we will need the matrix elements in the vacuum-
state |0〉. Thus it would be clearly advantageous, if we could compute
by means of path integrals the expectation values 〈0| . . . |0〉 instead of the
expectation values 〈ψ(tN ,x)| . . . |ψ(t0,x)〉.
Actually the both types of expectation values are almost identical, pro-

vided that the point of time t0 is sufficiently far in the past, and the point
of time tN is sufficiently far in the future. To make this clear, we need the
eigen-states |n〉 of the Hamilton operator H, which solve the equation

H|n〉 = En|n〉 =⇒ exp
{
− i

~
Ht
}
|n〉 = exp

{
− i

~
Ent

}
|n〉 . (18.58)

Furthermore we assume, that the Hamilton operator does not depend
explicitly on time, such that
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|ψ(tN ,x)〉 (14.31)= U(tN , t0) |ψ(t0,x)〉 (14.28a)= exp
{
− i
~

(tN−t0)H
}
|ψ(t0,x)〉.

The time-evolution operator U has been discussed in section 14.1.3. The
completeness relations∑

n

|n〉〈n| = 1 ,
∑
m

|m〉〈m| = 1

hold for the solutions |n〉 and |m〉 of (18.58). These two factors 1 are
inserted into the matrix element:

〈ψ(tN ,x)| . . . |ψ(t0,x)〉 =
=
∑
n

∑
m

〈ψ(tN ,x)|n〉〈n| . . . |m〉〈m|ψ(t0,x)〉 =

=
∑
n

∑
m

exp
{ i
~
EntN

}
exp

{ i
~
Emt0)

}
〈n| . . . |m〉 ·

· 〈ψ(t = 0,x)|n〉〈m|ψ(t = 0,x)〉︸                                        ︷︷                                        ︸
K

(18.59)

Into the last expression, two times the time-evolution operator has been
inserted. The only thing we need to know about the factor K is, that it does
not depend on time. It will immediately be canceled. The matrix element
〈0| . . . |0〉 is contained in the second-last line of (18.59), though only in one
of countably infinitely many terms. But all other terms are negligible, if t0
is sufficiently far in the past, and tN is sufficiently far in the future. The
essential trick, to make this obvious, is to shift the times slightly into the
complex plane. Consider the limits

t0 → +∞ · exp{i(π + ϕ)} , tN → +∞ · exp{iϕ}
with 0 < ϕ� 1 ∈ R . (18.60)

ϕ is a very small angle, by which the points of time ±∞ are shifted slightly
counter-clockwise into the complex plane. Due to the imaginary part in
the time factors, the exponential functions are converging fast to zero for
large En and Em. Therefore the term with n = m = 0 does dominate the
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result for sufficiently large times, and all other terms are negligible. Thus
the normalized expectation values become

lim
tN→+∞

lim
t0→−∞

〈ψ(tN ,x)|T
m operators︷                 ︸︸                 ︷

ψ(xa) . . . ψ(xz) |ψ(t0,x)〉
〈ψ(tN ,x) |ψ(t0,x)〉 =

= 〈0|Tψ(xa) . . . ψ(xz) |0〉
〈0|0〉 =

= lim
tN→+∞

lim
t0→−∞

(~
i

)m δmW [J(x)]
δJ(xa) . . . δJ(xz)

∣∣∣
J=0

C(N)
∫

[ψ(t0,x)→ψ(tN ,x)]

Dψ(x) exp
{ i
~

tN∫
t0

dt
∫
Ω

d3xL
}

with W [J(x)] = (18.56) and tN > tj > t0 for j = a . . . z . (18.61)
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19 ψs-Interaction of Scalar Fields

Using the Lagrangian

L (10.10)= ~2c2

2 (dµφ)dµφ− 1
2 m

2c4φ2

of a free (i. e. not interacting) uncharged Klein-Gordon field, we have derived
the field equation

~2c2dµdµφ+m2c4φ
(3.37)= 0 . (19.1)

By the Lagrangian

L ≡ ~
2c2

2 (dµψ)dµψ − 1
2 m

2c4ψψ − λ~3c3ψs

with λ ∈ R > 0 and s = 3 or s = 4 ,
(19.2)

an uncharged scalar field can be described, which is interacting with itself.
As the dimension of the field operator according to (10.12) is [ψ] = (energy ·
volume)−1/2, the dimension of the coupling constant λ is

[λ] =
[ L
~3c3ψs

]
= (energy · volume)(s−4)/2 . (19.3)

While λ is dimension-less for s = 4, it’s dimension for s = 3 is (energy ·
volume)-1/2. The field-equation with ψs-interaction is

~2c2dµdµψ +m2c4ψ + sλ~3c3ψs−1 (3.37)= 0 . (19.4)

In general no closed solution of this equation is possible. One instead tries
to approach the solutions step by step by means of perturbative methods.
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The conjugate momentum density

π(x) (3.57)= ∂L
∂ψ̇(x)

= c~2d0ψ(x) (19.5)

is identical for the free field and for the field with ψs-interaction. From
(19.2) follows the Hamilton-density

H =(4.35) πψ − L =

= c~2d0ψ − ~
2c2

2 (dµψ)dµψ + 1
2 m

2c4ψψ︸                                                   ︷︷                                                   ︸
H(0)

+λ~3c3ψs︸       ︷︷       ︸
H(I)

. (19.6)

H(0) is the Hamilton density of the free field without interaction. H(I) (the
index I stands for interaction) is that part of the Hamilton density, which
is added due to the interaction. The volume integrals are

H =
∫
Ω

d3xH , H(0) =
∫
Ω

d3xH(0) , H(I) =
∫
Ω

d3xH(I) .

ψs-theory probably is the simplest example of a quantum field theory
with interaction. We start the third part of this book with it’s evaluation,
because it is the most convenient tool to get familiar with the computational
methods of quantum field theories with interactions. ψ4-theory has found a
practical application in the description of Higgs-fields1.

19.1 Perturbation Theory

In the computations of interacting fields, we will encounter matrix elements
of time-ordered operator products like

〈0|Tψ(x1) . . . ψ(xn) |0〉 . (19.7)

1 named after Peter Higgs (∗ 1929), one of approximately half a dozen of theorists, who —
simultaneously and independent from another — invented these fields in 1964.
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|0〉 henceforth is to be interpreted as the vacuum state of the field with
interaction. We will see that this vacuum — different from the vacuum of
the free field — is not simply empty, but is filled by an infinite number
of “vacuum bubbles”. (Purists therefore use different notations for the two
vacua.) T is the time-order operator, which has been defined in (15.44).

The field operators ψ in the matrix element (19.7) are solutions of the
field equation (19.4). Even though they are unknown for most points of
time, they can in many cases relatively easy be found by computation or by
guessing for some certain points of time. As soon as the field operator is
known for one point of time t0, it can be computed for arbitrary points of
time t by means of the time-evolution operator, which has been introduced
in section 14.1.3:

ψ(t,x) = U -1(t, t0)ψ(t0,x)U(t, t0) (19.8)

ψ(t0,x) is a time-independent operator in the Schrödinger-picture. It can
be expanded with respect to the creation- and annihilation-operators a†k
and ak of the free field:

ψ(t0,x) (15.15a)=
∑
k

√
1

2~ωkΩ
(
ak exp{+ikx}+ a†k exp{−ikx}

)
(19.9)

It will turn out to be most useful, that the operators a†k and ak are explicitly
visible in the expression for ψ(t,x). U(t, t0) is unknown for the field with
self-interaction, however, and therefore we get stuck at this point for the
moment being. A first trial of approximation could simply be to replace the
unknown operator U(t, t0) by the known operator U(0)(t, t0) of the free field.
This approximation leads to the field-operator in the interaction-picture:

ψ(I)(t,x) ≡ U -1
(0)(t, t0)ψ(t0,x)U(0)(t, t0) (19.10)

(15.15a)=
∑
k

√
1

2~ωkΩ
(
ak exp{−ikx} + a†k exp{+ikx}

)
(19.11)

This approximation, however, is overly rough. Therefore we return to the
exact expression (19.8), and inspect the time evolution of the field-operator
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in more detail, inserting two times a factor 1:

ψ(t,x) = U -1(t, t0)ψ(t0,x)U(t, t0)
= U -1(t, t0)U(0)(t, t0)U -1

(0)(t, t0)︸                       ︷︷                       ︸
1

ψ(t0,x) U(0)(t, t0)U -1
(0)(t, t0)︸                       ︷︷                       ︸

1

U(t, t0)

= U -1(t, t0)U(0)(t, t0)︸                      ︷︷                      ︸
U-1

(I)(t,t0)

U -1
(0)(t, t0)ψ(t0,x)U(0)(t, t0)︸                                   ︷︷                                   ︸

ψ(I)(t,x)

U -1
(0)(t, t0)U(t, t0)︸                    ︷︷                    ︸

U(I)(t,t0)

(19.12)

Here the time evolution operator

U(I)(t, t0) ≡ U -1
(0)(t, t0)U(t, t0) (19.13)

in the interaction-picture has been defined. We compute it’s derivative with
respect to time:

dU(I)(t, t0)
dt =

dU -1
(0)(t, t0)
dt U(t, t0) + U -1

(0)(t, t0) dU(t, t0)
dt

=(14.43)
U -1

(0)(t, t0) i
~

(H(0) −H︸        ︷︷        ︸
−H(I)

)U(t, t0)

= −i
~
U -1

(0)(t, t0)H(I) U(0)(t, t0)︸                               ︷︷                               ︸
H(I)(t)

U -1
(0)(t, t0)U(t, t0)︸                    ︷︷                    ︸

U(I)(t,t0)

(19.14)

The time-evolution operator U(I)(t, t0) in the interaction-picture solves a
Schrödinger-equation of the form (14.27) with the time-dependent Hamilton
operator H(I)(t).
Assuming t1 < t2 < . . . < tn, and using the time-evolution operator

U(I)(t, t0) in the interaction picture, the matrix element (19.7) can be
transformed:
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〈0|ψ(xn) . . . ψ(x1) |0〉 (19.12)=
= 〈0|U -1

(I)(tn, t0)ψ(I)(xn)U(I)(tn, t0)U -1
(I)(tn−1, t0)︸                               ︷︷                               ︸

U(I)(tn,tn−1)

ψ(I)(xn−1) . . .

. . . ψ(I)(x2)U(I)(t2, t0)U -1
(I)(t1, t0)︸                          ︷︷                          ︸

U(I)(t2,t1)

ψ(I)(x1)U(I)(t1, t0) |0〉

The conversions, which are marked by under-braces, follow from (14.29).
We also transform the both outer time-evolution operators, which are not
under-braced, by means of two new time parameters te < t1 and ta > tn.
The point of time t0 may be chosen arbitrarily. We choose t0 = te:

U(I)(t1, t0) = U(I)(t1, te)U(I)(te, t0) t0=te= U(I)(t1, te)

U -1
(I)(tn, t0) =

(
U(I)(tn, ta)U(I)(ta, t0)

)-1 t0=te=

= U -1
(I)(ta, te)U

-1
(I)(tn, ta)

(14.29d)= U -1
(I)(ta, te)U(I)(ta, tn)

=⇒ 〈0|ψ(xn) . . . ψ(x1) |0〉 =
= 〈0|U -1

(I)(ta, te)U(I)(ta, tn)ψ(I)(xn)U(I)(tn, tn−1)ψ(I)(xn−1) . . .
. . . ψ(I)(x2)U(I)(t2, t1)ψ(I)(x1)U(I)(t1, te) |0〉 (19.15)

The time-evolution operator at the very left side of the product is acting
onto the vacuum state 〈0|. What is the effect? Certainly the vacuum state
will stay to be a vacuum state, but it’s phase might change:

〈0|U -1
(I)(ta, te) =

(
U(I)(ta, te) |0〉

)†
=
(
|0〉 eiϕ

)†
= e−iϕ 〈0|

with ϕ ∈ R

Writing the phase factor as

e−iϕ =
(
〈0|0〉eiϕ

)-1
=
(
〈0|U(I)(ta, te) |0〉

)-1
,

the matrix element can be written in the form
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(
〈0|U(I)(ta, te) |0〉

)-1
〈0|U(I)(ta, tn)ψ(I)(xn)U(I)(tn, tn−1)ψ(I)(xn−1) . . .

. . . ψ(I)(x2)U(I)(t2, t1)ψ(I)(x1)U(t1, te) |0〉 . (19.16)

The operators in this function are time-ordered. Their sequence may be
changed, if for compensation the time-order operator is re-inserted:(

〈0|U(I)(ta, te) |0〉
)-1
〈0|Tψ(I)(xn)ψ(I)(xn−1) . . . ψ(I)(x2)ψ(I)(x1) ·

· U(I)(ta, tn)U(I)(tn, tn−1) . . . U(I)(t2, t1)U(I)(t1, te)︸                                                                    ︷︷                                                                    ︸
U(I)(ta,te)

|0〉 =

=
〈0|Tψ(I)(xn)ψ(I)(xn−1) . . . ψ(I)(x2)ψ(I)(x1)U(I)(ta, te) |0〉

〈0|U(I)(ta, te) |0〉
(19.17)

In (19.14) which have checked, that a Schrödinger equation with the time-
dependent Hamilton operator H(I)(t) holds for the time-evolution operator
U(I)(ta, tn). The solution of this equation has already been indicated in
section 14.1.3:

U(I)(ta, te) =(14.28b) T exp
{
− i

~

ta∫
te

dτ H(I)(τ)
}

= T
∞∑
n=0

1
n!
(
− i

~

ta∫
te

dτ H(I)(τ)
)n

(19.18)

The operators H(I)(τ) and ψ(I)(tk,xk) get mixed in the numerator of (19.17)
due to the time-order operator. Therefore the terms U(I)(ta, te) |0〉 in the
numerator and denominator of (19.17) can not be canceled. In total, we
have achieved this conversion of the matrix element:
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〈0|Tψ(xn) . . . ψ(x1) |0〉 =
∞∑
j=0

1
j! ·

·

〈0|Tψ(I)(xn) . . . ψ(I)(x1)
(
− i

~

ta∫
te

dτ H(I)(τ)
)j
|0〉

〈0|T
∞∑
m=0

1
m!
(
− i

~

ta∫
te

dτ H(I)(τ)
)m
|0〉

(19.19)

This expression is exact, as we did not make any approximations so far.
The computation of the matrix element is significantly facilitated after this
conversion. Firstly, we now are using the field operators ψ(I)(x) in the
interaction picture. These can much easier be found than the operators
ψ(x). Secondly, the transformed matrix element contains the time-dependent
Hamilton operator in the interaction picture

H(I)(t)
(19.14)= U -1

(0)(t, t0)H(I) U(0)(t, t0) (19.20)

with H(I)
(19.6)= H −H(0)

as an infinite series. Thus the numerator can be computed step by step in
increasing orders of j, and one does not need to master the whole problem in
one single step. In fortunate cases (i. e. if the coupling constant λ in (19.6)
is small versus 1), one or two steps may already be sufficient for a good
approximation. One might be concerned, that the stepwise computation
should be doomed to failure because one needs to have computed the
denominator of (19.19) completely, before any result can be concluded from
this formula. But — as we will see — that concern is not justified, because
the denominator can be canceled surprisingly simple from the computations.
Thus there are good reasons, to use the operators in the interaction

picture in the following computations. It would be quite annoying, always
to drag the index (I) along. Therefore we arrange for the re-namings



386 19 ψs-Interaction of Scalar Fields

ψ(x) −→ ψ(W )(x) ψ(I)(x) −→ ψ(x)
U(t, t0) −→ U(W )(t, t0) U(I)(t, t0) −→ U(t, t0)

H −→ H(W ) H(I) −→ H ,
(19.21)

where the index (W ) should be read as “interacting total system”.

19.2 Wick’s Theorem

If a matrix element of the type 〈0|Tψ(xn) . . . ψ(x1) |0〉 shall be computed,
with the ψ(xj) being field-operators in the interaction picture according to
the notation (19.21), then it turns out to be most helpful that the operators
in the interaction picture can be expanded with respect to the creation- and
annihilation-operators:

ψ(x) (19.11)=
∑
k

√
1

2~ωkΩ
(
ak exp{−ikx} + a†k exp{+ikx}

)
(19.22)

Because of ak|0〉 = 0 and 〈0|a†k = 0, the vacuum-expectation-value of an
operator-product will certainly be zero, if the operator at the very right side
is an annihilation-operator, and/or if the operator at the very left side is a
creation-operator. In the sequel, a most useful method will be described,
by which such products can be systematically analyzed and significantly
simplified.

19.2.1 Creation- and Annihilation-Operators

Split the field-operator of the uncharged Klein-Gordon field in the interaction
picture as follows:

ψ(x) = ψV(x) + ψE(x) , ψE(x) =
(
ψV(x)

)†
(19.23a)

ψV(x) =(15.15)∑
k

√
1

2~ωkΩ ak exp{−ikx} (19.23b)

To enhance the readability of the formulas, we introduce the simplified
notation
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ψV
x ≡ ψV(x) ψE

x ≡ ψE(x) . (19.23c)

Let’s consider as an example a product of six operators:

〈0|TψV
u ψ

E
v ψ

V
w ψ

E
x ψ

V
y ψ

E
z |0〉 with u0 > v0 > w0 > x0 > y0 > z0

If there would be ψV
z at the very right, or ψE

u at the very left, then the
expectation value obviously would be zero. As that is not the case, the
operator-product is transformed:

ψV
u ψ

E
v ψ

V
w ψ

E
x ψ

V
y ψ

E
z =

= ψV
u ψ

E
v ψ

V
w ψ

E
x [ψV

y , ψ
E
z ] + ψV

u ψ
E
v ψ

V
w ψ

E
x ψ

E
z ψ

V
y (19.24)

The vacuum-expectation value of the second term is zero, because there is
an annihilation-operator at the very right. In this term, the operators are
not time-ordered any more. This is not a failure. The time-order-operator
just demands, that the operators must be arranged at the beginning of the
computation in the correct sequence, and that has been done in the first
line of the last equation.
As the commutator is a number, it may be factored out:

〈0|ψV
u ψ

E
v ψ

V
w ψ

E
x [ψV

y , ψ
E
z ] |0〉 = 〈0|ψV

u ψ
E
v ψ

V
w ψ

E
x |0〉 [ψV

y , ψ
E
z ]

If there would be ψV
x at the very right of the matrix element instead of ψE

x,
then the expectation value would obviously be zero. As that’s not the case,
the operator-product is again transformed in the same manner as before:

〈0|ψV
u ψ

E
v ψ

V
w ψ

E
x |0〉 = 〈0|ψV

u ψ
E
v |0〉[ψV

w , ψ
E
x ] + 〈0|ψV

u ψ
E
v ψ

E
x ψ

V
w |0〉

Again the right term is zero, because there is an annihilation-operator at
the operator-products right side. The remaining matrix element is again
transformed in the usual manner. Thus one eventually arrives at the result

〈0|TψV
u ψ

E
v ψ

V
w ψ

E
x ψ

V
y ψ

E
z |0〉 = [ψV

u , ψ
E
v ] [ψV

w , ψ
E
x ] [ψV

y , ψ
E
z ] . (19.25)

The vacuum-expectation-value of an odd number n of creation- and
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annihilation-operators is zero in any case, because it is the product of
(n− 1)/2 commutators with the factor 〈0|ψ |0〉 = 0. This factor is zero in
any case, no matter whether ψ is a creation- or an annihilation-operator.
The vacuum-expectation-value furthermore is in any case zero, if the

number of operators is even, but the number of creation-operators is not
equal to the number of annihilation-operators. Then several operators of
one type remain, resulting in an expectation value of the type

〈0|ψV . . . ψV |0〉 · commutators = 0
or 〈0|ψE . . . ψE |0〉 · commutators = 0 . (19.26)

Thus the expectation value of a product of six creation- and annihilation-
operators can be different from zero only, if it consists of three creation-
and three annihilation-operators. Thereby the sequence of the operators is
important. We apply the method, by which (19.25) has been derived, to
the matrix element

〈0|TψV
u ψ

V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z |0〉 = [ψV

u , ψ
E
w ] [ψV

v , ψ
E
y ] [ψV

x , ψ
E
z ] +

+ [ψV
u , ψ

E
y ] [ψV

v , ψ
E
w ] [ψV

x , ψ
E
z ] + [ψV

u , ψ
E
w ] [ψV

v , ψ
E
z ] [ψV

x , ψ
E
y ] +

+ [ψV
u , ψ

E
z ] [ψV

v , ψ
E
w ] [ψV

x , ψ
E
y ] . (19.27)

There are four terms in this case. Each term is resulting from a different
contraction of the operators to commutators, which firstly are different
from zero, and in which secondly the creation operator is earlier than
the annihilation operator. If all three creation operators are earlier than
the three annihilation operators, then the computation of the vacuum-
expectation-value will result into six terms, because then six different non-
vanishing contractions are possible.

In the sequel, contractions will be indicated by horizontal square brackets.
The time-ordered operator-product ψV

u ψ
E
v ψ

V
w ψ

E
x ψ

V
y ψ

E
z has one non-vanishing

contraction, which should be compared to (19.25):
ψV
u ψ

E
v ψ

V
w ψ

E
x ψ

V
y ψ

E
z

The time-ordered operator-product ψV
u ψ

V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z has four non-van-

ishing contractions, which should be compared to (19.27):
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ψV
u ψ

V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z

ψV
u ψ

V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

E
w ψ

V
x ψ

E
y ψ

E
z

The time-ordered operator-product ψV
u ψ

V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z has six non-vanish-

ing contractions:

ψV
u ψ

V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z

ψV
u ψ

V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z ψV

u ψ
V
v ψ

V
w ψ

E
x ψ

E
y ψ

E
z

The time-ordered operator product ψV
u ψ

E
v ψ

E
w ψ

V
x ψ

V
y ψ

E
z has only vanishing

contractions. Therefore it’s vacuum-expectation-value is zero.

Theorem: The vacuum-expectation-value of a time-ordered
product of creation- and annihilation-operators is equal to the
sum of the commutator-products, which can be constructed by
all non-vanishing contractions of that operator-product.

(19.28)

19.2.2 Field-Operators

In practical applications, we don’t deal with the single operators ψV
x and ψE

x,
but with the complete field-operator ψx ≡ ψV

x + ψE
x. The formulas merely

become more laborious due to the extension of our results onto the complete
operators, but no novel problems turn up.

The time-ordered product of two field-operators (19.23) of the uncharged
Klein-Gordon field is

Tψxψy = θ(x0 − y0) (ψV
x ψ

V
y + ψV

x ψ
E
y + ψE

x ψ
V
y + ψE

x ψ
E
y) +

+ θ(y0 − x0) (ψV
y ψ

V
x + ψV

y ψ
E
x + ψE

y ψ
V
x + ψE

y ψ
E
x) . (19.29)

In the vacuum-expectation-value, only those two terms survive, which have
creation operators at their right sides, and annihilation operators at their
left sides:

〈0|Tψxψy |0〉 = θ(x0 − y0)〈0|ψV
x ψ

E
y |0〉+ θ(y0 − x0)〈0|ψV

y ψ
E
x |0〉 (19.30a)
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Applying instead theorem (19.28), one gets

〈0|Tψxψy |0〉 = θ(x0 − y0) [ψV
x , ψ

E
y ] + θ(y0 − x0) [ψV

y , ψ
E
x ] . (19.30b)

This isn’t a contradiction because of

〈0|ψV
x ψ

E
y |0〉 − 〈0|ψE

y ψ
V
x |0〉︸            ︷︷            ︸

0

= 〈0| [ψV
x , ψ

E
y ] |0〉 = 〈0|0〉︸  ︷︷  ︸

1

[ψV
x , ψ

E
y ] . (19.31)

The vacuum-expectation-value (19.30) is identical to the Feynman-propaga-
tor of the uncharged Klein-Gordon field, which has been defined in section
15.5. Now we extend our consideration to a charged Klein-Gordon field,
and split it into creation- and annihilation-operators:

ψx = ψVa
x + ψEb

x , ψ†x = ψEa
x + ψVb

x

ψVa
x =(15.15)

∑
k

√
1

2~ωkΩ ak exp{−ikx}

ψEb
x =(15.15)

∑
f

√
1

2~ωfΩ b†f exp{+ifx}

ψEa
x =

(
ψVa
x

)†
, ψVb

x =
(
ψEb
x

)†
(19.32)

In the vacuum-expectation-value of the operator-product

Tψxψ
†
y = θ(x0 − y0) (ψVa

x ψ
Ea
y + ψVa

x ψ
Vb
y + ψEb

x ψ
Ea
y + ψEb

x ψ
Vb
y ) +

+ θ(y0 − x0) (ψVa
y ψ

Ea
x + ψVa

y ψ
Vb
x + ψEb

y ψ
Ea
x + ψEb

y ψ
Vb
x ) ,

only those terms survive, which have creation-operators at their right sides,
and annihilation-operators at their left sides:

〈0|Tψxψ†y|0〉 = θ(x0 − y0) 〈0|ψVa
x ψ

Ea
y |0〉+ θ(y0 − x0) 〈0|ψVa

y ψ
Ea
x |0〉
(19.33a)

In the vacuum-expectation-value of the operator-product
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Tψ†xψy = θ(x0 − y0) (ψEa

x ψ
Va
y + ψEa

x ψ
Eb
y + ψVb

x ψ
Va
y + ψVb

x ψ
Eb
y ) +

+ θ(y0 − x0) (ψEa
y ψ

Va
x + ψEa

y ψ
Eb
x + ψVb

y ψ
Va
x + ψVb

y ψ
Eb
x )

again only two terms survive:

〈0|Tψ†xψy|0〉 = θ(x0 − y0) 〈0|ψVb
x ψ

Eb
y |0〉+ θ(y0 − x0) 〈0|ψVb

y ψ
Eb
x |0〉
(19.33b)

This result is identical to the vacuum-expectation-value of the Feynman-
propagator of the charged Klein-Gordon field:

〈0|G(x− y) |0〉 = G(x− y) =

=(15.43)
θ(x0 − y0)〈0|ψxψ†y|0〉+ θ(y0 − x0)〈0|ψ†yψx|0〉

=(19.33)
θ(x0 − y0) 〈0|ψVa

x ψ
Ea
y |0〉+ θ(y0 − x0)〈0|ψVb

y ψ
Eb
x |0〉

=(12.14)
θ(x0 − y0)Ga(x− y) + θ(y0 − x0)Gb(y − x) (19.34)

Let

〈0|Tψwψxψyψz|0〉 with w0 > x0 > y0 > z0 (19.35)

be the vacuum-expectation-value of a time-ordered product of field-operators
of an uncharged Klein-Gordon field. Using the notation (19.23), the matrix
element is:

〈0|+ ψV
w ψ

V
x ψ

V
y ψ

V
z + ψV

w ψ
E
x ψ

V
y ψ

V
z + ψE

w ψ
V
x ψ

V
y ψ

V
z + ψE

w ψ
E
x ψ

V
y ψ

V
z +

+ ψV
w ψ

V
x ψ

E
y ψ

V
z + ψV

w ψ
E
x ψ

E
y ψ

V
z + ψE

w ψ
V
x ψ

E
y ψ

V
z + ψE

w ψ
E
x ψ

E
y ψ

V
z +

+ ψV
w ψ

V
x ψ

V
y ψ

E
z + ψV

w ψ
E
x ψ

V
y ψ

E
z + ψE

w ψ
V
x ψ

V
y ψ

E
z + ψE

w ψ
E
x ψ

V
y ψ

E
z +

+ ψV
w ψ

V
x ψ

E
y ψ

E
z + ψV

w ψ
E
x ψ

E
y ψ

E
z + ψE

w ψ
V
x ψ

E
y ψ

E
z + ψE

w ψ
E
x ψ

E
y ψ

E
z |0〉 (19.36)

The 10. term has one non-vanishing contraction, and the 13. term has two
non-vanishing contractions. None of the other terms has a non-vanishing
contraction. Thus according to theorem (19.28)
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〈0|Tψwψxψyψz|0〉 =
= [ψV

w , ψ
E
x] [ψV

y , ψ
E
z] + [ψV

w , ψ
E
y] [ψV

x , ψ
E
z] + [ψV

w , ψ
E
z] [ψV

x , ψ
E
y]

=(19.31) 〈0|ψV
w ψ

E
x|0〉〈0|ψV

y ψ
E
z|0〉+ 〈0|ψV

w ψ
E
y|0〉〈0|ψV

x ψ
E
z|0〉+

+ 〈0|ψV
w ψ

E
z|0〉〈0|ψV

x ψ
E
y|0〉

=(19.34)
Ga(w − x) ·Ga(y − z) +Ga(w − y) ·Ga(x− z) +
+Ga(w − z) ·Ga(x− y) . (19.37)

If we had not fixed the time-order w0 > x0 > y0 > z0 in (19.35), we
would have had to consider the 4! = 24 different possible time-orders of
w0, x0, y0, z0. For example, instead of the first term in (19.37) we would
need to consider the four possible time-orders

Ga(w − x) ·Ga(y − z) −→

−→
(
θ(w0 − x0)Ga(w − x) + θ(x0 − w0)Ga(x− w)

)
·

·
(
θ(y0 − z0)Ga(y − z) + θ(z0 − y0)Ga(z − y)

)
. (19.38)

These products of step-functions and propagators Ga just are the Feynman-
propagators

G(x− y) =(12.14) θ(x0 − y0)Ga(x− y) + θ(y0 − x0)Ga(y − x)

of the uncharged Klein-Gordon field. Thus for arbitrary time-order, the
result is

〈0|Tψwψxψyψz|0〉 = G(w − x) ·G(y − z) +
+G(w − y) ·G(x− z) +G(w − z) ·G(x− y) . (19.39)

For the vacuum-expectation-value 〈0|Tψxψyψz|0〉, one gets a formula
equivalent to (19.36), in which each term is consisting of three creation- or
annihilation-operators. Therefore there is no non-vanishing contraction at
all. The same holds for an arbitrary odd number of field-operators. The
vacuum-expectation-value of a product of n field-operators of the uncharged
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Klein-Gordon field can be different from zero only, if n is an even number.

Due to the results of this section, the following theorem is plausibel. We
spare ourselves the rigorous proof:

Theorem: The vacuum-expectation-value of a time-ordered
product of n field-operators of the uncharged Klein-Gordon
field in the interaction picture is
∗ zero, if n is odd.
∗ with n even equal to the sum of the

(n− 1) · (n− 3) · (n− 5) · . . . · 1
different products of (n/2) Feynman-propagators, to which
the n operators can be combined.

(19.40a)

In case of a charged Klein-Gordon field, each field-operator ψ in the
interaction picture contains the Fourier-operators a and b†. The adjoint
field-operator ψ† contains the Fourier-Operators a† and b. Because of
[a, b†] = [a, b] = [a†, b†] = [a†, b] = 0, the extension of the theorem to
charged fields isn’t difficult:

Theorem: The vacuum-expectation-value of a time-ordered
product of n field-operators ψ(x) and m field-operators ψ†(x)
of the charged Klein-Gordon field in the interaction picture is
∗ zero, if n , m.
∗ in case n = m equal to the sum of the

(2n− 1) · (2n− 3) · (2n− 5) · . . . · 1
different products of the n Feynman-propagators, to which
the n+m = 2n operators can be combined.

(19.40b)

The method of simplification of matrix elements due to contraction and
normal order of the operators, which has been described in this section, is
known under the name “Wick’s theorem”. It has been invented by Houriet
and Kind [45] in 1949. When Wick2 in the following year adopted that
method, and extended it to fermion fields, he clearly named the inventors
of this method in his article [46], and cited their work correctly. Houriet

2 Gian Carlo Wick (1909 - 1992)
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and Kind even had already used the contraction-brackets which also are
used in this book, while Wick needed to mark contractions of operators by
dots (probably, because the print shop of Physical Review was overstrained
by the horizontal brackets). By today, every field-theorist knows the Wick-
theorem with the Wick-brackets, while only few specialists remember the
names Houriet and Kind. Why? The answer is quite simple: Houriet and
Kind wrote their publication in French, while Wick published in English.

19.3 S-Matrix and LSZ-Formula

In section 15.1, we defined state functions like |nbkmaf lag〉 of the Klein-Gor-
don field with sharply defined wave-numbers. For example, the eigenvalue-
equation of the momentum operator

P |3bk5af 〉
(15.34)= (3~k + 5~f) |3bk5af 〉 (19.41)

holds for a state, in which 3 antiparticles with wavenumber k and 5 particles
with wave number f are excited. As we will concentrate in the sequel
onto the ψs-interaction of an uncharged Klein-Gordon field, we can slightly
reduce the large quantity of indices due to the following definition:

|f1f2f2f2f3 . . .〉 ≡ |1f13f21f3 . . .〉 ≡ |1af13af21af3 . . .〉

Furthermore we will sometimes use

a†k|0〉 = |k〉 ≡ a†k1
. . . a†kn |0〉 = |k1 . . .kn〉

as a shortcut notation for a state of n particles with (different or identical)
wavenumbers kj .

The matrix elements of the momentum operator P are

〈k|P |f〉 = 〈k|U(t, 0)︸          ︷︷          ︸
〈tf |

U -1(t, 0)P U(t, 0)︸                     ︷︷                     ︸
P (t)

U -1(t, 0) |f〉︸            ︷︷            ︸
|tf〉

=(15.37b)
~f δkf .

(19.42)
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The eigenfunction |tf〉 of the time-dependent momentum operator P (t)
in the Heisenberg-picture is interpreted as the state function of a particle,
whose momentum at time t is f .

The scattering matrix, which also is called S-matrix for brevity, is defined
by3

Sfk ≡ 〈taf |tek〉 = 〈f |U(ta, 0)U -1(te, 0) |k〉 =
= 〈f |U(ta, te) |k〉 = 〈f |S |k〉 . (19.43a)

Here

〈f |S |k〉 ≡ 〈f1f2 . . .fn|S |k1k2 . . .km〉 (19.43b)

is a shortcut notation for a scattering event with m incoming and n outgoing
particles. The indices e and a signify “in” and “out”. The times te and
ta are to be understood as follows: At time t ≤ te the incoming particles
are approaching with momenta ki a finite part of space, in which they
then mutually interact during a finite time interval te < t < ta. Eventually
at time t ≥ ta the outgoing particles with momenta f j depart from the
interaction range. Thus

S ≡ U(ta, te) , if interactions are possible only in
the time-intervall te < t < ta . (19.43c)

The momenta can not be sharply defined, because otherwise the incoming
and outgoing particles would be delocalized over the complete normalization
volume, and would mutually interact at any time. Instead we assume
that the particles properly must be described by wave-packets, whose

3 Many authors prefer to discuss the T -matrix instead of the S-matrix. These matrices
are related due to

〈f |S |k〉 = 〈f | 1− iT |k〉 = 〈f |k〉 − 〈f | iT |k〉 .

Thus these both matrices essentially are differing by the trivial term 〈f |k〉, which is
different from zero if particles cross the interaction range without any scattering. If
you encounter that operator T in the literature, take care not to confuse it with the
time-order operator.
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momenta are concentrated “rather narrow” around ~k resp. ~f , and whose
positions according to Heisenberg’s indeterminacy relation are delocalized
over “rather large” ranges ∆x ≈ 1/∆k resp. ∆y ≈ 1/∆f . Thus they are
described by “almost” plane waves with “almost” sharply defined momenta,
but only “almost”. The wave packets have finite extensions, and only in
the time interval from te to ta their amplitudes in the interaction range are
differing perceptibly from zero. Their amplitudes at the boundaries of the
normalization volume Ω are zero as long as they are different from zero
within the interaction range, i. e. Ω is much larger than the interaction range.
To save paperwork, we keep this definition in mind, but we describe the
particles in the formulas for simplicity as plane waves with sharply defined
momenta.

According to (19.10), the field-operators ψ(W ) and ψ are4 mutually related
by the fact, that ψ(W )(t0,x) = ψ(t0,x) at (minimum) one point of time,
which may be chosen arbitrarily. To proceed with the computations, we
need to find the field-operator ψ(W )(t0,x) for that point of time, either
by solving the field equation (19.4) or by guessing. At first sight, that
task seems to be very simple (and thats of course the reason, why we —
like almost all textbooks on QFT — are choosing scattering events as our
standard examples): At times t ≤ te, and at times t ≥ ta, the interaction
term in (19.4) is zero, and thus we expect ψ(W )(t,x) to be equal to the well-
known operator of the free field during the ranges of time t ≤ te resp. t ≥ ta,
in which the particles are not yet resp. no more mutually interacting.
But at closer evaluation, a serious problem pops up. In the following

sections, we will describe matrix elements by Feynman-graphs, and we will
encounter graphs like these:

x1

x

x

x

2

3 4

y
y

x
1

x
3

x
4x

2
z

(19.44)
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x
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x
2

y

x
1

x
2

z

4 Remember the re-naming (19.21) of indices!
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A pictorial interpretation of the first graph is, that two particles are ap-
proaching the interaction point y from the space-time points x1 and x2.
After the interaction, two particles depart towards x3 and x4. In the second
graph, there is a further interaction at space-time point z. In both cases one
may assume, that no interaction between the particles will happen at times
te � y0, z0 and ta � y0, z0. Thats quite different for the both last graphs.
They are describing the rather abstract event, that a particle is scattered
“by itself” on it’s way from x1 to x2. The comparison with experiments
is proving, that such self-interactions are playing an important role, and
certainly must not be neglected in the theory.

As self-interactions of the particles cannot be restricted to a time interval
te < t < ta, but may happen at any time, at first sight there seems to be
no point of time at all, at which the field operator ψ(W )(x) can easily be
guessed. To explain the solution of this problem, we need to anticipate some
results of section 20.3. There we will compute the self-interaction graphs
and find out, that they are diverging. The handling of those divergences
is the theme of chapter 22. We will see, that the self-interaction graphs
mutate to the harmless propagator-line of the third graph in (19.44), once
firstly the mass parameter m of the field, and secondly the amplitude ψ of
the field-operator are re-defined by an appropriate method, which is called
renormalization.

The self-interactions do not disappear by that procedure from the theory,
but due to renormalization of the two parameters they are integrated into
the formalism such, that they are quasi automatically considered at any
time, and don’t need to be explicitly documented and computed in self-
interaction-graphs any more. Therefore ψ(W )(t,x) is in the time ranges
t ≤ te and t ≥ ta formally identical to the known solutions of the free Klein-
Gordon-equation (19.1), once the renormalized massm and the renormalized
field-operator ψ(x) is inserted.
In section 20.3 we will furthermore detect, that also the second graph

in (19.44) is diverging. This divergence will be cured in chapter 22 due
to renormalization of the coupling constant λ. Anticipating these results,
we will henceforth use the renormalized factors m, ψ(x), and λ in all
computations, unless the contrary is explicitly stated.

We now want to formulate Sfk as a function of the field-operators ψ(W )(x).
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In appendix A.26, the following result is found by a rather lengthly — but
still not mathematically rigorous — derivation:

Sf1...fnk1...km = 〈f1 . . .fn|S |k1 . . .km〉
(A.202)=

=
n∏
j=1

G̃-1(fj)√
2~ωfjΩ

ta∫
te

∫
Ω

d4yj exp{+ifjyj} ·

·
m∏
l=1

G̃-1(kl)√
2~ωklΩ

ta∫
te

∫
Ω

d4xl exp{−iklxl} ·

· 〈0|Tψ(W )(y1) . . . ψ(W )(yn)ψ(W )(x1) . . . ψ(W )(xm) |0〉 (19.45)

Note, that the integrals over x and y are including the matrix element in
the last line.

G̃-1(k) (12.7)= −i~c
(
k2 −m2 c

2

~2
+ iε′

)
(19.46)

is the inverse of the Fourier-transformed Greens function. We check the
dimensions: Any incoming or outgoing particle contributes to (19.45) the
dimension[

G̃-1√
~ωkΩ

· d4xψ(W )(x)
]

=

= energy
length

√
energy · volume

· length4
√

energy · volume
= 1 . (19.47)

Thus the probability amplitude is dimension-less. That’s correct.
It will turn out quite useful, and simplify many formulas in the following

sections, if te and ta are formally shifted to infinity:

te → −∞ , ta → +∞ =⇒
ta∫
te

dt ≈
+∞∫
−∞

dt (19.48)

Again this stipulation clearly is not to be understood literally. We just
specified that the amplitudes of the wave-packets shall be zero at the
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boundaries of the normalization volume, as long as interactions between
the particles are possible. With t→ ±∞ that wouldn’t be the case even for
an infinitely large normalization volume. Instead we assume, that te and ta
are — and stay — finite, but that they are chosen so large as compared to
all other points of time turning up in the formulas, that (19.48) is a good
approximation.

Inserting furthermore (19.19) into (19.45), we arrive at the LSZ-reduction-
formula5, which is describing the relation between the S-matrix and the
vacuum-expectation-value of the field-amplitudes in the interaction picture:

Sf1...fnk1...km = 〈f1 . . .fn|S |k1 . . .km〉 =

=
n∏
j=1

G̃-1(fj)√
2~ωfjΩ

+∞∫
−∞

∫
Ω

d4yj exp{+ifjyj} ·

·
m∏
l=1

G̃-1(kl)√
2~ωklΩ

+∞∫
−∞

∫
Ω

d4xl exp{−iklxl}
∞∑
j=0

1
j! ·

·

〈0|Tψ(y1) . . . ψ(yn)ψ(x1) . . . ψ(xm)
(
− i

~

+∞∫
−∞

dτ H(τ)
)j
|0〉

〈0|T
∞∑
r=0

1
r!
(
− i

~

+∞∫
−∞

dτ H(τ)
)r
|0〉

(19.49)

Again we emphasize that the integrals over xl and yj are extending over the
matrix element in the last line’s numerator. G̃-1(k) = (19.46) is zero on mass
shell. How is it possible then, that there at all are S-matrix elements, which
are different from zero? We will see, that Fourier-transformed propagators
like (12.7) are showing up in the matrix elements 〈0|Tψ(y1) . . . |0〉.6 There
are non-vanishing contributions to the S-matrix if and only if the poles of
these propagators compensate the zero-factors of the LSZ-reduction-formula.

5 named after it’s discoverers Harry Lehmann (1924 – 1998), Kurt Symanzik (1923 – 1983),
and Wolfhart Zimmermann (1928 – 2016)

6 Actually we already detected products of Feynman-propagators in the matrix elements
of field-operators in the interaction picture, see e. g. (19.39).
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The delicate balance of poles and zero-factors is of course the reason, why a
mathematically rigorous derivation of the LSZ-formula is so difficult and
well beyond the technical level of this textbook.

While the LSZ-formula may seem to be quite complicated and intimidating,
it will turn out extremely useful and easy to handle in the sequel.
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20 Feynman-Graphs of ψs-Theory

Feynman invented a graphical representation for the matrix elements of
quantum field theory, which proved most useful for various types of compu-
tations. In the first section of this chapter, the method will be introduced
by means of simple tree diagrams. In the following section we will delve
into the difficult subject of loop-graphs. We will see, that divergences turn
up in the computation of such graphs. In chapter 22 we will clarify, how
the divergences can be cured due to renormalization.

20.1 Tree-Graphs

Let’s consider a scattering event with two particles coming in with wavenum-
bers k1 and k2, and two particles going out with wavenumbers k3 and k4.
We will compute the orders S(0), S(1), S(2), . . . of the scattering amplitude

∞∑
n=0

S(n) ≡ Sk4k3k2k1 = 〈k3k4|S |k1k2〉 (20.1)

step by step. For that purpose, the interaction-term

− i

~

+∞∫
−∞

dτ H(τ) (19.6)= (−iλ ~2c2)
+∞∫
−∞

cdτ
∫
Ω

d3y ψs(τ,y) (20.2)

with s = 3 or s = 4

is inserted into the LSZ-reduction-formula:
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S(n) (19.49)= 1
M

4∏
j=1

G̃-1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4}
(−iλ ~2c2)n

n! ·

· 〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4)
( +∞∫
−∞

∫
Ω

d4y ψs(y)
)n
|0〉 (20.3)

Here

M ≡ 〈0|T
∞∑
r=0

1
r!
(
(−iλ ~2c2)

+∞∫
−∞

∫
Ω

d4wψs(w)
)r
|0〉 (20.4)

is the denominator of the LSZ-formula (19.49), and

Nj ≡
√

2~ωkjΩ (20.5)

is an abbreviated notation for the normalization factor. The series expansion
of the S-matrix will converge fast, if the value of the coupling constant is
small, i. e. if

|λ ~2c2|(n+1)

(n+ 1)! � |λ ~
2c2|n

n! .

Zeroth order: n = 0. It’s clear from the outset, that S(0) = 0, because
at n = 0 all factors in (20.3), which are somehow related to an interaction,
are equal to one. Thus the particles will cross the interaction range without
sensing one-another. Anyway we will compute S(0), as this is an instructive
introduction to the applications of the LSZ-formula. M = (20.4) is different
from zero. The matrix element in the last line of (20.3), with the interaction-
term being 1, is already known to us:

〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4) |0〉 (19.39)= G(x1 − x2) ·G(x3 − x4) +
+ G(x1 − x3) ·G(x2 − x4) +G(x1 − x4) ·G(x2 − x3) (20.6)
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We draw a dot for each of the four space-time-points x1, x2, x3, x4, at which
the four field-operators are defined. For each propagator, which is connecting
these points, we draw a line. Thereby the numerator of the scattering matrix
can be symbolized in zeroth order as follows:

S̃(0) ≡M · S(0) (20.3)=
4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)} ·
· 〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4) |0〉 =̂

=̂
x1

x

x

x

2

3 4

+
x1

x

x

x

2

3 4

+
x1

x

x

x

2

3 4

=

= 2 ·
x1

x

x

x

2

3 4︸                  ︷︷                  ︸
S̃(0)
a

+
x1

x

x

x

2

3 4︸              ︷︷              ︸
S̃

(0)
b

(20.7)

As two of the three terms obviously give the same numerical result, only
one of them is drawn and multiplied by the symmetry factor (in this case
2). We appended the graphs by the “corresponds to” sign =̂, but not by the
“equals” sign =, because the same graphs are used if this matrix-element
〈0|T . . . |0〉 is part of an other equation than the LSZ-formula (20.7). The
same, unchanged graphs might sometimes even represent the absolute square
of that matrix-element.

The last graph is representing the propagator product G(x1−x2) ·G(x3−
x4), showing up in (20.6) as one of three possible contractions of the matrix
element. This graph does not fit to the pictorial interpretation of the graphs,
with two particles ψ(x1) and ψ(x2) coming in, and two particles ψ(x3) and
ψ(x4) going out. Still this is a valid contraction of the matrix element. Thus
we must not skip that graph, unless we can prove that it is zero.

Furthermore the notation
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S̃(n) ≡M · S(n) (20.8)

has been defined for the numerator of the LSZ-formula (20.3). We will
investigate the denominator M in (20.20)ff. Firstly we compute

S̃(0)
a = 2

4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj G(x3 − x1)G(x4 − x2) ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)} . (20.9)

S̃
(0)
a ≡ S̃(0)

a31 · S̃
(0)
a42 can obviously be split into the factor

S̃
(0)
a31√

2
=

∏
j=3,1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj G(x3 − x1) e−i(k1x1−k3x3) ,

and a factor S̃(0)
a42, which differs from S̃

(0)
a31 only by the replacement of the

indices 3 by 4 and 1 by 2. Using the Fourier-transformation

G(x3 − x1) (7.15)= 1
Ω
∑
f

+∞∫
−∞

df0

2π G̃(f) exp{−if(x3 − x1)} , (20.10)

one gets

S̃
(0)
a31 =

√
2

Ω
∑
f

+∞∫
−∞

df0

2π
∏
j=3,1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj ·

· exp{−i(f − k3)x3 − i(k1 − f)x1)} G̃(f) . (20.11)

Inserting

+∞∫
−∞

∫
Ω

d4x1 exp{−i(k1 − f)x1)} (7.16b)= 2πΩ δ(f0 − k0
1) δfk1 , (20.12)

the sum over f and the integral over f0 can easily be computed. The result
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is

S̃
(0)
a31 =

√
2

Ω2π 2πΩ
∏
j=3,1

G̃ -1(kj)
Nj

G̃(k1)
+∞∫
−∞

∫
Ω

d4x3 exp{−i(k1 − k3)x3} .

(20.13)

The integral over x3 is the delta function and Kronecker symbol (20.12),
which guarantees the conservation of energy and momentum of the particle
moving in at x1 and moving out at x3. The Fourier-transformed Greens-
function can be canceled:

S̃
(0)
a31 =

√
2 G̃ -1(k3)

N1N3
2πΩ δ(k0

3 − k0
1) δk3k1

S̃(0)
a = 2 G̃ -1(k3) G̃ -1(k4)

N1N2N3N4
(2πΩ)2 δ(k0

3 − k0
1) δk3k1 δ(k0

4 − k0
2) δk4k2 = 0

(20.14)

Only two of the four zero-factors G̃ -1 could be canceled, because there are
only two propagators in each of the graphs (20.7). Therefore S̃(0)

a = 0. Four
propagators would be required, to compensate the four zero-factors G̃ -1 in
the numerator. And clearly S̃(0)

b = 0 as well, for the same reason. This
result is no surprise. In zeroth order, with the interaction factor in (20.3)
being ∼

(
λψs(y)

)0, the both incoming particles don’t sense each other, and
consequently there is no scattering.
There is a further, generally valid reason, why diagrams like S̃(0)

b , which
is displayed in (20.7), always are zero: When we compute them, we will find
a result with the constraint δ(k0

1−k0
2) δk1k2 , and consequently we must have

k2 = k1. But with zero relative momentum of the two incoming particles,
there can be no scattering event. Thus we may safely discard in future all
diagrams, in which the field operators ψ(x1) and ψ(x2) of the two incoming
particles are contracted to a propagator G(x2 − x1).

Computation of S̃(1): We have seen already in zeroth order, that minimum
four propagators are needed to compensate the zero-factors in the numerator
of the LSZ-formula. Eight field-operators are required to build the four
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propagators. The both incoming and the both outgoing particles in total
deliver four field-operators. The missing additional four field-operators must
be supplied by the interaction term. Therefore it would be wasting of time
to evaluate the interaction (20.2) in first order with s = 3, which delivers
only three operators. Instead we investigate the scattering in first order of
ψ4-theory, i. e. we insert the interaction-term

O(λ1) =⇒ T
1
1!
(
(−iλ ~2c2)

+∞∫
−∞

∫
Ω

d4y ψ4(y)
)1

(20.15)

into the LSZ-formula:

S̃(1) = M · S(1) (20.3)=
4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)} (−iλ ~2c2)
+∞∫
−∞

∫
Ω

d4y

· 〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4)ψ(y)ψ(y)ψ(y)ψ(y) |0〉

=
4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj (−iλ ~2c2)
+∞∫
−∞

∫
Ω

d4y

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)}

· 4!
(
G(x1 − y)G(x2 − y)G(x3 − y)G(x4 − y)

)
=̂

=̂ 24 ·
x1

x

x

x

2

3 4

y (20.16)

The vacuum-expectation-value of the time-ordered operator product equals
according to theorem (19.40a) the sum of the 105 products of 4 Feynman-
propagators each, to which the eight field-operators can be contracted. If
two of the operators ψ(y) are combined to the propagator G(y − y) = 1,
then they don’t contribute to the compensation of the four zero-factors
G̃ -1(kj). There can be a non-vanishing contribution to the S-matrix only,
if each of the operators ψ(x1) . . . ψ(x4) is combined to a propagator with
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one of the operators ψ(y). Only terms of that type have been indicated
in (20.16), all 81 other terms have been skipped from the outset. There
are 4 alternatives to combine the operator ψ(x1) with one of the operators
ψ(y), 3 alternatives to combine ψ(x2) with one of the remaining operators
ψ(y), and so on. In total, there are 4! different combinations possible. Thus
S̃(1) is consisting of 4! terms. As the value of each of the terms obviously is
identical, only one graph will be computed, and multiplied by the symmetry
factor 4! = 24.
Remark: We will encounter the symmetry-factor 4! = 24 quite often

in ψ4-theory, same as the symmetry-factor 3! = 9 in ψ3-theory. To save
paperwork, many authors therefore define the coupling constant λ/s! instead
of our definition λ. The present author considers the explicit visibility of
the symmetry-factors a didactic advantage, which very well does justify the
marginal additional writing effort.

In the Feynman-diagram (20.16), several propagator-lines meet at space-
time-point y. Such an inner point is called vertex (Latin: pivot point, plural:
vertices). This notion is not used for the outer points, which are final points
of only one propagator each. Insertion of the Fourier-transformation (20.10)
and the definition

yj ≡ xj − y =⇒ d4xj = d4yj (20.17)
xj = yj + y

results into

S̃(1) = 24 · (−iλ ~2c2)
+∞∫
−∞

∫
Ω

d4y exp{−i(k1 + k2 − k3 − k4)y} ·

·
2∏
j=1

G̃ -1(kj)
Nj Ω

+∞∫
−∞

∫
Ω

d4yj
∑
fj

+∞∫
−∞

df0
j

2π G̃(fj) exp{−i(fj + kj)yj} ·

·
4∏
l=3

G̃ -1(kl)
Nl Ω

+∞∫
−∞

∫
Ω

d4yl
∑
f l

+∞∫
−∞

df0
l

2π G̃(fl) exp{−i(fl − kl)yl} =
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= 24 · (−iλ ~2c2)
+∞∫
−∞

∫
Ω

d4y exp{−i(k1 + k2 − k3 − k4)y} ·

·
4∏
j=1

G̃ -1(kj)
Nj

G̃(−k1) G̃(−k2) G̃(k3) G̃(k4) . (20.18)

Here (20.12) has been used. Because of G̃(k)(12.7)= G̃(−k), the four zero-
factors can be canceled. The integral over y again gives a delta function
and a Kronecker symbol, which guarantee the conservation of energy and
momentum:

S̃(1) = 24 · (−iλ ~2c2)
4∏
j=1

√
1

2~ωkjΩ
·

· 2πΩ δ(k0
1 + k0

2 − k0
3 − k0

4) δ(k1+k2),(k3+k4) . (20.19)

Now we need to investigate the denominator

M
(20.4)= 〈0|T

∞∑
r=0

1
r!
(
− iλ ~2c2

+∞∫
−∞

∫
Ω

d4y ψ4(y)
)r
|0〉 (20.20)

of the LSZ-reduction-formula. The zeroth-order term is

M (0) = 〈0|0〉 = 1 . (20.21)

The first-order term

M (1) = −iλ ~2c2
+∞∫
−∞

∫
Ω

d4y 〈0|ψ4(y) |0〉 =̂ 3 ·
y

(20.22)

can be represented by a Feynman-graph, in which two propagators begin
and end at the same vertex y. There are three alternatives for the pair-wise
combination of the four field-operators ψ(y) to this graph. Therefore the
symmetry factor is three.
The matrix element of second order
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M (2) = (−iλ ~2c2)2

2!

+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z 〈0|T ψ4(y)ψ4(z) |0〉 =̂

=̂ 9 · z

y

+ 72 ·
z

y
+ 24 ·

z

y

(20.23)

is represented by the sum of three graphs. According to theorem (19.40a),
there are in total 7 · 5 · 3 = 105 alternatives for the combination of the 8
field-operators ψ to 4 propagators. The upper part of the first graph can —
exactly like (20.22) — be realized by 3 different ways, and the lower part
alike. Thus there are in total 9 alternatives for the combination of the 4 + 4
field-operators to the first graph. To combine four ψ(y) and four ψ(z) in the
second graph to the middle loop, there are 4 · 4 · 3 · 3/2! = 72 alternatives.
Afterwards only one way remains for the construction of the upper and
the lower loop. To combine the four ψ(y) and the four ψ(z) in the third
graph to the four propagators G(y − z), there are 4 · 4 · 3 · 3 · 2 · 2/4! = 24
alternatives. Note, that the exchange of vertices y ↔ z would merely be a
rotation of the graphs by 180 degrees, but would not change their topology,
and therefore would not represent new variants. For the topology of a graph
it only matters, which of the eight operators ψ(y) resp. ψ(z) is combined to
a propagator with which of the seven other operators ψ(y) resp. ψ(z), but
not whether a vacuum bubble is drawn in a graph’s upper or lower part.
The third order matrix element is

M (3) = (−iλ ~2c2)3

3!

+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z

+∞∫
−∞

∫
Ω

d4w

· 〈0|T ψ4(y)ψ4(z)ψ4(w) |0〉 =̂

=̂ 3 · 72 · 3︸       ︷︷       ︸
648

·
z

y w
+ . . . . (20.24)

We draw and consider only one of the many graphs of this matrix element.
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The symmetry factor of the left structure is 72, see (20.23). The symmetry
factor of the right structure is 3, see (20.22). There is an additional factor
3, because it matters whether the vertex y, z, or w is built into the right
structure. Thus the total symmetry factor is 72 · 3 · 3 = 648.
We will not compute explicitly the orders M (n) indicated so far, nor the

infinitely many terms M (n) of higher order. Instead there is an elegant
method, to cancel M versus an identical sum in the numerator of the LSZ-
formula. What we want to compute eventually is the scattering amplitude

S =
∞∑
n=0

S(n) =
∞∑
n=0

S̃(n)

M
=
∑∞
n=0 S̃

(n)∑∞
j=0M

(j) . (20.25)

Let’s compile systematically the graphs and symmetry-factors of M (n) and
of S̃(n) order by order.

M (0)=̂ m(0) · 1 (20.26a)

Of course we know from (20.21) the symmetry-factor m(0) = 1. And 1 is
not really a Feynman-graph, but simply the numerical value of the matrix
element 〈0|0〉. But we want to set up a systematic description with no need
to compute all symmetry-factors explicitly, and with one or several graphs
(or at least the 1 replacing a graph) showing up in every entry. In first order
we have

M (1) =̂ m(1) ·
y

. (20.26b)

The second-order terms are

M (2)=̂ m(2)
a · z

y

+ m
(2)
b · z

y
+ m(2)

c ·
z

y

. (20.26c)

The third-order terms are
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M (3)=̂ 3 ·m(1)m(2)
a︸            ︷︷            ︸

m(3)

·
z

y w
+ . . . (20.26d)

and many other graphs. We don’t list the higher order terms of M (n).
Instead we compile the first terms of S̃(n):

S̃(0) =̂ s(0)
a m(0) ·

x1

x

x

x

2

3 4

+ s
(0)
b m(0) ·

x1

x

x

x

2

3 4

(20.27a)

S̃(1) =̂ s(0)m(1) ·
x1

x

x

x

2

3 4

y
+ s(1)m(0) ·

x1

x

x

x

2

3 4

y (20.27b)

In (20.16) we had skipped the first diagram of S̃(1), because we knew upfront
that the four zero-factors of the LSZ-formula would not be compensated by
the propagators

s(0)m(1) ·G(x2 − x1)G(x4 − x3) G(y − y)G(y − y)︸                      ︷︷                      ︸
1

of that graph, and therefore that graph would not contribute to the scattering
amplitude. But for the completeness of our systematic compilation of graphs,
this term is necessary. The two diagrams (20.27b) exhaust1 the alternatives
of graphs, which can be built by contracting the four field-operators ψ(xj)
(related to four incoming or outgoing particles) and the four field-operators
ψ(y) (related to a vertex of ψ4-theory) to propagators.
The graphs of second order are

1 Remember that we are working with renormalized mass-parameter m, and with renor-
malized field-operators ψ. Therefore graphs similar to the fourth one displayed in
(19.44) are suppressed. See the discussion below (19.44).
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S̃(2)=̂ s(0)
(
m(2)
a ·

x1

x

x

x

2

3 4

z

y

+m
(2)
b ·

x1

x

x

x

2

3 4

z

y

+ m(2)
c ·

x1

x

x

x

2

3 4
z

y )

+ 2 · s(1)m(1) ·
x1

x

x

x

2

3 4

y
z

+ s(2)
a m(0) · . . .+ s

(2)
b m(0) · . . .+ . . . (20.27c)

Note the additional symmetry factor 2 in the second-last line, caused by
exchange of the vertices y and z ! We will discuss that important feature
immediately.
The graphs with symmetry-factors s(2)

j are not yet known to us, nor
the terms S̃(n) with n > 2. But our overview is sufficient to detect some
regularity. For an appropriate description of that regularity, we need the

Definition: A graph is called connected, if all of it’s struc-
tures are connected directly or indirectly to minimum one
incoming or outgoing particle. Otherwise the graph is called
unconnected.

(20.28)

For example, the graphs (20.27a) and the second graph of (20.27b) are
connected, while the first graph of (20.27b) is unconnected (as the structure

is not connected to any incoming or outgoing particle). All graphs
explicitly displayed in (20.27c) are unconnected. Making use of (20.28), we
define

S
(n) ≡ S̃(n) − (unconnected graphs) (20.29)

as the subset of connected graphs of S̃(n).
Now we need to discuss the additional symmetry factor 2 in the second-

last line of (20.27c). The general rule is: If a (connected or unconnected)
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graph of order j and a (connected or unconnected) graph of order (n− j)
are combined to an unconnected graph of order n, then we get — due to
permutation of vertices — an additional symmetry factor(

n
j

)
=
(

n
n− j

)
= n!
j! (n− j)! . (20.30)

We already encountered another example for this in (20.24), with the
additional symmetry factor ( 3

2 ) = 3. The additional symmetry factors are
very important, because in the sequel we want to construct the scattering
amplitude of order n in the form

S̃(n) = S
(0)
M (n) + S

(1)
M (n−1) + . . .+ S

(n)
M (0) .

Now remember that S̃(n) is coming with a factor 1/n! in the LSZ-formula
(20.3). The additional symmetry factor (20.30) cancels that 1/n! and
replaces it by the product of the corresponding factors 1/j! of S(j) and
1/(n− j)! of M (n−j).

Thus due to the additional symmetry factors (20.30) we can indeed display
(20.27) as

S̃(0) =S
(0)
M (0)

S̃(1) =S
(0)
M (1) +S

(1)
M (0)

S̃(2) =S
(0)
M (2) +S

(1)
M (1) +S

(2)
M (0)

...
...

...
...

S̃(n) =S
(0)
M (n) +S

(1)
M (n−1) +S

(2)
M (n−2) + . . .

. . .+ S
(n−1)

M (1) +S(n)
M (0)

S̃(n+1) =S
(0)
M (n+1) +S

(1)
M (n) +S

(2)
M (n−1) + . . .

. . .+ S
(n−1)

M (2) +S(n)
M (1) +S(n+1)

M (0)

...

Summing this infinite system of equations by columns, we get
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∞∑
n=0

S̃(n) = S
(0)
∞∑
j=0

M (j) + S
(1)
∞∑
j=0

M (j) + S
(2)
∞∑
j=0

M (j) + . . .

= M
∞∑
n=0

S
(n)

. (20.31)

In total, the S-matrix thus is

S =
∞∑
n=0

S(n) (20.8)= 1
M

∞∑
n=0

S̃(n) (20.31)=
∞∑
n=0

S
(n)

. (20.32)

We don’t need to compute the denominator M nor the unconnected dia-
grams of the numerator S̃ of the LSZ-formula, because they mutually can-
cel! Henceforth we will only compute the connected diagrams S(n) = (20.29),
because that is sufficient to find the scattering amplitude S.

Note that only the infinite sums (20.32) are equal, while the single terms
S

(j)
, S̃(j)/M are different. When we expand the scattering amplitude with

respect to S(j), but no more with respect to S̃(j)/M , then we are changing
the algorithm of the approximation. The perturbative computation is
leading to the unchanged limit S, but we are approaching that limit at
changed step-size.

We continue to evaluate all aspects of perturbation theory, using examples
as simple as possible. Therefore we don’t investigate next the term S

(2) of
the scattering matrix of ψ4-interaction, but switch to the scattering matrix
of ψ3-interaction. In zeroth order one finds the same result (i. e. zero) as
for ψ4-interaction, because the interaction-term is

1
n!
(
− iλ ~2c2

+∞∫
−∞

∫
Ω

d4y ψs(y)
)n (20.2)= 1 for n = 0 (20.33)

in both cases.
With ψ3-interaction, S(1) is containing four operators ψ(xj) and three

interaction-operators ψ(y), i. e. 7 operators in total. Thus S(1) is zero
according to theorem (19.40a).
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The leading non-vanishing term in the series expansion of the S-matrix

in ψ3-theory is

S
(2) =

4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj
(−iλ ~2c2)2

2! ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)}
+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z·

· 〈0|Tψ(x1)ψ(x2)ψ(x3)ψ(x4)ψ3(y)ψ3(z) |0〉c . (20.34)

The index c (for “connected”) at the matrix element is a reminder, that
now all unconnected graphs are to be skipped upfront, because we are com-
puting S(2) but not S̃(2). To compensate the four zero-factors G̃ -1(kj), four
Fourier-transformed Greens functions G̃(kj) are needed, which again must
be constructed by means of the four exponential functions exp{±i(kjxj)}.
A non-vanishing result is possible only, if each operator ψ(xj) is combined
to a propagator with one of the six interaction operators ψ(y), ψ(z), but
not with one of the other operators ψ(xj). In other words: A graph can
contribute to the amplitude only, if each external point is directly connected
to a vertex, but not to another external point.
Thus from the outset only two types of graphs need to be considered:

x1

x

x

x

3

2 4

y z and
x1

x
x

x

2

3

4
y z (20.35)

But it’s not difficult to see, that the second graph gives a vanishing result:
If in the term of S(2), which corresponds to the second graph, after the
substitutions2 yj ≡ xj − y and z4 ≡ x4 − z the integrations over yj and z4
are performed, then in the result — according to (20.18) — the factors

2 compare (20.17)
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+∞∫
−∞

∫
Ω

d4y exp{−i(k1 + k2 − k3)y}
+∞∫
−∞

∫
Ω

d4z exp{ik4z} =

(20.12)= (2πΩ)2 δ(k0
1 + k0

2 − k0
3) δ(k1k2),k3 δ(k

0
4) δk4,0 (20.36)

will turn up. The right graph in (20.35) can add a non-vanishing contribution
to the scattering amplitude only, if the outgoing particle, which is described
by the operator ψ(x4), has zero energy and zero momentum. That is
impossible, because firstly no Klein-Gordon particle can have zero energy
due to m , 0, and because secondly no particle with zero momentum can
leave the interaction range. Due to conservation of energy and momentum,
all graphs can be skipped upfront, in which not each incoming or outgoing
particle is connected directly or indirectly to minimum one other incoming
or outgoing particle.
Thus only two graphs of the left type in (20.35) remain to be computed:

S
(2)=̂ 72 ·

x1

x

x

x

3

2 4

y z

︸                          ︷︷                          ︸
S

(2)
eg

+ 144 ·
x1

x

x

x

2

3 4

y z

︸                           ︷︷                           ︸
S

(2)
ev

. (20.37)

The index eg does mean, that both incoming particles are coupling to the
same vertex. The index ev does mean, that the two incoming particles are
coupling to different vertices. What is the symmetry factor for S(2)

eg ? With
tree operators ψ(y) and three operators ψ(z) there are 3 · 3 alternatives for
the construction of the propagator G(z − y). Subsequently there remain 2
alternatives for the construction of the propagators G(y−x1) and G(y−x2),
and 2 alternatives for the construction of the propagators G(x3 − z) and
G(x4 − z). Exchange of the vertices y and z gives another factor 2. Thus
the symmetry factor is 9 · 22 · 2 = 72. For S(2)

ev there is an additional factor
2 due to permutation of x3 and x4. We will see, that the two graphs give
different results, and therefore cannot be combined to a single graph. Firstly
we compute
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S
(2)
eg

(20.34)= 72 ·
4∏
j=1

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj
(−iλ ~2c2)2

2! ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4)}
+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z·

· G(y − x1)G(y − x2)G(z − y)G(x3 − z)G(x4 − z) . (20.38)

In accord with theorem (19.40a), the matrix element in the last line of
(20.34) has been replaced by the product of the propagators. The general
rule is: For each line in a graph, the corresponding propagator G is inserted
as a factor into the scattering amplitude.

Furthermore there is a factor (−iλ ~2c2)2/2! in (20.38). The general rule
is: Insert a factor (−iλ ~2c2)n/n! for a graph with n vertices.
We compile the rules for the construction of matrix elements by means

of Feynman-graphs, which we are encountering by and by, into box 20.1
on page 420, because we want to invert the sequence of our actions in
future. Until now, we computed the scattering amplitudes algebraically, and
then illustrated the results by means of Feynman-graphs. But the essential
benefit of the graphs is only realized, if they are used as a mnemonic aid,
to draw intuitively all possible alternatives of interaction in each order of
perturbative expansion, and then — in the second step — to derive the
algebraic formulas from these graphs.
Inserting the Fourier-transformation (20.10) and the definitions

yj ≡ xj − y =⇒ d4xj = d4yj , xj = yj + y (20.39a)
zl ≡ xl − z =⇒ d4xl = d4zl , xl = zl + z , (20.39b)

one gets
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S
(2)
eg =(20.38) 72 · (−iλ ~2c2)2

2!

+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z

·
∏
j=1,2

G̃ -1(kj)
Nj

+∞∫
−∞

∫
Ω

d4yj exp{−ikjy}

·
∏
l=3,4

G̃ -1(kl)
Nl

+∞∫
−∞

∫
Ω

d4zl exp{+iklz}

· 1
Ω2π

∑
f1

+∞∫
−∞

df0
1 G̃(f1) exp{−i(f1 + k1)y1}

· 1
Ω2π

∑
f2

+∞∫
−∞

df0
2 G̃(f2) exp{−i(f2 + k2)y2}

· 1
Ω2π

∑
f

+∞∫
−∞

df0 G̃(f) exp{−if(z − y)}

· 1
Ω2π

∑
f3

+∞∫
−∞

df0
3 G̃(f3) exp{−i(f3 − k3)z3}

· 1
Ω2π

∑
f4

+∞∫
−∞

df0
4 G̃(f4) exp{−i(f4 − k4)z4} .

Using the delta function (20.12), this becomes
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S
(2)
eg = 72 ·

4∏
j=1

G̃ -1(kj)
Nj

G̃(−k1) G̃(−k2) G̃(k3) G̃(k4)

· 1
Ω2π

∑
f

+∞∫
−∞

df0 G̃(f)
+∞∫
−∞

∫
Ω

d4y exp{−i(k1 + k2 − f)y)}

· (−iλ ~2c2)2

2!

+∞∫
−∞

∫
Ω

d4z exp{+i(k3 + k4 − f)z} . (20.40)

Because of G̃(kj)
(12.7)= G̃(−kj), the four zero-factors can be canceled. The

integral over y gives a delta function, which ensures the conservation of
energy and momentum at the vertex y, and fixes f accordingly. The integral
over z gives a further delta function, which secures the conservation of
energy and momentum at the vertex z:

S
(2)
eg = 72 ·

( 4∏
j=1

√
1

2~ωkjΩN

) (−iλ ~2c2)2

2! G̃(k1 + k2) ·

· 2πΩ δ(k0
1 + k0

2 − k0
3 − k0

4) δ(k1+k2),(k3+k4) (20.41)

The particle, which is propagating inbetween the vertices, is transporting
the energy and momentum of the outer lines. That can be illustrated due to
Feynman-diagrams in wavenumber-space, which often is also called energy-
momentum space because of ~ck0 = energy and ~k = momentum:

S
(2) =̂ 72 ·

k
1

k

k

k

3

2 4

k1+k2 + 144 ·
k
1

k

k

k

2

3 4

k1 3
k-

(20.42)

Obviously only k2 and -k3 need to be exchanged, to find

S
(2)
ev = 144 ·

( 4∏
j=1

√
1

2~ωkjΩN

) (−iλ ~2c2)2

2! G̃(k1 − k3) ·

· 2πΩ δ(k0
1 + k0

2 − k0
3 − k0

4) δ(k1+k2),(k3+k4) . (20.43)
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Here we used

δ(k0
1 − k0

3 + k0
2 − k0

4) δ(k1−k3),(-k2+k4) =
= δ(k0

1 + k0
2 − k0

3 − k0
4) δ(k1+k2),(k3+k4) .

Box 20.1 : Feynman-rules in time-position-space for the computation
of the component S(n) of the scattering amplitude of the uncharged Klein-
Gordon field with ψs-interaction
A S

(n) is equal to the sum of all connected 1PI graphs with n vertices.
B The symmetry factor is equal to the number of alternatives for the

pairwise combination of the operators ψ, which are constituting the
graph, to the propagators of the graph. Only one of the equivalent
graphs is inserted as a summand into the scattering amplitude, and
multiplied by the symmetry factor.

C s lines are meeting at each vertex. (Here the two ends of a loop are
counted as two lines.)

D For the n vertices, a factor

1
n!
(
− iλ ~2c2

+∞∫
−∞

∫
Ω

d4y
)n

is inserted. The integrals extend over the complete summand, not only
over this factor.

E For each line, the corresponding propagator G(y − x) is inserted as a
factor into the summand.

F For each incoming or outgoing particle with wavenumber kj , a factor√
1

2~ωkjΩ︸          ︷︷          ︸
1/Nj

~c

i

(
k2
j −

m2c2

~2
+ iε′

)
︸                          ︷︷                          ︸

G̃ -1(kj)

+∞∫
−∞

∫
Ω

d4x exp{∓ikjx}

is inserted. The integrals extend over the complete summand, not only
over this factor. The sign of the exponent is “−” for incoming particles,
and “+” for outgoing particles.
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Note that S(2)
ev , 2S(2)

eg because of G̃(k1 − k3)
(12.7)
, G̃(k1 + k2) .

In future we want to proceed inversely, and derive the algebraic form of the
scattering amplitude from Feynman-diagrams in energy-momentum-space.
The rules can be formulated in energy-momentum-space much simpler than
in time-position-space. They are listed in box 20.2 . Obviously the zero-fac-

Box 20.2 : Feynman-rules in energy-momentum-space for the com-
putation of the component S(n) of the scattering amplitude of the un-
charged Klein-Gordon field with ψs-interaction
A -C as box 20.1 on the facing page
D For the n vertices, insert a factor

1
n! (−iλ ~

2c2)n .

E For each outer line with wavenumber kj , a factor
1
Nj

=
√

1
2~ωkjΩ

is inserted into the summand.
F For the incoming and outgoing lines with four-wavenumber kin and
kout, a factor

2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout

is inserted into the summand.
G For each inner line with wavenumber k, insert a factor

G̃(k) = i

~c
(
k2 − m2c2

~2
+ iε′

) .
H Sum and integrate over the wavenumber k of an inner line,

1
Ω
∑
k

+∞∫
−∞

dk0

2π ,

if k is not fixed due to conservation of energy and momentum.
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tors of the LSZ-formula are always canceled versus the Fourier-transformed
Greens-functions of the incoming and outgoing particles (provided that each
external particle is connected to some vertex). Thus one can skip the work
to write them down. And always there is a delta function, which secures
the conservation of energy and momentum of the incoming and outgoing
particles. Therefore one does not need to compute all these integrals anew
for each graph, but can write down the results immediately.
The abbreviation 1PI in rule A, box 20.1, stands for one-particle-irre-

ducible. That notion will be explained only around equation (20.82) on
page 443.

The wavenumbers of inner lines always must be chosen such, that energy
and momentum is conserved at each vertex. We will see that this condition
is not sufficient to fix uniquely the wavenumbers of inner lines in diagrams
with loops. Rule H is considering this eventuality.

A graph is called tree-graph, if firstly any two vertices are connected by
exactly one line (which may run over several intermediate vertices), but
never by several parallel lines, and if secondly there is no line, which begins
and ends at the same vertex. Diagrams, which don’t meet one ore both of
these criteria, are called loop-diagrams. We will investigate loop-diagrams
in section 20.3.

20.2 The Masses of Virtual Particles

The energies and momenta of the virtual particles, which are represented
by the inner lines of ψ3-theory diagrams like

k
1

k

k

k

3

2 4

k1+k2 and
k
1

k

k

k

2

3 4

k1 3
k-

(20.44)

are uniquely determined due to the delta functions. The invariant wavenum-
ber-square of the virtual particle in the first graph is

(k0
1 + k0

2)2 − (k1 + k2)2 = 2m2c2/~2 + 2k0
1k

0
2 − 2k1k2 .
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The wavenumber-square is called invariant, because it is identical in any
inertial system. We investigate it in the center-of-mass system k2 = −k1 of
the incoming particles:

2m2c2/~2 + 2k0
1k

0
2 + 2k2

1 = 2m2c2/~2 + 2
√

(k2
1 +m2c2/~2)2 + 2k2

1

= 4m2c2/~2 + 4k2
1 > 4m2c2/~2 . (20.45)

The invariant wavenumber-square of the virtual particle in the left diagramm
(20.44) is at least four times larger than the invariant wavenumber-square of
an observed particle. Depending on the momenta of the incoming particles,
it may even be much larger.
The second diagram can best be analyzed in the center-of-mass system

k3 = −k1 of the incoming particle k1 and the outgoing particle k3. The
invariant wavenumber-square of the virtual particle is

2m2c2/~2 − 2k0
1k

0
3 − 2k2

1 = 2m2c2/~2 − 2
√

(k2
1 +m2c2/~2)2 − 2k2

1

= −4k2
1 < 0 . (20.46)

The invariant wavenumber-square of the virtual particle in the right diagram
(20.44) always is less than zero. Depending on the momenta of the particles
k1 and k3, it may be arbitrarily negative. Thus the mass of the virtual
particle in this diagram is imaginary.
It’s not a specialty of ψ3-theory, but a general property of all quantum

field theories, that virtual particles are not “on mass-shell”, i. e. that their
mass is differing from the mass of observed particles, and might even be
imaginary.

20.3 Loop Graphs

We now will investigate, how the propagator of a particle inbetween the
space-time-points x1 and x2 is modified in the various orders of perturbation
computation of ψ4-theory:
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G(W )(x2 − x1) =̂ x
1

x
2

+ 12 ·
yx

1
x
2

+

+ 288 ·
yx

1
x
2z

+ 288 ·
yx

1
x
2

z

+ 192 ·
y

x
1

x
2

z

+ 10 368 · yx
1

x
2

wz
+ 41 472 ·

yx
1

x
2

w

z
+ . . . (20.47)

It has been an essential pre-condition of the derivation of the LSZ-formula
in section 19.3, that outside of the space-time-range te < t < ta, in which
interactions may happen, there also exists a space-time-range, in which
no interactions are taking place. While we eventually shifted te and ta
to ±∞, we have emphasized that this merely meant “far past” and “far
future”, but not literally “infinity”. As self-interactions, like displayed in
(20.47), may happen at any time, we have asserted (and will prove that
assertion in chapter 22), that such self-interaction-graphs are converted
quasi automatically into the simple line of the first summand, if the mass
and the field-operator are appropriately renormalized. Later on we will also
compute the second diagram in (19.44), and treat it’s divergence due to
renormalization of the coupling constant.
Accordingly, we used the renormalized quantities in all computations of

the previous sections. In contrast, the graphs (20.47) must be computed
with the bare (not-renormalized) mass and the bare field-operator, as they
would vanish immediately if the renormalized quantities would be inserted.
And the second diagram in (19.44) must be computed with the bare coupling
constant. We continue to use the notation m for the renormalized mass,
while m0 is our notation for the bare mass. The renormalized coupling
constant is λ, the bare coupling constant is λ0. ψ(x) is the renormalized,
ψ0(x) the bare field-operator.
While the LSZ-formula does not hold for the graphs (20.47), the generic

formula3

3 Remember the re-naming (19.21) of indices!
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〈0|Tψ(W )
0 (x1)ψ(W )

0 (x2) |0〉 (19.19)= 1
M

∞∑
n=0

1
n! ·

· 〈0|Tψ0(x1)ψ0(x2)
(
− iλ~2c2

∫
Ω

+∞∫
−∞

d4y ψ4
0(y)

)n
|0〉

with M = (20.4) (20.48)

for matrix elements, which has been derived in section 19.1, is suitable for
the computation of propagators with self-interactions. As already done in
section 20.1, we will cancel unconnected graphs in the numerator versus the
denominator M . Therefore only connected diagrams need to be computed.
Consequently only connected diagrams have been indicated in (20.47) right
from the outset. As we don’t want to change the nomenclature

G(0)(x2 − x1) ≡ G(x2 − x1) (15.43)= 〈0|Tψ0(x1)ψ0(x2) |0〉

of the Feynman-propagator, we define the notation

G(W )(x2 − x1) =
∞∑
n=0

G(n)(x2 − x1) = 〈0|Tψ(W )
0 (x1)ψ(W )

0 (x2) |0〉

for the propagator with self-interaction.

20.3.1 The Tadpole of ψ4-Theory

The first-order propagator correction is

12 ·
yx

1
x
2

=̂ G(1)(x2 − x1) =

= 〈0|Tψ0(x1)ψ0(x2) (−iλ~2c2)
∫
Ω

+∞∫
−∞

d4y ψ4
0(y) |0〉c

=(19.40a) 12 · (−iλ~2c2)
∫
Ω

+∞∫
−∞

d4y G(y − x1)G(y − y)G(x2 − y) .
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This correction is called tadpole. The naming becomes obvious, if
one considers the tadpole of QED, which is displayed at the right.
In QED, however, same as in ψ3-theory, whose tadpole is displayed
on the right side ofon the right side of (20.35), the tadpole is a dead end, which is connected
only via one propagator to the rest of the world, and thus exists only in
second or higher order perturbation theory. In contrast, the tadpole of ψ4-
theory is connected via two propagators to the outside world, and thus
showing up already in first order diagrams. For it’s computation, we insert
the Fourier-transformations (7.13a) of all propagators:

1
Ω
∑
f

+∞∫
−∞

df0

2π G̃(1)(f) exp{−if(x2 − x1)} = −i 12λ~2c2 ·

·
∫
Ω

+∞∫
−∞

d4y
1

Ω3

∑
k1,k,k2

+∞∫
−∞

dk0
1 dk0 dk0

2
(2π)3 G̃(k1) G̃(k) G̃(k2) ·

· exp{−ik1(y − x1)− ik(y − y)− ik2(x2 − y)} (20.49)

We identify

∫
Ω

+∞∫
−∞

d4y exp{+i(k2 − k1)y} (7.16b)= 2πΩ δ(k0
2 − k0

1) δk2k1 ,

compute the integral and the sum over k2, and rename the integration-
variable f on the left side into k1:

1
Ω
∑
k1

+∞∫
−∞

dk0
1

2π G̃(1)(k1) exp{−ik1(x2 − x1)} = −i 12λ~2c2 ·

· 1
Ω2

∑
k1,k

+∞∫
−∞

dk0
1 dk0

(2π)2 G̃(k1) G̃(k) G̃(k1) exp{−ik1(x2 − x1)}

Consequently the integrands must be equal:
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12 ·
1k

k

1k
=̂ G̃(1)(k1) = G̃(k1) −i 12λ~2c2

Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k)

︸                                    ︷︷                                    ︸
≡F

G̃(k1)

(20.50a)

F
(12.7)= 12λ~2c2

~c

1
Ω
∑
k

+∞∫
−∞

dk0

2π
1

k2 −m2
0c

2/~2 + iε′
(20.50b)

It’s characteristic for loop-graphs, that a wavenumber k is showing up, which
is not constrained by conservation of energy and momentum. Furthermore
it’s a particular feature of the tadpole of ψ4-theory, that the function F does
not depend on the wavenumber k1 of the propagating particle. Because of

1
Ω
∑
k

+∞∫
−∞

dk0

2π
(7.5)
≈

+∞∫
−∞

d4k

(2π)4 , (20.50c)

F is diverging for |k| → ∞ like d4k k-2 ∼ k2.
The equation of F can alternatively be written in the form

F = 1
Ω
∑
k

+∞∫
−∞

dk0

2π
12λ~c(

k0 + ωk
c
− iε

)(
k0 − ωk

c
+ iε

) , (20.50d)

because we have

k2 −m2
0c

2/~2 = (k0)2 − k2 −m2
0c

2/~2 = (k0)2 − ω2
k

c2 =

=
(
k0 + ωk

c

)(
k0 − ωk

c

)
(20.51)

ωk
c

=(7.18) +
√
k2 +m2

0c
2/~2 .

Only “on mass-shell”

k2 = m2
0c

2

~2
and k0 = ωk

c
.
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But k and k0, being the variables of summation and integration, are not
fixed to mass-shell. k0 assumes all values in the continuum −∞ . . .+∞. k
assumes all values, which are compatible with the normalization volume Ω.
Therefore the poles of F

at k2 = m2
0c

2/~2 − iε′

resp. at k0 = ±
(ωk
c
− iε

)
have been shifted from the real k0-axis into the complex plane:

ωk/c
(12.9)−→ ωk/c− iε with ε ∈ R , ε > 0

It’s important to shift the poles exactly like this, to make sure that the
frequency-time-product will always be positive, as discussed at (12.12). Only
propagators with positive frequency-time-product are describing particles or
antiparticles with positive energy, which are propagating forward through
time.
We will encounter integrals of the type (20.50) in all computations of

Feynman-graphs with loops. Therefore we compute this integral for future
reference in the generalized form

FK ≡
1
Ω
∑
k

+∞∫
−∞

dk0

2π
J

(k2 −K2 + iε′)r (20.52a)

= 1
Ω
∑
k

+∞∫
−∞

dk0

2π
J

(k0 + ϑk − iε)r(k0 − ϑk + iε)r (20.52b)

1 ≤ r ∈ N , 0 ≤ K2 ∈ R , ϑk ≡ +
√
k2 +K2

J ≡ 1 or k2 or kµkν or (k2)2 .

The both poles are indicated in figure 20.3 by red points. With J = kµ

the integral would be zero, because the integration resp. the summation
is symmetrical over +kµ and −kµ. The same would hold for J = kµkν

with µ , ν. Therefore these both possibilities can be skipped from further
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-ϑk iε  + Re( 0k )

Im( 0k )^

^

ϑk+ iε  -

Fig. 20.3 : Integration paths without (green) and with (blue) Wick-Rotation

considerations.
Due to analytical continuation, we extend the definition range of the

variable k0 from the real axis into the complex plane. The complex variable
k̂0 is marked by a hat. Actually we did already use that extension, when
we shifted the poles from the integration paths into the complex plane. But
that have been only infinitesimal deviations from the real axis. Now we
consider the complete complex plane as the definition range of the null-
component of k, and introduce polar coordinates for the null-component:

k̂0 ≡ |k̂0| exp{iϕ} (20.53)
dk̂0 = exp{iϕ}d|k̂0|+ i|k̂0| exp{iϕ}dϕ

The polar angle ϕ is counted from the positive real k̂0-axis counter-clockwise,
as usual. Only on the real k̂0-axis k̂0 = k0.

The integration path of (20.52) is indicated in figure 20.3 as a green arrow.
According to Cauchy’s integral theorem4, one gets the same result, if the
integration is performed along the path indicated in blue, because there are
no singular points in the area enclosed by the two integration paths. In the
sequel, we will restrict our analysis to those cases, in which the integral over
the two blue circle segments is zero:

4 A short explanation of this important mathematical tool, tailored to the need of
physicists, can be found in [37].
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lim
|k̂0|→∞

3π/2∫
π

0∫
π/2

dϕ i|k̂0| exp{iϕ}Ĵ
|k̂0|2r exp{i2rϕ}

= 0 (20.54)

The hat on Ĵ is a reminder, that this quantity possibly may be affected by
the rotation of the integration path from the real to the imaginary k0-axis:

Ĵ =



1
k̂µk̂ν = −kµkν with µ = ν = 0
kµkν with µ = ν , 0
k̂2 = (ik0)2 − k2 = −(k0)2 − k2

(k̂2)2 = [(k0)2 + k2]2

(20.55)

Here we considered, that k̂0 ≡ ik0 on the imaginary k̂0-axis. Condition
(20.54) is fulfilled, if k0 is showing up in the denominator with higher power
than in the numerator. Depending on J , therefore the following restrictions
must be fixed for the exponent r ∈ N:

J = 1 =⇒ r ≥ 1

J = kµkν with µ = ν =⇒
{
r ≥ 2 if µ = 0
r ≥ 0 if µ , 0

J = k2 =⇒ r ≥ 2
J = (k2)2 =⇒ r ≥ 3 (20.56)

If these conditions are met, then the blue integral from −i∞ to +i∞
along the imaginary k̂0-axis is equal to the green integral from −∞ to +∞
along the real k̂0-axis:

FK =(20.52) 1
Ω
∑
k

+i∞∫
−i∞

dk̂0

2π
Ĵ

(k̂0 + ϑk)r(k̂0 − ϑk)r
=
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= 1
Ω
∑
k

+i∞∫
−i∞

idk0

2π
Ĵ(

(ik0)2 − k2 −K2
)r (20.57)

The small terms ε could be skipped, because the integration path along the
imaginary k̂0-axis is far-off from the poles at k̂0 = ±ϑk, see figure 20.3. The
rotation of the integration path in the complex k̂0-plane by the angle π/2
is a trick, which is often used in quantum field theory. It is called “Wick-
rotation”.
The Minkowski5-metric holds for the wavenumber k:

(k)2 = (k0,k)2 = (k0)2 − k2

We define a four-vector kE with Euklidean6 metric, in whose square the
squares of all four components are summed-up with the same (in this case
positive) sign:

(kE)2 = (k0
E,kE)2 = (k0

E)2 + k2
E

−(kE)2 = −(k0
E)2 − k2

E (20.58)

This is to be compared with the variable k̂ = (k̂0,k) = (ik0,k) of summation
and integration in (20.57) and in (20.55):

(k̂)2 = (ik0,k)2 = −(k0)2 − k2 (20.59)

It’s exactly this square, which is showing up in the denominator of (20.57).
k̂ = (ik0,k) is a vector with negative Euklidean metric. Therefore in (20.57)
the replacements

5 Hermann Minkowski (1864 - 1909)
6 Euklid of Alexandria (about 360BCE - about 280BCE)
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k̂ = (ik0,k) −→ (k0
E,kE) = k̂E (20.60a)

(k̂)2 = (ik0,k)2 −→ −(k0
E,kE)2 = −(kE)2 (20.60b)

k̂µ k̂ν −→
{
− kµE kνE ; µ = ν = 0
+ kµE k

ν
E ; µ = ν , 0

}
= −gµν (kE)2

4 (20.60c)

can be performed, without changing the integral’s value:

FK
(20.57)= 1

Ω
∑
k

+i∞∫
−i∞

dk0
E

2π
JE(

− (kE)2 −K2
)r (20.61)

JE
(20.52)= 1 or − (kE)2 or − gµν(kE)2/4 or (kE)4

The euclidean vector kE is appearing in the integrand only quadratically.
Therefore the change to four-dimensional spherical coordinates is advisable.
A n-dimensional sphere with radius R has the volume Vn and the surface
Sn. Using the formulae7

Vn = 2πR2

n
Vn−2 Sn = dVn

dR
V2 =πR2 V3 = 4

3πR
3 ,

(20.62)

the values for arbitrary n ∈ N can be computed. The surface of a four-di-
mensional Euclidean sphere with radius R = |kE| is 2π2R3. The introduction
of spherical coordinates is easier, if the sum over the discrete wavenumbers
kE is replaced by the integral over a continuum of kE-values:

1
Ω
∑
kE

+i∞∫
−i∞

dk0
E

2π
(7.5)=

+∞∫
−∞

d3kE
(2π)3

+i∞∫
−i∞

dk0
E

2π = i

+∞∫
0

2π2R3dR
(2π)4 =

= i

+∞∫
0

dR R3

8π2 = i

+∞∫
0

dR2 R2

16π2 (20.63)

7 A good article “n-sphere” can be found in Wikipedia.
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The factor i is showing up, because kE has one imaginary and three real
components, while R is real. Due to these conversions, we have achieved
the following result:

1
Ω
∑
k

+∞∫
−∞

dk0

2π
J(

k2 −K2 + iε′
)r = i(−1)r

16π2

+∞∫
0

dR2 R2JE(
R2 +K2

)r
1 ≤ r ∈ N , 0 ≤ K2 ∈ R (20.64)

J = 1 kµ k2 kµkν (k2)2

JE = 1 0 −R2 −gµνR2/4 R4

r = ≥ 1 — ≥ 2
{
≥ 2 if µ = 0
≥ 0 if µ , 0

≥ 3

For the tadpole of ψ4-theory, K2 = m2
0c

2/~2, r = 1, and J = 1:

F =(20.50b) 12λ~2c2

~c

1
Ω
∑
k

+∞∫
−∞

dk0

2π
1

k2 −m2
0c

2/~2 + iε′

=(20.64) i(−1) 12λ~c
16π2

+∞∫
0

dR2 R2

R2 +m2
0c

2/~2
(20.65)

This integral is diverging for R → ∞. To regularize it (i. e. to render it
computable), we introduce a cutoff-parameter Λ:

F = −i3λ~c4π2 lim
Λ→∞

Λ2∫
0

dR2 R2

R2 +m2
0c

2/~2

= −i3λ~c4π2 lim
Λ→∞

(
R2 −m2

0c
2/~2 ln(R2 +m2

0c
2/~2)

)∣∣∣∣Λ
2

0

= −i3λ~c4π2 m2
0c

2/~2 lim
Λ→∞

(Λ2~2

m2
0c

2 − ln
(Λ2~2

m2
0c

2 + 1
))

(20.66)

The term 1 in the logarithm can be skipped because of Λ → ∞. Thus
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one gets for the propagator with self-interaction in first order perturbative
computation (that is for the tadpole) the result

12 ·
1k

k

1k
=̂ G̃(1)(k1) =

(20.50)= G̃(k1) −i 12λ~2c2

Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k)

︸                                    ︷︷                                    ︸
F

G̃(k1) (20.67a)

F = − i3λ~c4π2

(m0c

~

)2
lim

Λ→∞

(Λ2~2

m2
0c

2 − ln
(Λ2~2

m2
0c

2

))
. (20.67b)

The function F of the tadpole diverges for Λ → ∞ quadratically and
logarithmically. We will clarify in chapter 22, how this divergence can be
cured due to renormalization of the mass m0 and the field-operator ψ0.

20.3.2 Propagator-Corrections in ψ3-Theory

G(1) = 0 with ψ3-interaction. Thus the leading propagator-correction is
found in second order perturbation computation:

G(2)(x2 − x1) =̂ 36 ·
y

x1 x2
z

(20.68)

The essential difference to the tadpole is, that there are 2 vertices in this
loop, and therefore the loop is composed of two propagator-lines. We will
see, that consequently this graph diverges “only” logarithmically, but not
quadratically. The computation must be conducted with the bare (not-
renormalized) mass m0.
There are 32 · 22/2! alternatives to build the two internal propagators.

Then either x1 or x2 can be contracted with y, resulting in another factor 2.
Thus the symmetry factor is 36. The graph is computed by means of the
generic formula (20.48). As usual, unconnected structures in the numerator
are canceled versus the denominator.
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G(2)(x2 − x1) (19.40a)= 36 · (−iλ~2c2)2

2!

∫
Ω

+∞∫
−∞

d4y

∫
Ω

+∞∫
−∞

d4z ·

· G(y − x1)G(z − y)G(z − y)G(x2 − z) (20.69)

We insert the Fourier-transformations of the propagators

1
Ω
∑
f

+∞∫
−∞

df0

2π G̃(2)(f) exp{−if(x2 − x1)} = 36 · (−iλ~2c2)2

2! ·

·
∫
Ω

+∞∫
−∞

d4y

∫
Ω

+∞∫
−∞

d4z
1

Ω4

∑
k1,k,g,k2

+∞∫
−∞

dk0
1 dk0 dg0 dk0

2
(2π)4 ·

· G̃(k1) G̃(k) G̃(g) G̃(k2) ·

· exp
{
− i
(
k1(y − x1) + k(z − y) + g(z − y) + k2(x2 − z)

)}
,

identify the two delta functions

∫
Ω

+∞∫
−∞

d4y exp{+i(g − k1 + k)y} (7.16b)= 2πΩ δ
(
g0 − (k0

1 − k0)
)
δg,(k1−k)

∫
Ω

+∞∫
−∞

d4z exp{+i(k2 − g − k)y} (7.16b)= 2πΩ δ
(
k0

2 − (g0 + k0)
)
δk2,(g+k) ,

perform the integrations and summations over g and k2, and rename the
integration variable f on the left side into k1:
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1
Ω
∑
k1

+∞∫
−∞

dk0
1

2π G̃(2)(k1) exp{−ik1(x2 − x1)} =

= 36 · 1
Ω
∑
k1

+∞∫
−∞

dk0
1

2π
(−iλ~2c2)2

2!
1
Ω
∑
k

+∞∫
−∞

dk0

2π

· G̃(k1) G̃(k) G̃(k1 − k) G̃(k1) exp
{
− ik1(x2 − x1)

}
(20.70)

The integrands must be equal. Therefore

36 ·
k
1

k
1

k
1
k

k

-

=̂ G̃(2)(k1) = (20.71a)

= G̃(k1) · 18(−iλ~2c2)2 1
Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k) G̃(k1 − k)

︸                                                           ︷︷                                                           ︸
≡F (k1)

· G̃(k1) .

The conversions, which led to this intermediate result, are quite similar to
the conversions, which we encountered before in the tadpole computation.
We do not want to write down and compute again and again all those
Fourier-transformations and delta functions. Therefore we compile for future
reference the general rules for the computation of propagator-corrections in
box 20.4 on the next page.
Again — typical for loop-graphs — there is a wavenumber k, which is

not determined by a delta function. We compute the function F (k1), which
was defined in the last equation:

F (k1) (12.7)= 18(−iλ~2c2)2 1
Ω
∑
k

+∞∫
−∞

dk0

2π
( i
~c

)2
·

· 1(
k2 −m2

0
c2

~2 + iε′
)(

(k1 − k)2 −m2
0
c2

~2 + iε′
) (20.71b)

To find F (k1), we can not simply copy the tadpole computation, because
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the undetermined wavenumber does appear in the integrand’s denominator
not only quadratically (as in case of the tadpole), but also linearly as −2k1k.
Therefore first a tricky conversion of the integrand is needed. For arbitrary
A,B ∈ C and dimension-less ξ ∈ R

1∫
0

dξ(
ξA+ (1− ξ)B

)2 =
1∫

0

dξ(
ξ(A−B) +B

)2 . (20.72a)

Box 20.4 : Feynman-rules in energy-momentum-space for the com-
putation of propagator-corrections of the uncharged Klein-Gordon field
with ψs-interaction
A The propagator-correction corresponds to the sum of all connected

graphs with n vertices, which have the structure
G̃(n) = G̃(0) · F (n) · G̃(0) with G̃(0) ≡ G̃

B s lines meet at each vertex. (Two ends of a loop here are counted as 2
lines.)

C The symmetry factor is the number of alternatives for the pairwise
combination of the operators ψ of the graph to the graph’s propagators.
Only one of the equivalent graphs is drawn, and multiplied by the
symmetry factor.

D For the n vertices, insert a factor
1
n! (−iλ ~

2c2)n .

E For each line with wavenumber k, insert a factor

G̃(k) = i

~c
(
k2 − m2c2

~2
+ iε′

) .
F Summations and integrations are performed over all wavenumbers k,
which are not fixed by conservation of energy and momentum:

1
Ω
∑
k

+∞∫
−∞

dk0

2π
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Because of d
dξ

1
ξ(A−B) +B

= −(A−B)(
ξ(A−B) +B

)2

we have
1∫

0

dξ(
ξA+ (1− ξ)B

)2 = 1
B −A

· 1
ξ(A−B) +B

∣∣∣∣1
0

=

= 1
B −A

( B

AB
− A

BA

)
= 1
AB

. (20.72b)

This can be written in the form

1
AB

=
1∫

0

1∫
0

dξ1dξ2
δ(ξ2 − 1 + ξ1)(
ξ1A+ ξ2B

)2 . (20.72c)

For the moment being, this formula is sufficient. For future applications,
we state without proof this generalization:

n ∈ N,mj ∈ R, Aj ∈ C, ξj ∈ R : 1
Am1

1 . . . Amnn
=

=
1∫

0

dξ1 . . .

1∫
0

dξn
Γ
(∑n

j=1mj

)
δ
(∑n

j=1 ξj − 1
) (∏n

j=1 ξ
mj−1
j

)
(∏n

j=1 Γ(mj)
) (∑n

j=1 ξjAj
)∑n

j=1 mj
(20.73a)

Here Γ is the gamma-function (the generalization of faculty). If all exponents
mj equal 1, this formula simplifies to

1
A1 . . . An

=
1∫

0

dξ1 . . .

1∫
0

dξn
(n− 1)! δ

(∑n
j=1 ξj − 1

)
(∑n

j=1 ξjAj
)n , (20.73b)

which in case n = 2 reduces further to (20.72).
The both factors in the denominator of the integrand of F (k1) can be

identified with A and B in (20.72). A further conversion of the denominator
leads to
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(
ξ
(
k2 −m2

0
c2

~2

)
+ (1− ξ)

(
(k1 − k)2 −m2

0c
2/~2

))2
=

=
((
k − (1− ξ)k1

)2
+ (ξ − ξ2)k2

1 −m2
0c

2/~2
)2

. (20.74)

We resist the temptation to insert k2
1 = m2

0c
2/~2, because we want to

arrange the computation from the outset so generic, that it is still valid if
the bubble (20.71) is the correction of an inner line of a larger graph. For
virtual particles k2

1 , m
2
0c

2/~2, as we have seen in section 20.2.
Now we substitute the summation- and integration-variable

k −→ κ ≡ k − (1− ξ)k1 ,

and rename subsequently κ into k:

F (k1) (20.71b)= −
1∫

0

dξ 1
Ω
∑
k

+∞∫
−∞

dk0

2π
2(3λ~c)2

(k2 +(ξ − ξ2)k2
1 −m2

0c
2/~2︸                             ︷︷                             ︸

≡−K2

+iε′)2

Thus we have arrived at an important intermediate result: Firstly, the
undetermined wavenumber k does appear in the integrand only quadratically,
same as in the tadpole integrand. Secondly, one can interpret

K~

c
=
√
−(ξ − ξ2) k2

1~
2/c2 +m2

0︸         ︷︷         ︸
−0.25≤...≤0

(20.75)

as an effective mass, because F (k1) has poles at k = ±K. In case k2
1 ≥

4m2
0c

2/~2, the effective mass becomes imaginary in an interval around
ξ = 0.5. That’s the formal signature of a dissipative process, in which
energy disappears from the investigated system, being converted to heat. In
this case, the dissipation is caused by the opening of an additional channel,
which is a competing alternative to the diagram (20.68): At k2

1 ≥ 4m2
0c

2/~2,
the systems energy is sufficient, to convert the two virtual particles of (20.68)
into real particles. Thus these particles can disappear from the probability
amplitude (20.68). While for real (i. e. observed) particles k2

1 = m2
0c

2/~2,
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virtual particles may very well have k2
1 > 4m2

0c
2/~2, as we have seen e. g. in

the left graph of (20.44).
Applying the generic formula (20.64), we find

F (k1) = −
1∫

0

dξ i(3λ~c)
2

8π2

+∞∫
0

dR2 R2

(R2 +K2)2 (20.76a)

K2 = (ξ2 − ξ)k2
1 +m2

0c
2/~2 . (20.76b)

The integral diverges for R→∞. To regularize it, we introduce a cut-off
parameter Λ:

F (k1) = −
1∫

0

dξ i(3λ~c)
2

8π2 lim
Λ→∞

Λ2∫
0

dR2 R2

(R2 +K2)2

= −
1∫

0

dξ i(3λ~c)
2

8π2 lim
Λ→∞

( K2

R2 +K2 + ln(R2 +K2)
)∣∣∣Λ2

0

= −
1∫

0

dξ i(3λ~c)
2

8π2 lim
Λ→∞

(
K2

Λ2 +K2 − 1 + ln
(Λ2 +K2

K2

))

Because of Λ→∞, this expression simplifies to

F (k1) = −
1∫

0

dξ i(3λ~c)
2

8π2 lim
Λ→∞

ln
( Λ2

K2

)
. (20.77)

So far we assumed K2 ≥ 0. What will happen in case K2 < 0? K2 =
(20.76b) is certainly negative in case k2

1E < −4m2
0c

2/~2 at ξ = 0.5. In
contrast, K2 is positive with certainty at ξ = 0 and ξ = 1. Thus there must
exist a value 0 < η < 0.5 , η ∈ R, such that K2 is positive for ξ < η and for
ξ > 1− η, negative for η < ξ < 1− η, and zero at ξ = η and at ξ = 1− η.
Accordingly we split the integral over ξ into three ranges:
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1∫

0

dξ . . .

︸       ︷︷       ︸
F (k1)

=
η∫

0

dξ . . .

︸       ︷︷       ︸
Fa(k1)

+
1−η∫
η

dξ . . .

︸         ︷︷         ︸
Fb(k1)

+
1∫

1−η

dξ . . .

︸         ︷︷         ︸
Fc(k1)

(20.78)

The two integrals Fa(k1) and Fc(k1) differ from (20.77) only by the inte-
gration boundaries. K2 = 0 at ξ = η and at ξ = 1 − η. But because of
limξ→0 ξ ln(ξ) = 0, the integrals don’t diverge at the integration boundaries.

The integral over the middle range is describing the case, that the virtual
particles mutate to real particles. Thus it’s contribution to the probability
amplitude (20.68) is zero. We can formulate a result, which is generally
valid, by introducing a factor V=(20.79c) into the integral:

F (k1) = − i(3λ~c)
2

8π2

1∫
0

dξ V lim
Λ→∞

ln
( Λ2

K2

)
(20.79a)

K2 = (ξ2 − ξ)k2
1 +m2

0c
2/~2 (20.79b)

V ≡
{

1 if K2 ≥ 0
0 else

(20.79c)

For a free particle, we have V = 1 and

1∫
0

dξ ln
( Λ2

K2

)
= ln

(Λ2~2

m2
0c

2

)
−

1∫
0

dξ ln
(
(ξ2 − ξ) + 1

)
=

= ln
(Λ2~2

m2
0c

2

)
− 0.81 ≈ ln

(Λ2~2

m2
0c

2

)
because of Λ→∞ .

Thus we arrive at the final result:
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36 ·
k
1

k
1

k
1
k

k

-

=̂ G̃(2)(k1) (20.71)=

= G̃(k1) · 18(−iλ~2c2)2 1
Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k) G̃(k1 − k)

︸                                                           ︷︷                                                           ︸
≡F (k1)

· G̃(k1) (20.80a)

F (k1) =

−
i(3λ~c)2

8π2 lim
Λ→∞

ln
(Λ2~2

m2
0c

2

)
if k2

1 = m2
0c

2/~2

(20.79) else
(20.80b)

The divergence of this loop is “only” logarithmic, i. e. less catastrophic than
in case of the tadpole of ψ4-theory.

20.3.3 Four-Point Scattering in 2.Order

We still need to investigate two further examples of graphs with loops.
Thereby we will find an important extension for the collection of Feynman-
rules in the boxes 20.1 and 20.2. In second-order perturbation computation
of ψ4-theory, the scattering amplitude of two incoming and two outgoing
particles consists of six connected diagrams:

S
(2) =̂ 576 ·

y

x
1

x
3

x
4x

2
z︸                          ︷︷                          ︸

S
(2)
eg

+ 1152 ·
y

x
1

x
2

x
4x

3
z︸                           ︷︷                           ︸

S
(2)
ev

+

+ 2304 · zx
1

x
2

x
4

x
3

y + 576 · y
x
1

x
2

x
4

x
3

z + . . . (20.81)

Two diagrams similar to the fourth, one with two tadpoles on one line,
and one with a cactus on one line, are not displayed. The third and the
fourth (and the two not displayed) diagrams differ only by tadpoles on in-
or outgoing lines from two graphs, which we already evaluated before: The
fourth graph is a modification of (20.7), and the third graph is a modification
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of (20.16). We do not want to consider self-interactions of particles on their
way to the proper interaction point as part of the scattering amplitude.
Such diagrams can be “amputated” by cutting off the self-interaction, as
indicated below by the dashed red line. Then the diagram can be interpreted
as the product of the propagator-correction of an in- or outgoing particle,
and the scattering in-between the various particles:

2304 · zx
1

x
2

x
4

x
3

y = 2 · 4 · 12 · x
0

x
1z
· 24 ·

x1

x

x

x

2

3 4

y (20.82)

12 and 24 are the symmetry factors of the partial graphs. The self-interaction
can be near any xj (→ factor 4), and the vertices can be permuted (→
factor 2). Applying the same method, the self-interactions of the fourth
graph in (20.81) can be amputated from the proper scattering event (20.7).
If, due to intersection of one line in a graph, one single particle can

be completely cut-off from all other particles, then one says that this
graph can be amputated. Graphs, which can be amputated, are also
called “one-particle-reducible”. A graph, which can not be amputated, is
called one-particle-irreducible. 1PI is the abbreviation for the latter notion.
As the amputated part is related only to one single particle, it is a self-
interaction graph, which mutates due to renormalization “automatically” to
the simple propagator-line. The tedious computation of graphs, which can
be amputated, therefore would not result into an additional contribution to
the scattering amplitude. Graphs, which can be amputated, are therefore
skipped from the outset. This rule has been integrated into rule A of the
boxes 20.1 and 20.2.
Hence only two graphs contribute to the amplitude of a scattering event

with two incoming and two outgoing particles in second order perturbation
computation of ψ4-interaction:

S
(2) =̂ 576 ·

y

x
1

x
3

x
4x

2
z︸                          ︷︷                          ︸

S
(2)
eg

+ 1152 ·
y

x
1

x
2

x
4x

3
z︸                           ︷︷                           ︸

S
(2)
ev

(20.83)
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The index eg signifies: The both incoming particles couple to the same
vertex. The index ev signifies: The both incoming particles couple to
different vertices.
Firstly we check the symmetry factors. In case of S(2)

eg , there are 8
alternatives to couple x1 to one of the vertices y or z, and 3 alternatives, to
couple x2 to the same vertex. There are 4 alternatives, to couple x3 to the
other vertex, and further 3 alternatives, to couple x4 to the same vertex as
x3. There remain 2 alternatives for the construction of the two propagators
G(z − y). Hence the overall symmetry factor is 576.

In case of S(2)
ev , there is an additional symmetry factor 2, because x3 may

be contracted with the same vertex as x1, or with the same vertex as x2.
Hence the overall symmetry factor is 1152.
In energy-momentum-space, the both graphs are looking like this:

576 ·

k 
1k

1

k
2 k

3

k
4

+

k
2

k-

k︸                          ︷︷                          ︸
S

(2)
eg

1152 ·

k 
1k

1

k
3 k

2

k
4

-

k
3

k-

k︸                           ︷︷                           ︸
S

(2)
ev

As energy and momentum need to be conserved at each vertex, one could in
the case S(2)

eg label the loop’s upper branch as well k3 +k4−k, and in case of
S

(2)
ev as well k4 − k2 − k. As for any loop, we find a wavenumber k, which is

not fixed by a delta-function, and therefore might cause divergences of the
graphs. We compute the graphs with the not-normalized coupling constant
λ0, because we will cure the divergences of these diagrams in chapter 22
due to renormalization of λ0.
We apply the rules of box 20.2:
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S
(2)
eg =

( 4∏
j=1

√
1

2~ωkjΩN

)
·

· 2πΩ δ(k1 + k2 − k3 − k4) δ(k1+k2),(k3+k4) ·

· 576 (−iλ0~
2c2)2

2! Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k) G̃(k1 + k2 − k)

︸                                                                  ︷︷                                                                  ︸
≡F (k1+k2)

(20.84a)

F (k1 + k2) (12.7)= 288 (−iλ0~
2c2)2 1

Ω
∑
k

+∞∫
−∞

dk0

2π
( i
~c

)2
·

· 1(
k2 −m2c2/~2 + iε′

)(
(k1 + k2 − k)2 −m2c2/~2 + iε′

) (20.84b)

Aside from a factor 16, F (k1 + k2) is equivalent to the expression for F (k1)
in (20.71b). Just k1 is now replaced by k1 + k2, and this time it is the
coupling constant, but not the mass, which is applied not-normalized. Thus
we can immediately conclude the result from (20.80):

F (k1 + k2) = −2 i(3λ0~c)2

π2

1∫
0

dξ V lim
Λ→∞

ln
( Λ2

K2

)
(20.85a)

K2 = 4m2c2

~2

(
(ξ2 − ξ)(k1 + k2)2~2

4m2c2 + 1
4
)

(20.85b)

V ≡
{

1 if K2 ≥ 0
0 else

(20.85c)

As the four in- and outgoing particles are observed particles with k2
j =

m2c2/~2, we can compute (k1 +k2)2 in the center-of-mass system k2 = −k1:

(k1 + k2)2 = (k0
1)2 − k2

1︸          ︷︷          ︸
m2c2/~2

+ (k0
2)2 − k2

2︸          ︷︷          ︸
m2c2/~2

+ 2k0
1k

0
2︸   ︷︷   ︸

2(k2
1+m2c2/~2)

+2k2
1 =

= 4m2c2/~2 + 4k2
1 > 4m2c2/~2
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Thus K2 is always negative at ξ = 0.5, always positive at ξ = 0 and ξ = 1,
and zero at ξ = η and at ξ = 1− η. The second of the three integrals

1∫
0

dξ . . .

︸       ︷︷       ︸
F (k1+k2)

(20.78)=
η∫

0

dξ . . .

︸       ︷︷       ︸
Fa(k1+k2)

+
1−η∫
η

dξ . . .

︸         ︷︷         ︸
Fb(k1+k2)=0

+
1∫

1−η

dξ . . .

︸         ︷︷         ︸
Fc(k1+k2)

is set to zero due to the factor V = (20.85c). Hence it does not contribute
to the probability amplitude. In the high-relativistic case k2

1~
2/(mc)2 � 1

and k2
2~

2/(mc)2 � 1, the contributions of the two integrals Fa and Fc are
marginal. Therefore S(2)

eg is very small in the high-relativistic case, and
actually negligible versus S(2)

ev , as we will see immediately. In the sequel of
(20.75) we introduced the notion of a “competing graph”. The competing
graph, which is extracting probability amplitude out of the left graph in
(20.88), interestingly in this case is the first-order graph (20.16).

As there is an additional symmetry factor 2 in S(2)
ev as compared to S(2)

eg ,

F (k1 − k3) = −4 i(3λ0~c)2

π2

1∫
0

dξ lim
Λ→∞

ln
(Λ2

L2

)
(20.86a)

L2 = (k1 − k3)2
(
(ξ2 − ξ) + m2c2

(k1 − k3)2~2

)
. (20.86b)

We don’t need to consider different cases of L2, because in the center-of-
mass system k3 = −k1

(k1 − k3)2 = (k0
1)2 − k2

1︸          ︷︷          ︸
m2c2/~2

+ (k0
3)2 − k2

3︸          ︷︷          ︸
m2c2/~2

− 2k0
1k

0
3︸   ︷︷   ︸

2(k2
1+m2c2/~2)

−2k2
1 = −4k2

1 < 0 .

Therefore L2 can never be negative.
In the highly relativistic case k2

1~
2/(mc)2 � 1 and k2

3~
2/(mc)2 � 1, the

integration over ξ results into
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1∫

0

dξ ln
(Λ2

L2

)
= ln

( −Λ2

(k1 − k3)2

)
−

1∫
0

dξ ln(ξ − ξ2) =

= ln
( −Λ2

(k1 − k3)2

)
+ 2 ≈ ln

( +Λ2

|(k1 − k3)2|

)
. (20.87)

Thus the total result for both diagrams is:

576 ·

k 
1k

1

k
2 k

3

k
4

+

k
2

k-

k

+ 1152 ·

k 
1k

1

k
3 k

2

k
4

-

k
3

k-

k

=̂ S
(2)

S
(2) =

( 4∏
j=1

√
1

2~ωkjΩN

)
·
(
F (k1 + k2) + F (k1 − k3)

)
·

· 2πΩ δ(k1 + k2 − k3 − k4) δ(k1+k2),(k3+k4) (20.88a)

F (k1 + k2) + F (k1 − k3) = (20.85) + (20.86) ≈ (20.88b)

≈ −4 i(3λ0~c)2

π2 lim
Λ→∞

ln
( Λ2

|(k1 − k3)2|

)
if
{
k2

1~
2/(mc)2 � 1

k2
3~

2/(mc)2 � 1

The loop (20.88) of ψ4-theory is diverging logarithmically. We will clarify
in chapter 22, how this divergence can be cured due to renormalization of
the coupling constant.

20.3.4 The Double-Loop of ψ4-Theory

We still need to consider the second-order correction of the propagator of
ψ4-theory. It is consisting of three graphs:

G(2)(x2 − x1)
(20.47)

=̂ (20.89)

288 ·
yx

1
x
2z︸                       ︷︷                       ︸

G(2a)(x2−x1)

+ 288 ·
yx

1
x
2

z

︸                       ︷︷                       ︸
G(2b)(x2−x1)

+ 192 ·
y

x
1

x
2

z

︸                       ︷︷                       ︸
G(2c)(x2−x1)
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To compute theses graphs, we apply the rules of box 20.4. Thereby we use
the bare, not renormalized mass m0 and the not renormalized field-operator
ψ0(x).

288 ·
1k

k

1k

f

1k
=̂ G̃(2a)(k1) =

= 2
2! G̃(k1) 12(−iλ~2c2)

Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k)

︸                                      ︷︷                                      ︸
F , see (20.67)

·

· G̃(k1) 12(−iλ~2c2)
Ω

∑
f

+∞∫
−∞

df0

2π G̃(f)

︸                                      ︷︷                                      ︸
F , see (20.67)

G̃(k1) (20.90)

For the cactus-diagramm G(2b)(x2 − x1) one gets, using the same rules:

288 ·
1k

k

1k

k

f

=̂ G̃(2b)(k1) =

= 2
2! G̃(k1) 12(−iλ~2c2)

Ω
∑
k

+∞∫
−∞

dk0

2π G̃(k)

︸                                      ︷︷                                      ︸
F , see (20.67)

·

· 12(−iλ~2c2)
Ω

∑
f

+∞∫
−∞

df0

2π G̃(f)

︸                                      ︷︷                                      ︸
F , see (20.67)

G̃(k1) (20.91)

As a line k
1

may be amputated at any time, with same justification that
line may be implanted at any time into a diagram. That means, that a
factor G̃(k1) may be inserted into G̃(2b)(k1). Thereby this graph becomes
identical to G̃(2a)(k1), and we find the result:
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288 ·
1k

k

1k

f

1k
+ 288 ·

1k

k

1k

k

f

=̂

=̂ G̃(2a+2b)(k1) = G̃(k1)F G̃(k1)F G̃(k1) with F = (20.67) (20.92)

The structure of the third term in G̃(2)(k1) is different:

192 ·
k
1

k1

-k
1
k

k f

- f

=̂ G̃(2c)(k1) = G̃(k1) J(k1) G̃(k1) (20.93a)

J(k1) ≡ 192(−i λ~2c2)2

2! Ω2

∑
k,f

+∞∫
−∞

dk0 df0

(2π)2 G̃(k) G̃(f) G̃(k1 − k − f)

= 192(−i λ~2c2)2

2! Ω2

∑
k,f

+∞∫
−∞

dk0

2π
df0

2π
(i/~c)3(

k2 −m2c2/~2 + iε′
) ·

· 1(
f2 −m2c2/~2 + iε′

)(
(k1 − k − f)2 −m2c2/~2 + iε′

) (20.93b)

We will not explicitly calculate J(k1), but merely clarify due to comparison
with the diagrams computed before, whether — and if, how — this graph
diverges. Using

1
Ω
∑
k

+∞∫
−∞

dk0

2π =
+∞∫
−∞

d4k

(2π)4 ,

we consider the structure of the diverging terms of the graphs, which we
computed before:
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1k

k

1k
structure : d4k

k2

F
(20.50)∼ 1

Ω
∑
k

+∞∫
−∞

dk0

2π
1

k2 −m2
0c

2/~2 + iε′

(20.67b)∼ lim
Λ→∞

(Λ2~2

m2
0c

2 − ln
(Λ2~2

m2
0c

2

))
(20.94a)

k
1

k
1

k
1
k

k

-

structure : d4k

k4

F (k1) (20.71b)∼ 1
Ω
∑
k

+∞∫
−∞

dk0

2π
1(

k2 −m2
0
c2

~2 + iε′
)(

(k1 − k)2 −m2
0
c2

~2 + iε′
)

(20.80b)∼ lim
Λ→∞

ln
(Λ2~2

m2
0c

2

)
(20.94b)

k 
1k

1

k
3 k

2

k
4

-

k
3

k-

k

structure : d4k

k4

F (k1 − k3) (20.84b)∼ 1
Ω
∑
k

+∞∫
−∞

dk0

2π
1(

k2 −m2c2/~2 + iε′
) ·

· 1(
(k1 − k3 − k)2 −m2c2/~2 + iε′

)
(20.88)∼ lim

Λ→∞
ln
( Λ2

|(k1 − k3)2|

)
(20.94c)
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k
1

k1

-k
1
k

k f

- f

structure : d4k

k4
d4f

f4

J(k1) (20.93b)∼ 1
Ω2

∑
k,f

+∞∫
−∞

dk0

2π
df0

2π
1(

k2 −m2c2/~2 + iε′
) ·

· 1(
f2 −m2c2/~2 + iε′

)(
(k1 − k − f)2 −m2c2/~2 + iε′

) (20.94d)

Comparing this to the graphs above, it is plausible to assume a logarithmic
divergence of J(k1):

J(k1) = C
(
(k1)2

)
· lim

Λ→∞
ln
(Λ2~2

m2
0c

2

)
(20.94e)

C is a finite function of (k1)2. We found the form of this result not by calcula-
tion, but took it from the literature. Note the important difference inbetween
the tadpole and the three other loops: Different from F (k1) = (20.94b),
F (k1 − k3) = (20.94c), and J(k1) = (20.94d), the tadpole’s diverging func-
tion F = (20.94a) is independent of the propagating particle’s wavenumber
k1.
From (20.94) obviously this general rule can be concluded:

structure : d4k

kn
=⇒


n = 2 : quadratic divergence
n = 4 : logarithmic divergence
n ≥ 6 : no divergence (20.95)

Each vertex in a loop adds a factor k−2. Therefore no loop with three or
more vertices can diverge. We have already seen all loops with less than
three vertices, i. e. one in ψ3-theory and three in ψ4-theory. No further
loops with less than three vertices exist. (Clearly these loops will appear
again as partial diagrams inside graphs of higher order.) All other diagrams
of ψ3- and ψ4-theory, which do not contain these four types of loops, are
convergent. Once a method is found, by which the four diverging diagrams
can be converted to convergent diagrams, the total ψ3- and ψ4-theory is
convergent. No new types of divergences will show up in any higher order of
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perturbation theory. In the two following chapters we will clarify, how the
convergence of the four loop-graphs can be enforced due to renormalization.
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21 Renormalization: Physical
Interpretation

Divergences are the unpleasant hallmark of relativistic quantum field theory.
In this chapter we will discuss the treatment of the divergences, which
appear in loop-diagram-computations of interacting quantum fields. We
have already computed all diverging loop-diagrams of ψ3-theory and ψ4-
theory in the previous chapter. And we will compute all diverging loop-
diagrams of quantum-electrodynamics in chapter 26. All of them can be
cured by a method of renormalization, which in principle is always the same.
After it’s detection by end of the forties, this renormalization-procedure

remained a mystery for almost a quarter of a century. It was a baffling
mathematical trick. It worked, and provided correct results with a precision,
which had been unknown in physics before. But nobody understood it’s
secret of success. In the second article linked under [24] a short, worth
reading review can be found about the intricate paths and meanders, which
were followed by theorists in those years.

Light into the darkness came due to the detection of the renormalization
group, which will be presented in the next section. Thereafter, we will
explicitly perform the renormalization of a simple minimal-model of quantum
field theory. In this chapter’s last section, we will append a short discussion
about effective theories, and the possible existence of a fundamental length.

21.1 The Renormalization-Group

This section — and in some sense the complete chapter — is concerned
with the question, why and under which conditions physical processes on
different scales of length will (or will not) de-couple. Wilson [26] considered
as an example the water of an ocean. The scale of length of it’s size is 107 m.
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This is as well the scale of length of the tides and of it’s large-scale ocean
currents. In contrast, the scale of length of the water’s surface waves is
about 10−3 m up to 10+2 m. For a description of these waves, it does not
matter whether they are waves in the pacific ocean or in the black sea. And
also the movements of single water molecules (scale of length 10−10 m), of
which the water is composed, are of no relevance for a description of waves.
That is the normal case: Processes on quite different scales of length in most
cases are well decoupled from another, and therefore can be investigated
independently.
The same holds true for the continuum physics of liquids and solids, in

which the crystal grid constant G resp. the distance of nearest neighbor-
molecules is defining a scale of length, which is setting a limit to the
continuum-description. Applying mean-field theory, macroscopic properties
like hardness, magnetization, viscosity, speed of sound, etc. can in most
cases be described appropriately on scales of length L � G, without the
need to make explicit reference to their atomic structure or to the length
G. Only if the continuum-description is extended down to the order of
magnitude of the length G, nonsensical results are to be expected.
Good decoupling of phenomena on a macroscopic scale of length L from

phenomena on the scale G of distances between neighbor molecules is the
normal case in classical continuum theory. As to any good rule, there
exist exceptions to this rule: In phase-transitions, a very strong coupling
is observed between quite different scales of length. The paradigmatic
example is the magnetization of a ferromagnetic solid. The magnetization
is caused by the alignment of the magnetic dipole moments of electrons.
Their detailed description must happen on the scale of length of the solid’s
crystal grid constant of typically G ≈ 10−10 m. In contrast, the macroscopic
magnetization M is observed on length scales of typically L> 10−6 m.

A ferromagnetic solid is tending to a state of macroscopic magnetization,
because it’s energy decreases if neighbor spins are aligned parallel. At the
same time, the thermal energy of the spins is countervailing the alignment.
Below the Curie-temperature Tc, which also is called the critical temperature,
the interaction of spins is dominating. Above Tc there is no macroscopic
observable magnetization, because the thermal energy of the spins is larger
than the possible gain of energy due to parallel spin alignment. In this
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range of high temperature, the orientation of spins is correlated only over
ranges of order of magnitude G. This is to say, that the orientation of a spin
is correlated only to the orientation of it’s nearest neighbors, and possible
to the orientation of it’s over-next nearest neighbors, but not to spins in
larger distance.

That changes drastically, if the temperature is lowered down to Tc. Then
the correlation length increases to the diameter of the complete solid. This
means in theory, that the correlation length diverges. The orientation of
one spin, which before only acted onto neighbor spins on the length scale of
the grid constant G, now is affecting other spins in arbitrary distance.
The antagonistic tendencies of magnetic interaction and thermal energy

of the spins can be modeled by a parameter λ, which is called coupling
strength. In the most simple case, it is inversely proportional to temperature:
λ ∼ 1/T . The coupling strength is indicating the probability, that neighbor
spins will be aligned. This probability is 1/2 at T =∞ resp. λ = 0, and it
is 1 at T = 0 resp. λ =∞. In realistic models, λ is a complicated function,
which does depend on the range and as well on the strength of the spin-
spin-coupling. We choose a simplifying description, in which λ is a number
(multiplied by a physical unit).

Once the coupling strength is known as a function of temperature, it is
relatively simple to derive from the theory the macroscopic magnetization.
In contrast, the computation of the coupling strength is quite difficult.
The computation is possible using the mean-field theory, but only far-off
from the Curie-temperature. Slightly below of Tc, the mean-field theory is
predicting the magnetization M ∼ (Tc−T )1/2 — independent of the details
on the atomic length-scale G, i. e. independent of the crystal structure of
the ferromagnet. This prediction turned out to be qualitatively correct,
but quantitatively wrong. The magnetization at Tc indeed is “universal”,
i. e. independent of the details on the scale of length G. But it’s value is
M ∼ (Tc − T )1/3.
The universality of the phase transition encouraged the search for an

effective theory, which should describe the macroscopic magnetization cor-
rectly on the length-scale L, independent of details on the atomic scale G,
in particular at temperatures near Tc. The mean-field theory fails near Tc,
because it is based on the assumption that the correlation-length, which
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Fig. 21.1 : Spins jn (left) and spins jn+1 (right)

characterizes the range of significant mutual interaction of spins, does not
depend appreciably on temperature. But actually the correlation-length is
changing drastically near the critical temperature.
A better method for the computation of the coupling strength between

the spins in a magnet at temperatures near Tc has been found in form of
the block-spin-method of Kadanoff1 and the theory of the renormalization
group due to Wilson2. To explicate the blockspin-method, we consider
the two-dimensional Ising-model, which is depicted left in figure 21.1 . Nine
spins, which can assume only the values j0 = +1 or j0 = −1, are arranged
in a hexagonal grid with grid-constant G. The coupling strength between
nearest neighbors is λ0, while the coupling strength between spins, which
are not nearest neighbors, is by definition zero in this model. The center
spin has 6 nearest neighbors, the spins in the bottom corners have 2 nearest
neighbors, and the remaining spins have 3 or 4 nearest neighbors. As each
spin can assume two directions, there are in total 29 = 512 different possible
arrangements of these spins.
The coupling strength λ0 determines the probability P0 of parallel resp.

the probability 1− P0 of antiparallel orientation of neighbor spins. Thus
the probability of each of the 512 possible configurations can be computed.
Furthermore in each configuration the spins j0 are combined to groups of
3, which in figure 21.1 are marked by yellow triangles. According to the
majority principle, these 3 spins define a blockspin j1. The blockspin is
j1 = +1, if minimum two of the spins j0 in this block have the value +1.

1 Leo Philip Kadanoff ( ∗1937 )
2 Kenneth Geddes Wilson (1936 - 2013)
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Else the blockspin is j1 = −1. The blockspins are indicated red in the right
part of the figure.
There are only 23 = 8 different possible configurations of the blockspins

j1, while there are 512 different configurations of the spins j0. The sum of
the probabilities of all different configurations of the spins j0, which result
into the identical configuration of the blockspins j1, is the probability of this
blockspin-configuration. From the probabilities of the different blockspin-
configurations one can compute back to the probabilities P1 of parallel resp.
the probability 1−P1 of antiparallel orientation of neighbored blockspins. In
general P1 , P0. (In [26, figure on page 166] this is explicitly demonstrated
for a simple example.) From P1 again the renormalized coupling strength
λ1 can be computed.

With the renormalized coupling strength λ1, the next round of the block-
spin-procedure is started. One again computes the probabilities of all 512
configurations of the spins j1 and of the 8 configurations of the blockspins
j2. That results into the renormalized coupling constant λ2. And so on.
Only the limited capability of the computers causes us to do the com-

putation like this. Rather we would like to compute a larger model of 3N
spins, with N being a very large natural number. Then in the first step the
probabilities of all 23N possible configurations of the spins j0 are computed,
and thus the probabilities of the 23N−1 possible configurations of the block-
spins j1. From that again the value of the renormalized coupling constant
λ1 follows. The blockspin-grid is shrunk — as indicated in figure 21.1 —
to the same grid-constant G as the original grid. But it has only a third
of the size of the original grid. All structures (i. e. domains with parallel
spin orientation), which were smaller than 3G at the start of the procedure,
have disappeared from the model.
In the next step, the probabilities of all 23N−1 possible configurations of

the spins j1 are computed with the coupling constant λ1. This gives at
the same time the probabilities of the 23N−2 possible configurations of the
blockspins j2. From this again the renormalized coupling constant λ2 is
computed. After the nth run of the blockspin-procedure, the number of
spins in the grid is reduced to 3N−n, which still shall be a very large number.
All structures of size < 3nG, which existed in the grid at the start of the
procedure, have disappeared from the model. The stepwise coarsening of
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the model is accompanied by the stepwise renormalization of the coupling
constant. By this method one finds the sequence of paired values

(λ0, G) → (λ1, 3G) → (λ2, 32G) → . . .

. . . → (λs, 3sG) → (λt, 3tG) → (λu, 3uG) → . . . , (21.1)

which are called the “flow” of the renormalization group. Why is this a
group? We define the transformation

λs
Tst−−−−−→ Tst(λs) = λt , (21.2)

and the concatenation of two transformations

Tsu(λs) = TtuTst(λs) = Ttu(Tstλs) = Ttu(λt) = λu . (21.3)

There also exists a unit element: Tss. The inverse elements, however,
are missing, because the stepwise computations of blockspins can not be
inversed. The 3 spin orientations of the previous generation can not be
reconstructed from the spin of a block. Therefore the renormalization-group
{T} of the model fig. 21.1 is not a group, but only a half-group. But the
renormalization group of QFT, with which we will occupy ourselves in the
sequel, is a full-fledged group.

21.2 A minimal QFT-Model

We want to compare the renormalization procedure of quantum field theory
with the renormalization procedure of solid state theory, which has been
illustrated in the previous section by the example of an Ising-model. For
that purpose we construct a most simple, minimal model of QFT, which is
concentrating onto the essential topics. As a guideline we use the example
of the scattering event with two incoming and two outgoing particles in ψ4-
theory. If the energies of the scattering particles are highly relativistic, the
probability amplitude for this event is
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·
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ln
( Λ2

|(k3 − k1)2|

))
(21.4)

Instead of S = (21.4), we define for the minimal model the simpler, but in
it’s structure essentially similar function

J(k) ≡ λ0f
(1)(k) + λ2

0f
(2)(k) + λ3

0f
(3)(k) + . . . . (21.5a)

The coefficient

f (1)(k) ≡ f1 = constant , 0 (21.5b)

is according to (21.4) by definition a constant. With regard to (20.84b),
(20.71b), and (20.76), we choose for f (2)(k) the definition

f (2)(k) ≡ u
+∞∫
0

dR 1
R+ k

. (21.5c)

R and k are wavenumbers. The wavenumber k — same as the wavenumber
q, which will be defined immediately — shall be interpreted in this model as

k ≡
√
k2 ,

√
(k0)− k2 = mc

~
. (21.6)

Different from the root of the square of a Minkowski-four-wavenumber, k
thus is not a constant. Instead it’s value is high for high-energy particles,
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and low for low-energy particles. In u those factors are combined, which
are independent of the integration variable R (which is a wavenumber). To
design the model as simple as possible, no mass parameter is used, and
only one incoming particle with wavenumber k is considered. J(k) may e. g.
be visualized as the scattering matrix of a massless and high-relativistic
particle, which is incoming with wavenumber k, and is scattered by a very
heavy nucleus. Like the term ∼ λ2

0 in (21.4), f (2) diverges logarithmically
at R → ∞. We assume, that the coefficients f (n)(k) of higher order are
diverging as well, at least some of them.
These divergences shall be eliminated due to the renormalization of the

coupling constant. That is to say: We expand the constant λ0 with respect
to another, unknown constant λ. The coefficients of the series expansions
are called lj :

λ0 = l1λ+ l2λ
2 + l3λ

3 + . . . (21.7)

This is a completely undetermined formula, because at the outset neither
the constant λ nor the coefficients lj are known. The series expansion is
inserted into (21.5a):

J(k) = (l1λ+ l2λ
2 + l3λ

3)f1 + (l1λ+ l2λ
2 + l3λ

3)2f (2)(k) +
+ (l1λ+ l2λ

2 + l3λ
3)3f (3)(k) + . . .

= λ
(
l1f1

)
+ λ2

(
l2f1 + l21f

(2)(k)
)

+

+ λ3
(
l3f1 + 2l1l2f (2)(k) + l31f

(3)(k)
)

+O(λ4) (21.8)

Already at this point the formal trick of the renormalization procedure
is becoming visible. In (21.5a) each factor λn0 is multiplied by exactly
one coefficient f (n), with some of the f (n) being divergent. In contrast,
in (21.8) each λn is multiplied by the sum of all f (1), f (2), . . . , f (n). Thus
diverging f (j) can compensate mutually, provided that the coefficients lj
are chosen appropriately. J(k) = (21.5a) and J(k) = (21.8) are equal. But
the algorithm of the series expansion in (21.8) is skillfully modified, such
that each single expansion coefficient is finite — provided it meets some
certain conditions, which will be specified in the sequel.
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Now the coefficients lj are determined successively in a perturbative

computation according to the orders of λ. The value of J is determined
experimentally at only one single wavenumber of the incoming particle,
which we call q. It is a particular property of the renormalization procedure,
that exactly one measured value is needed per parameter, which shall be
renormalized (in this example λ0). In first order of λ, one finds with that
measured value the result

Jexp(q) =(21.8) λl1f1 +O(λ2) = λf1 +O(λ2)
=⇒ l1 = 1 . (21.9)

The choice l1 = 1 is natural, but not compulsory. Another choice would
merely lead to an unnecessary re-scaling of λ. As f1 is by definition of our
model finite and different from zero, and as the experimentally found value
Jexp(q) is finite as well, one gets in first order a finite, well-defined value
of λ. The renormalization obviously was not really necessary for the first-
order computation. We could have sticked as well to λ0. In first order J(k)
does not depend on k. Thus the result is for arbitrary k , q

J(k) = λf1 +O(λ2) . (21.10)

In second order of the coupling constant we compute the value of J(k) to
be

J(k) (21.8)= λf1 + λ2
(
l2f1 + f (2)(k)

)
+O(λ3) . (21.11)

Here we are facing the problem, that f (2) is diverging. To make a com-
putation possible, f (2) is regularized due to the replacement of the upper
integration limit +∞ by a very large, but finite wavenumber Λ:

f
(2)
Λ (k) ≡ u

Λ∫
0

dR 1
R+ k

= u ln
(Λ + k

k

)
(21.12a)

f (2)(k) = lim
Λ→∞

f
(2)
Λ (k) (21.12b)



462 21 Renormalization: Physical Interpretation

If J or a coefficient f resp. l is computed with the cut-off parameter Λ, then
we mark it by the index Λ. Thus one gets for J in second order

JΛ(k) = λf1 + λ2
(
l2,Λf1 + f

(2)
Λ (k)

)
+O(λ3) (21.13a)

J(k) = lim
Λ→∞

JΛ(k) . (21.13b)

The coefficient l2 is determined by means of the experimentally found value:

Jexp(q) = λf1︸︷︷︸
Jexp(q) , see (21.9)

+λ2
(
l2f1 + f (2)(q)

)
+O(λ3) (21.14)

If λ is considered to be undetermined, then this equation is depending on
two variables (namely λ and l2), and therefore has no unique solution. But
there is no reason why we should not stick to the value of λ as fixed in
(21.9). Then

l2 = lim
Λ→∞

l2,Λ = −f
(2)(q)
f1

= − lim
Λ→∞

f
(2)
Λ (q)
f1

(21.15)

must hold. f1 is finite and constant, and f (2)
Λ is diverging logarithmically at

Λ→∞. Consequently l2,Λ must diverge logarithmically at Λ→∞ as well.
Thus

JΛ(k) = λf1 + λ2
(
f

(2)
Λ (k)− f (2)

Λ (q)
)

+O(λ3)

for arbitrary wavenumbers k. This relation shall again be finite in the limit
Λ→∞. It is finite if and only if

lim
Λ→∞

(
f

(2)
Λ (k)− f (2)

Λ (q)
)

= finite . (21.16)

With our definition of f (2) this is true, because

lim
Λ→∞

(
f

(2)
Λ (k)− f (2)

Λ (q)
) (21.12)= lim

Λ→∞
u ln

((Λ + k)q
k(Λ + q)

)
= u ln

( q
k

)
(21.17)
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is independent of Λ. Thus one gets for arbitrary k

J(k) = λf1 + λ2
(
f (2)(k)− f (2)(q)

)
︸                       ︷︷                       ︸

u ln(q/k)

+O(λ3) . (21.18a)

Note firstly, that the condition (21.16) imposes a very strong restriction onto
the possible form of f (2). Analogous restrictions will arise for all further
f (n) with n > 2. Note secondly, that due to the renormalization large and
small wavenumbers have decoupled: In (21.5a) the small wavenumber k in
the argument of J(k) is coupled in second order of λ0 due to the coefficient
f (2)(k) very strong (even diverging) to the (infinitely) large wavenumber
Λ. In (21.18a) the small wavenumber k in the argument of J(k) is coupled
in second order of λ only to the wavenumber q, which is of same order
of magnitude as k. The large wavenumber Λ does not show up at all in
(21.18a).

We have seen at the Ising-model, that the values of the coupling constant
correlate to the fineness, with which the model is evaluated. (The more
spins j0 are combined to a single blockspin jn, the coarser the becomes
the model, resulting into an accordingly modified coupling strength λn.)
Therefore it is no surprise, that in QFT as well the value of the renormalized
coupling constant λ(q) does depend on the fineness ≈ q−1, which is applied
in the measurement of Jexp(q).
If the experimental determination of J is performed with a different

wavenumber q′ of the incoming particle, then one gets instead of (21.18a)
the equation

J(k) = λ′f1 + λ′2
(
f (2)(k)− f (2)(q′)

)
+O(λ′3) . (21.18b)

We subtract (21.18b) from (21.18a), and insert (21.17):

0 = (λ− λ′)f1 + λ2u ln
( q
k

)
− λ′2u ln

(q′
k

)
+O(λ3)−O(λ′3)

Using λ(q) ≡ λ and λ(q′) ≡ λ′ and the series expansion
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λ(q′) = λ(q) + a2λ
2(q) +O

(
λ3(q)

)
,

one gets the result

λ(q′) = λ(q) + λ2(q) u
f1

ln
( q
q′

)
+O

(
λ3(q)

)
= λ(q) + q′ − q

q
q

dλ(q)
dq︸      ︷︷      ︸

β(λ,q)

+O
(
λ3(q)

)
. (21.19)

The second line is the start of a Taylor-expansion, and it contains the
definition of the beta-function. If β > 0, the the coupling becomes stronger
at increasing q′ resp. decreasing distance of the interacting particles. In
chapter 26 we will see, that quantum electrodynamics is an example for
this case. Charges are in QED surrounded by clouds of virtual charges,
which screen them dielectrically from the outer world. If a second particle
penetrates with high momentum into this cloud of charges and comes near
to the first particle, then it feels a larger charge and consequently a stronger
coupling than in larger distance. The value of the coupling constant

α = e2

4πε0~c
≈
{

1/137 at k ≈ 0
1/128 at k ≈ 100GeV/(~c)

(21.20a)

of QED is α ≈ 1/137 for large distance. At high wavenumbers of about
100GeV/(~c), as are needed for the creation of Z-bosons, the results of the
measurements could be explained only by the assumption of a coupling
constant α ≈ 1/128.
In case of β < 0, the coupling becomes weaker for increasing q resp.

decreasing distance of the interacting particles. The is the case for the
coupling constant of the strong interaction. The dependence of the strong
coupling constant αs on the momentum transfer ~k is more pronounced
than in the electromagnetic interaction. The values
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αs ≈


0.35 at k ≈ 2GeV/(~c)
0.18 at k ≈ 10GeV/(~c)
0.11 at k ≈ 120GeV/(~c)

(21.20b)

have been extracted from measurements. Quarks are at large wavenumbers
(i. e. at small distances) “asymptotic free”. But the bonding energy between
them becomes infinitely large if one tries to extract a single quark out of a
baryon.
As the β-function of QED is positive, while the β-function of QCD

is negative, one may speculate that there should be a wavenumber K
with α(K) = αs(K). Some estimations are predicting K ≈ 1015GeV/(~c).
Obviously an extrapolation extending thus far must be considered with
much reservation.
The notion “coupling constant” is so deeply ingrained in the vocabulary

of physicists, that it is still being used for the renormalized parameters,
even though they are no constants. If this fact shall be emphasized, the
notion “running coupling constants” is used. The experimentally confirmed
running of the coupling constants of quantum fields is strong evidence for
the assumption, that the conclusion by analogy from the renormalization
procedure of the classical continuum-theory of solids and liquids to the
renormalization procedure of QFT is correct. In both cases, the renormal-
ization of coupling strength correlates with the coarsening of the models,
and at the same time with the decoupling of different length-scales.
In perturbation theory of third order in λ one gets

J(k) =(21.8) λl1f1 + λ2
(
l2f1 + l21f

(2)(k)
)

+

+ λ3
(
l3f1 + 2l1l2f (2)(k) + l31f

(3)(k)
)

+O(λ4)

=(21.15),(21.18a)
λf1 + λ2

(
f (2)(k)− f (2)(q)

)
+

+ λ3
(
l3f1 −

2
f1
f (2)(q)f (2)(k) + f (3)(k)

)
+O(λ4) .

If the measured value Jexp(q) is inserted into this equation, and if we request
that the value of λ as fixed in (21.9) shall be retained, then
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l3 = lim
Λ→∞

l3,Λ = 1
f1

( 2
f1
f (2)(q)f (2)(q)− f (3)(q)

)
=

= lim
Λ→∞

1
f1

( 2
f1
f

(2)
Λ (q)f (2)

Λ (q)− f (3)
Λ (q)

)
(21.21)

must hold. We did not fix f (3) in our simple model. Therefore this expression
may be finite or infinite. If limΛ→∞ l3,Λ = ±∞ is accepted, then this
equation has in any case a solution, because we are completely free in the
choice of l3,Λ.
Obviously the structure

ln = lim
Λ→∞

ln,Λ = function
(
f (1)(q), f (2)(q), . . . , f (n)(q)

)
is recurring in all orders of perturbation theory. As ln can be chosen
arbitrarily, this equation has a solution in any order n, provided that
limΛ→∞ ln,Λ =∞ is accepted.
For arbitrary k one gets in third order of perturbation theory

J(k) = λf1 + λ2
(
f (2)(k)− f (2)(q)

)
+ λ3

(
− 2
f1
f (2)(q) f (2)(k) +

+ f (3)(k) + 2
f1
f (2)(q)f (2)(q)− f (3)(q)

)
+O(λ4) . (21.22)

This equation is only reasonable, if firstly(
− 2
f1
f (2)(q) f (2)(k) + f (3)(k) + 2

f1
f (2)(q)f (2)(q)− f (3)(q)

)
=

= lim
Λ→∞

(
− 2
f1
f

(2)
Λ (q) f (2)

Λ (k) + f
(3)
Λ (k) + 2

f1
f

(2)
Λ (q)f (2)

Λ (q)−

− f (3)
Λ (q)

)
= finite , (21.23)

and if secondly (21.16) continues to be valid.
For the computation of the quantity J(k), we have renormalized the

coupling constant, using a measured value
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Jexp(q) =(21.9) λf1 +O(λ2)

which was found at the wavenumber q of the incoming particle. In (21.18)
we have derived the concept of the running coupling constant due to the
requirement, that the value of the observable J(k) must not depend on
the wavenumber q, which is applied for the experimental determination of
Jexp(q):

Jq,λ(k) = Jq′,λ′(k) = Jq′′,λ′′(k) = . . . (21.24)

If this is compared with the

Renormalization-flow of the Ising-Model:
(λ0, G) → (λ1, 3G) → (λ2, 32G) → . . .

. . . → (λs, 3sG) → (λt, 3tG) → (λu, 3uG) → . . . , (21.25)

then the

Renormalization-flow of QFT:
(λ0,∞) ↔ . . . ↔ (λ, q) ↔ (λ′, q′) ↔ (λ′′, q′′) ↔ . . . ,

becomes visible, which is correlating the renormalized coupling constant with
the length-scale q−1, at which the experimental determination of Jexp(q) has
been performed. As a (quasi-)continuum of wavenumbers is experimentally
accessible in field-theory, the flow of the renormalization group is described
as a continuum of infinitely many infinitesimal small steps:

λ(q) → λ(q + dq) (21.19)= λ(q) + dq
q
q

dλ(q)
dq︸      ︷︷      ︸

β(λ,q)

(21.26a)

Finite steps can be described by integrals:
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λ(qr) → λ(qs) = λ(qr) +
qs∫
qr

dk
k
β(λ, k) (21.26b)

The renormalization group of QFT is a full-fledged group. Different from the
half-group of blockspin-transformations (21.2), the transformations (21.26)
can be performed in direction to larger or to smaller wavenumbers q, i. e.
for each transformation there exists as well the inverse transformation.
In spite of the obvious analogy between renormalization in solid-state

physics and renormalization in QFT, a fundamental difference must not be
overlooked: The renormalization-flow of the Ising-model is starting with the
pair of values (λ0, G), while the renormalization-flow of QFT is starting with
(λ0,∞). Quantum field theory is constructed, as if it’s formalism would
be valid without changes up to infinitely large wavenumbers, i. e. down to
infinitesimal small distances. This is the reason for the divergences, which
are encountered in QFT. Even in the most “extreme” pair of values (λ0, G)
in the renormalization-flow of the Ising-model, λ0 and G both are finite. In
constrast, the coupling constant

λ0
(21.7)= l1λ+ l2λ

2 + l3λ
3 + . . .

of not renormalized QFT is infinitely large, and does hold only at infinitely
small distance, because the coefficient l2 = (21.15) diverges, and in general
further ln are diverging as well.
Seen from a formal point of view, one is working in QFT at a critical

point. The strong coupling in-between quite different scales of length, which
must be compensated due to renormalization, does show up in the classical
continuum-theories of liquids and solids only near critical temperatures.
Appreciable technical skills of the experimentalists are required, to adjust
a system with sufficient precision to Tc and allow for measurements of the
parameters. In contrast, temperature is not considered at all in quantum
field theory. Quantum fields are “automatically” at any time adjusted to
a critical state. The critical state is characterized by a correlation-length
which is very large in comparison to the evaluated scale of length. If — as
in not renormalized QFT — the evaluated scale of length is assumed to
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be zero, then of course any finite correlation-length seems to be infinitely
large in comparison. Thus the formal criterion of a critical state is in not
renormalized QFT always fulfilled.

21.3 The fundamental Length

For any good theory (in other theories we are anyway not interested) there
exists some certain range of applicability, within which it can be reasonably
used with correct results. The range of applicability of Newton’s mechanics
for example is characterized by the fact, that expressions O(v2/c2) are
negligibly small. Here v is the typical velocity of objects relative to the
observer, and c is the speed of light in vacuum. If a mechanical process does
not meet this condition, then it must be described by relativistic mechanics,
from which Newton’s mechanics follow in the limit (v2/c2)→ 0.
A quantum-theoretical description is required for processes, in which

terms O(~/S) are significant. Here S is the action of the observed system.
If terms O(~/S) are negligible, then that process belongs to the range of
applicability of the classical (Newtonian or relativistic) theory.
In an article [47], which is worth reading still by today, Heisenberg in

1938 speculated that the divergences of quantum field theory should be
considered as an indication, that QFT is the low-energy limit of a yet
unknown more general theory. Like Newton’s mechanics turned out to
be on the one hand the limit of relativistic mechanics, which depend on
the appropriate handling of the constant of nature c, and on the other
hand as the limit of quantum mechanics, which depend on the appropriate
handling of the constant of nature ~, the deficient quantum field theory
would according to Heisenberg’s assumption sooner or later turn out to be
the limit of a theory, which depends on the appropriate handling of a still
unknown constant of nature r. The dimension of r should be length, and
it’s order of magnitude should be 10−15m.

By today we know, that the value 10−15m was a much to high guess. Since
those days, quantum electrodynamics has been evaluated experimentally
down to about 10−18m, without a new fundamental length coming to the fore
of the experimentalists. In the younger discussion it is sometimes guessed,
that the inverse K−1 ≈ 10−30m of the wavenumber, at which possibly the
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coupling constants of strong, weak, and electromagnetic interactions are of
same order of magnitude, might define a fundamental length.
Certainly the Planck-length and Planck-time

lP =

√
~G

c3 = 1.6 · 10−35 m , tP = lP
c

= 5.4 · 10−44 s , (21.27)

which are constructed by combinations of the quantum of action, the
gravitational constant, and the speed of light, set a lower limit to the
reasonable use of our notions of space intervals and time intervals. This
assumption can be confirmed by the following consideration: If we want to
speak reasonably about some certain minimum length r, then we must have
— at least in principle — a probe which can measure that length. According
to Heisenberg’s indeterminacy relations, a particle cannot be localized with
an accuracy better than half it’s reduced Compton wavelength, i. e. better
than half it’s inverted invariant wave-number κ. This localization must not
be less than two times the Schwarzschild radius rS , because otherwise the
particle would collapse to a black hole:

r ≈ 1
2κ ≥ 2rS = 4G

c2 ·
κ~

c

κ ≤

√
c3

8G~ = 1
lPlanck

√
8

= 2.2 · 1034m−1 (21.28a)

r ≈ 1
2κ ≈ 2 · 10−35m

(21.27)
≈ lP (21.28b)

Instead of venture on speculations, we confine ourselves to the cautious
formulation: If there should exist a fundamental length r, which marks the
limit of the range of applicability of the quantum field theories as known by
today, then it is smaller (probably much smaller) than the scale of length
which has been explored experimentally until today, i. e. smaller (probably
much smaller) than 10−18m , and greater or equal to the Planck length:

10−18m > r ≥ lP ≈ 2 · 10−35m (21.29a)
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For the maximum wavenumber κ we conclude:

2π
10−18m ≈ 6 · 1018m−1 < κ ≤ 1

lPlanck
√

8
≈ 2 · 1034m−1 . (21.29b)

In the same way as the classical continuum-theory of solids is a useful
effective theory, which produces reasonable results on scales of length L� G,
QFT may be considered a useful effective continuum-theory of quantum
fields, which produces reasonable results on scales of length k−1 � r. The

Fig. 21.2 : Phonon with wavelength 2G (top) and 2G/3 (bottom)

existence of a fundamental length due to the grid constant G in solid-state
physics implies, that an integral over the wavenumbers of phonons must be
cut-off at k ≈ π/G by the latest. In figure 21.2 two transversal phonons
of a one-dimensional solid, consisting of red atoms, are sketched. Even
though to the bottom phonon a three times larger wavenumber is ascribed
theoretically than to the top phonon, actually both phonons are identical.
Therefore the integration over wavenumbers k > π/G would be pointless
and give unreasonable results.
In total, the assumption of the length r results into two changes only:

Firstly the limits Λ→∞ are omitted. Secondly all divergences disappear,
because Λmax = κ is finite. But the quantum field theories still need renor-
malization, because we do not know the values of r and κ, and because the
coupling constant anyway must be adapted by (21.26) to the wavenumbers,
at which the theory is being tested experimentally.
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22 Renormalization of ψs-Theory

We have identified in section 20.3 the four diverging loop-diagrams occurring
in ψ3- and ψ4-theory, and listed them in (20.94). In this chapter we will
clarify, how those divergences can be removed due to the renormalization of
mass, coupling constant, and field-operator.

We will use the following notations: m0 is the not renormalized mass, λ0
is the not renormalized coupling constant, ψ0(x) is the not renormalized
field-operator. m without zero is denoting the renormalized mass, λ without
zero the renormalized coupling constant, ψ(x) without zero the renormalized
field-operator. As defined in (19.21), operators and propagators with the
index (W ) are denoting the complete quantities of the interacting systems,
while the same quantities without that index are operators and propagators
in the interaction picture.
There are two types of corrections for the propagator

G(W )(x2 − x1) = 〈0|Tψ(W )(x1)ψ(W )(x2) |0〉 =
∞∑
n=0

G(n)(x2 − x1)

of ψ4-theory, namely tadpole- and cactus-diagrams like (20.92), and double-
loop diagrams like (20.93a). In zeroth order of perturbation theory, G(W ) is
identical to the Feynman-propagator:

G(0)(x2 − x1) ≡ G(x2 − x1) (15.43)= 〈0|Tψ0(x1)ψ0(x2) |0〉 (22.1)

In first order, there is only the tadpole. In second order, there are the
double-loop, the cactus consisting of two tadpoles, and two tadpoles in
series. In higher orders of perturbation theory there are combinations of
these diagrams, e. g. double-loops with tadpoles on their branches, or serial
replications of diagrams which are already known from lower orders. Serial
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replications are one-particle-reducible (definition below (20.82)), because
they can be split into two complete diagrams by cutting one single line.
The graph with one tadpole each on the three branches of the double-loop
is a one-particle-irreducible graph (abbreviation: 1PI) of order O(λ5). We
define

F1PI = F + J + . . .+ . . .

as the sum of all one-particle-irreducible graphs GFG, GJG, . . . , which are
showing up in any order of perturbation theory. From (20.67) and (20.92) it
becomes visible, that these adders to G(W ) are the elements of a geometrical
series:

G̃(W ) = G̃+ G̃F1PIG̃+ G̃F1PIG̃F1PIG̃+

+ G̃F1PIG̃F1PIG̃F1PIG̃+ . . . = G̃

1− F1PIG̃
=

=(12.7) i

~c
(
k2

1 −m2
0
c2

~2 + iε′
)(

1− iF1PI

~c(k2
1 −m2

0
c2

~2 ) + iε′

)
= i

~c
(
k2

1 −m2
0
c2

~2 − iF1PI
1
~c + iε′

) (22.2)

This series will certainly converge, because in each term in F1PI there is
the coupling constant λ, for which we assumed λn → 0 in the limit n→∞.
In F1PI there are terms, which are independent of k1 (namely the tadpoles
and the cacti), and terms, which depend on k2

1 (namely all diagrams with
double-loops). We expand F1PI 1

~c in a Taylor-series around k2
1 = m2

0c
2/~2:

F1PI
1
~c = A+ (k2

1 −m2
0
c2

~2 )B +
∞∑
n=2

(k2
1 −m2

0
c2

~2 )nCn︸                        ︷︷                        ︸
O(λ4)

A ≡ F1PI 1
~c

∣∣∣∣
k2

1=m2
0
c2

~2

, B ≡ 1
~c

∂F1PI
∂k2

1

∣∣∣∣
k2

1=m2
0
c2

~2

(22.3)
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Contributions to Cn with n ≥ 2 can come only from diagrams with minimum
two double-loops, i. e. which are minimum O(λ4). In A there is one term
O(λ), namely the tadpole, and infinitely many terms of higher order:

A = F1PI
1
~c

∣∣∣∣
k2

1=m2
0
c2

~2

(20.67b)=

= − i3λ
4π2

(m0c

~

)2
lim

Λ→∞

(Λ2~2

m2
0c

2 − ln
(Λ2~2

m2
0c

2

))
+O(λ2) (22.4)

In B there is one term O(λ2), namely the double-loop, and infinitely many
terms of higher order:

B = 1
~c

∂F1PI
∂k2

1

∣∣∣∣
k2

1=m2
0
c2

~2

(20.94e)=

= 1
~c

lim
Λ→∞

ln
(Λ2~2

m2
0c

2

)
·
∂ C

(
(k1)2

)
∂k2

1

∣∣∣∣
k2

1=m2
0
c2

~2︸                         ︷︷                         ︸
, 0 and finite

+O(λ3) (22.5)

In the sequel we content ourselves with results, which are correct up to and
including O(λ2). Under this condition we have

k2
1 −m2

0
c2

~2 − iF1PI = k2
1 −m2

0
c2

~2 − iA− i(k
2
1 −m2

0
c2

~2 )B =

=
−iA+ (k2

1 −m2
0
c2

~2 )(1− iB)(1 + iB)
(1 + iB) =

−iA+ (k2
1 −m2

0
c2

~2 )
(1 + iB) .

Terms AB and BB have been neglected. This result is inserted into the
formula (22.2) of the propagator with self-interaction:

G̃(W ) = i(1 + iB)
~c
(
k2

1 −m2
0
c2

~2 − iA+ iε′
) (22.6)

Both A and B are constants, which do not depend on k1. Because of Λ→∞,
both are infinitely large. We now are going to eliminate the divergences due
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to renormalization:
It is impossible to determine the “bare mass” m0 of a particle experi-

mentally. Only the mass, which is causing the pole of the propagator, i. e.
the

physical mass = m ≡ +
√
m2

0 + iA~
2

c2 (22.7)

can be measured. The physical mass is finite, as proved by experiments.
The computed quantity A diverges. Thus also the not measurable bare mass
m0 diverges exactly such, that the sum of the both diverging quantities
gives the finite value (22.7).

The field-operators ψ0(x) are implicitly contained in the propagator (22.6)
by the relation

G̃ ∼ G ∼ 〈0|Tψ0(x1)ψ0(x2) |0〉 .

The field-operators are renormalized due to

ψ(x) ≡ ψ0(x)
√

1 + iB . (22.8)

B diverges. Thus ψ0(x) must diverge as well exactly such, that the product
of the diverging quantities gives the finite value ψ(x).
Once the mass and the field-operators are renormalized according to

(22.7) and (22.8), the propagator gets the simple structure

G̃(W ) = G̃ = i

~c
(
k2 −m2 c2

~2 + iε′
) . (22.9)

At the same time the tadpoles, cacti, and double-loop structures disappear
from all diagrams:

yx
1

x
2

renormalization ψ0,m0→ψ,m−−−−−−−−−−−−−−−−−−−→ x
1

x
2
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yx
1

x
2

w

z

renormalization ψ0,m0→ψ,m−−−−−−−−−−−−−−−−−−−→ x
1

x
2

k
1

k1

-k
1
k

k f

- f
renormalization ψ0,m0→ψ,m−−−−−−−−−−−−−−−−−−−→ k

1

etc. . . . (22.10)

Wherever in a diagram tadpoles, cacti, or double-loops show up, they are
replaced by the simple propagator-line. It is not necessary to take care of the
symmetry factors, which are indicated in (20.47), because the renormalized
diagram is identical to a simpler diagram which has been computed already
in lower order of perturbation theory. As it shall not be considered a second
time, it is simply skipped, no matter what may be it’s symmetry factor.
Here we encounter again the argument, by which in section 20.3 also the
cancellation of all graphs was justified, which can be amputated.
By the same method the diverging diagram

36 ·
k
1

k
1

k
1
k

k

- (20.68)
=̂ G̃(2)(k1) =

= G̃(k1) ·
(3λ~c

2π
)2(
− 1

2 lim
Λ→∞

ln
(Λ2~2

m2
0c

2

)
+ C(k1)

)
︸                                                        ︷︷                                                        ︸

F (k1)

· G̃(k1)

of ψ3-theory, which again has been computed with the bare mass m0, can
be renormalized. The diverging terms of all order of perturbation theory
are summed up as a geometrical series (22.2). Then the

physical mass = m ≡ +

√
m2

0 + iF (k1) ~
c3 (22.11)

is fixed. That means, that not only in propagator-corrections, but in all
diagrams of ψ3-theory, in which the diverging loop is showing up, the
replacement
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k
1

k
1

k
1
k

k

-

renormalization m0→m−−−−−−−−−−−−−−−−→ k
1

(22.12)

shall be performed. As the simplified diagram thus created has been con-
sidered already in lower order of perturbation theory, it is to be canceled,
no matter what may be it’s symmetry factor. This completes the renor-
malization of ψ3-theory, because this is the only type of divergence in this
theory.
We still need to clarify the handling of the diverging four-point diagram

(20.94c). It is treated due to renormalization of the coupling constant. The
bare coupling constant λ0 can not be measured. Only the probability of a
scattering event with two incoming particles with wavenumbers k1 and k2
and two outgoing particles with wavenumbers k3 and k4 can be measured.
The probability amplitude of this scattering event is

S
(24.10)
≡ M ·

(∏
in

√
1

2~ωkinΩN

)(∏
out

√
1

2~ωkoutΩN

)
·

· 2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout .

The value of the scattering matrixM, which here has been defined, is for
this scattering event:

M =M(1) +M(2) +O(λ3
0) =̂ 24 ·

k1 k2
k4k3

+

+ 576 ·

k 
1k

1

k
2 k

3

k
4

+

k
2

k-

k

+ 1152 ·

k 
1k

1

k
3 k

2

k
4

-

k
3

k-

k

+O(λ3
0)

(20.19),(20.88)
=̂ 24(−iλ0~

2c2)− 4 i(3λ0~c)2

π2 lim
Λ→∞

ln
( Λ2

|(k3 − k1)2|

)
if k2

1~
2/(mc)2 � 1 , k2

3~
2/(mc)2 � 1 (22.13)

Just to simplify the notation, we here restrict ourselves to the case of high-
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relativistic particles, in which the contribution of the second of the three
diagrams is negligible. The following renormalization could very well be
done for scattering events at low energy. For that case we would need to
insert the complete formulas (20.85) and (20.86).
We compute (22.13) with the renormalized mass m and with the renor-

malized field-operator ψ(x), but with the bare coupling constant λ0. The
expression diverges for Λ→∞. The renormalized coupling constant λ is
defined due to

λ = λ0 + 3λ2
0

2π2 lim
Λ→∞

ln
( Λ2

|(k3 − k1)2|

)
. (22.14)

The experimentally observed probability for the scattering k1, k2 → k3, k4
is finite. Thus λ is finite as well. The logarithm diverges for Λ→∞. Thus
λ0 diverges as well, and exactly such that the sum (22.14) is finite.

Different from propagator-corrections, the graph

k 
1k

1

k
3 k

2

k
4

-

k
3

k-

k
does

not become invisible due to the renormalization. While the graph of second
order

24(−iλ0~
2c2)− 4 i(3λ0~c)2

π2 lim
Λ→∞

ln
( Λ2

|(k3 − k1)2|

)
= 24(−iλ~2c2) ,

formally disappears from the theory, this does hold only for the wave num-
bers, with which the renormalization (22.14) has been done. For particles
with different wavenumbers qj one gets in second order of perturbation
theory:

M = 24(−iλ0~
2c2)− 4 i(3λ0~c)2

π2 lim
Λ→∞

·

·
(

ln
( Λ2

|(q3 − q1)2|

)
− ln

( Λ2

|(k3 − k1)2|

))
+O(λ3)

= 24(−iλ~2c2)− 4 i(3λ~c)
2

π2 ln
( |(k3 − k1)2|
|(q3 − q1)2|

)
+O(λ3)
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In the last line we were not completely accurate when changing to the
renormalized coupling constant. But that inaccuracy is O(λ3) and thus
acceptable. Therefore it is not necessary to perform new renormalizations,
if the scattering of particles with different wavenumbers shall be computed.
This is a general rule: For the renormalization of one parameter (in this
case the renormalization λ0 → λ), one single measured value is sufficient.
The cutoff-parameters Λ have disappeared from all results. Only those

wavenumbers kj , qj have remained in the formulas, which can be observed
experimentally, i. e. which are very small as compared to the inverse r−1 of
the fundamental length (see section 21.3). This means: Due to renormaliza-
tion, the processes on the scale of the small wavenumbers kj , qj have been
decoupled from the (infinitely) large wavenumbers Λ. Due to renormaliza-
tion the ψ3-theory and the ψ4-theory became effective theories, which give
correct, finite results for processes on the scale of the small wavenumbers
kj , qj .
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23 Yukawa Theory

It is well known since Rutherford’s1 experiments in 1910, that most of the
mass of an atom is concentrated in a nucleus, whose diameter is by several
orders of magnitude smaller than the grid constant of crystalline solids. As
the constituents of the nucleus have positive electric charge or are neutral
(the existence of neutrons has been established in the early thirties), it is
obvious that there must be an attractive force acting between the nucleons,
which at small distances is much stronger than their electric repulsion.
At large distances, however, this force obviously is much weaker the the
electromagnetic force. In 1935 Yukawa2 published the first reasonable theory
of nuclear forces. Before describing his theory, we will shortly sketch the
line of thought which guided him to that theory.

ϕE(r) = q

4πε0
1
r

(23.1)

is the electrostatic potential which is created by a point-charge q at distant r.
The range of the electrostatic interaction is infinite. To model an interaction
with finite range, Yukawa introduced a cutoff-parameter R:

ϕK(r) = g

r
exp{−r/R} (23.2)

q/4πε0 is replaced by the coupling constant g. Due to the additional
exponential function, the nuclear force becomes unmeasurable small as soon
as the distance r from the potential’s source becomes significantly larger
than R. ϕE and ϕK are solutions of the potential equations

1 Ernest Rutherford (1871-1937)
2 Yukawa Hideki (1907-1981)
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∆ϕE(r) = 0 resp.
(
∆− 1

R2

)
ϕK(r) = 0 , (23.3)

as can be checked by insertion. (The Laplace-operator in spherical coordi-
nates can be found in appendix A.20.) If the Laplace-operator is expanded
to the d’Alembert-operator, then ϕE furthermore becomes a solution of the
wave equation

(
− 1
c2

d2

dt2 + ∆
)
ϕE(r, t) = 0 . (23.4)

Based on (23.3), one then may speculate that ϕK should be a solution of
the wave equation

(
− 1
c2

d2

dt2 + ∆− 1
R2

)
ϕK(r, t) = 0 . (23.5)

Using the ansatz ϕK(r, t) = ϕK0 exp{−i(ωt − kr)}, one can derive from
that wave equation

ω2

c2 − k
2 = 1

R2
(7.18)= M2c2

~2
. (23.6)

This equation is constituting a relation between the mass M of the field ϕK
and the range R of the force. Inserting the experimentally determined range
R of the nuclear force of about one femtometer, Yukawa could estimate the
field’s rest energy

Mc2 ≈ ~c
R
≈ ~c

10−15m ≈ 200MeV . (23.7)

The pions thus invented by Yukawa could only by 1947 be first time directly
observed in the cosmic radiation.

Yukawa’s theory is describing nucleons and antinucleons as fermions with
spin 1/2 (i. e. as Dirac-fields), and the force inbetween them as an uncharged
Klein-Gordon field. The Lagrangian of this model of nuclear forces is



482 23 Yukawa Theory

L = ψ(W )

(
i~cγνdν − g(~c)3/2φ(W ) −mc2

)
ψ(W ) +

+ 1
2
(
~2c2dµdµ −M2c4

)
φ2

(W ) . (23.8)

It is consisting of the Lagrangian of the Dirac field (without interaction
with a gauge field), the Lagrangian of the uncharged Klein-Gordon field,
and the interaction term with coupling constant g. As declared in (19.21),
ψ(W ), ψ(W ), φ(W ) are the field-operators of the interacting fields. Operators
without index are operators in the interaction-picture. The comparison with
the Lagrangian

L (8.21)= ψ(W )

(
i~cγν(dν + i

~
qA(W )ν)−mc2

)
ψ(W ) −

1
4µ0

FστF
στ

of Dirac-field plus gauge-field is instructive: The Klein-Gordon-field φ(W )(x),
which is conveying the Yukawa-interaction, has — different from the gauge-
field A(W )(x) — a finite rest-mass M . It’s Lagrangian does not have
the structure of rotation terms like FστF στ . Furthermore φ(W ) is not
multiplied by the gamma-matrices, and thus is not as closely as the gauge-
field interwoven with the spinor formalism of the Dirac-field. And φ(W ) is —
again different from the gauge-field — no vector field, but a scalar field.

As the Dirac-field’s dimension is volume-1/2, and the Klein-Gordon-field’s
dimension is energy-1/2 · volume-1/2 — as can be clearly seen again in
equation (23.14) below — , the coupling constant is dimensionless:

[g] · (energy · length)3/2

volume · energy1/2 · volume1/2 = [L] = energy
volume

=⇒ [g] = 1 (23.9)

23.1 Scattering Processes

We already encountered the Feynman-propagators of the Dirac field

S(x− y) (16.31)= 〈0|Tψ(x)ψ(y) |0〉 (23.10a)
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and of the Klein-Gordon field

G(x− y) (15.43)= 〈0|Tφ(x)φ†(y) |0〉 . (23.10b)

Recall, that the time-order operator T = (15.44) brings about a factor of
(−1) at each permutation of two fermion operators. Furthermore in Yukawa-
theory φ† = φ , because this Klein-Gordon field is not charged. When we
describe scattering events with two incoming and two outgoing nucleons,
we will encounter matrix elements of the type

〈0|Tψ(W )(x3)ψ(W )(x4)ψ(W )(x1)ψ(W )(x2) |0〉 .

Such matrix elements can be computed by means of the formula

〈0|Tψ(W )(xr) . . . ψ(W )(x1) |0〉 (19.19)=

=

〈0|Tψ(xr) . . . ψ(x1)
∞∑
n=0

1
n!
(
− i

~

+∞∫
−∞

dτ H(τ)
)n
|0〉

〈0|T
∞∑
m=0

1
m!
(
− i

~

+∞∫
−∞

dτ H(τ)
)m
|0〉

(23.11)

as matrix elements of field-operators in the interaction picture, because we
nowhere made reference to the particular properties of the uncharged Klein-
Gordon field when we derived this formula in section 19.1. It does hold
as well for the Dirac field ψ and it’s antifield ψ. The Hamilton operator
H(τ), which must be inserted into this formula, can be derived from the
Lagrangian (23.8):

H(W ) = HDirac +HKlein-Gordon + g(~c)3/2
∫
Ω

d3xψ(x)φ(x)ψ(x)

︸                                       ︷︷                                       ︸
H(τ)

Same as we did in (20.20)ff, we will as well in (23.11) cancel the unconnected
diagrams of the numerator versus the denominator. Thus only connected
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diagrams need to be computed. This is indicated by the index c at the
matrix element:

〈0|Tψ(W )(xr) . . . ψ(W )(x1) |0〉 =
∞∑
n=0

1
n! (−ig

√
~c)n ·

· 〈0|Tψ(xr) . . . ψ(x1)
( ∫

Ω

+∞∫
−∞

d4y ψ(y)φ(y)ψ(y)
)n
|0〉c (23.12)

Wick’s theorem is useful for the computation of matrix elements of field-
operators in the interaction picture. Is has been stated in (19.40) for both
uncharged and charged Klein-Gordon fields. The extension to combinations
of Dirac-field operators and Klein-Gordon-field operators is given in the
following

Theorem: The vacuum-expectation-value of a time-ordered
product of n field-operators ψ(x) and m field-operators ψ(x)
of the Dirac field and j field-operators φ(x) of an uncharged
boson field in the interaction picture is
∗ zero, if j is uneven and/or if n , m.
∗ in case of even j and n = m equal to the sum of the(

(2n− 1) · (2n− 3) · (2n− 5) · . . . · 1
)
·

·
(
(j − 1) · (j − 3) · (j − 5) · . . . · 1

)
different products of the n Feynman-propagators of the
Dirac-field and the j/2 Feynman-propagators of the boson
field, to which the n+m+ j operators can be contracted.

(23.13)

Note that the the permutation of any two fermion operators, which is needed
when contracting the operators to propagators, gives a factor of (−1).

The LSZ-reduction-formula, which has been described in section 19.3 for
uncharged boson fields, will be most useful for the computation of scattering
amplitudes. Comparing the field-operators, the required replacements
become visible. The field-operators of the Dirac-field in the interaction
picture are
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ψ(x) =(16.1a)
∑
k,r

√
1

2~ωkΩ
(
rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)

ψ(x) =
∑
k,r

√
1

2~ωkΩ
(
ra†k

rūk exp{+ikx}+ rbk
rv̄k exp{−ikx}

)
. (23.14a)

The summation over the spin-variable r is to be performed only, if the spin-
state (r = 1 or r = 2) of the fields is not observed. If the spin-state is
controlled, the respective value r must be inserted instead of the sum over
the spin-states. As we don’t want to write so many summation symbols, we
assume the latter case in the sequel. The field operators of the uncharged
Klein-Gordon field in the interaction picture are

φ(x) (19.11)=
∑
k

√
1

2~ωkΩ
(
ak exp{−ikx} + a†k exp{+ikx}

)
. (23.14b)

The normalization factors ~ωk are different due to the different rest masses
of the Klein-Gordon field and the Dirac field. Furthermore the Fourier-
operators rak of the Dirac field differ from the Fourier-operators ak of the
Klein-Gordon field. But from a purely formal point of view, the field-
operators differ only by the spinor functions u, v, ū, v̄. The dimension of
these spinor functions is √energy.

The relations (A.187) in the derivation of the LSZ-formula are for nucleons
to be replaced by the relations

rak
ruk = +ic

√
~

2ωkΩ

∫
Ω

d3x exp{+ikx}←→d0ψ(x) (23.15a)

rb†k
rvk = −ic

√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0ψ(x) (23.15b)

ra†k
rūk = −ic

√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0 ψ(x) (23.15c)
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rbk
rv̄k = +ic

√
~

2ωkΩ

∫
Ω

d3x exp{+ikx}←→d0 ψ(x) . (23.15d)

The third and the fourth relation are the adjoints of the first and the second.
As done in (A.187), these relations are checked due to insertion of the field-
operator. Then we multiply (23.15a) from left by

∑
s
s̄uk, multiply (23.15b)

from left by
∑
s
s̄vk, multiply (23.15c) from right by

∑
s
suk, and multiply

(23.15d) from right by
∑
s
svk. Using

rūk suk
(8.72a)= 2mc2 δrs

rv̄k svk
(8.72b)= −2mc2 δrs ,

we then get

rak = +ic
√
~

2ωkΩ

∫
Ω

d3x exp{+ikx}←→d0
rūkψ(x)

2mc2 (23.16a)

rb†k = +ic
√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0
r̄vkψ(x)
2mc2 (23.16b)

ra†k = −ic
√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0
ψ(x) ruk

2mc2 (23.16c)

rbk = −ic
√
~

2ωkΩ

∫
Ω

d3x exp{+ikx}←→d0
ψ(x) rvk

2mc2 . (23.16d)

All four Fourier-operators are dimension-less spinor-scalars. Comparing
these relations with (A.187), it becomes clear that in the following steps
of the derivation of the LSZ-formula, which are corresponding to (A.187)ff,
the field-operators of the uncharged Klein-Gordon bosons are to be replaced
as follows:

incoming or outgoing boson : φ(x) = φ†(x)
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incoming
{

nucleon : (2mc2)-1 ψ(x) ruk
antinucleon : −(2mc2)-1 r̄vk ψ(x)

outgoing
{

nucleon : (2mc2)-1 rūk ψ(x)
antinucleon : −(2mc2)-1 ψ(x) rvk (23.17)

Then we introduced in (A.200) the multipoint-Greensfunction of the Klein-
Gordon field

G(y, x) ≡ 〈0|Tψ(W )(y)ψ(W )(x) |0〉 ,

which because of (23.17) must be replaced for nucleons by

G(y, x) −→ S(y, x) ·
s1ūq1 . . . (−1)snvqn r1uk1 . . . (−1)rnv̄km

(2mc2)n+m .

Eventually we inserted in (A.201)

(
k2 −m2 c

2

~2

)
G(y, x) = iG(y, x)

~c G̃(k)
. (23.18)

This must be replaced for nucleons by

(
k2 −m2 c

2

~2

)S(y, x)
2mc2 =

(k2 −m2 c2

~2 )S(y, x)
~c(γνkν +m c

~)
= i S(y, x)
~c S̃(k)

with S̃(k) =(12.24)
i(γνkν +m c

~)
k2 −m2 c2

~2 + iε′
. (23.19)

It does not seem implausible that this replacement is correct, because the
derivation of the LSZ-formula is done almost (but not exactly!) on mass-
shell. And on mass-shell

~2c2k2 = m2c4 =⇒ ~c(γνkν +mc/~) ≈ 2mc2 .

Still it is obvious, that we have not really proved (23.19), but at best have
made it plausible. With an additional small complication, because of which
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an additional operator US (which will be defined immediately) is inserted,
one then gets — like in (19.49) — the LSZ-formula for nucleons:

Sq1...qnk1...km = 〈q1 . . . qn|S |k1 . . .km〉 = (23.20)

= US

n∏
j=1

rj ūqj S̃-1(qj)√
2~ωqjΩ

+∞∫
−∞

∫
Ω

d4yj exp{+iqjyj} ·

·
m∏
l=1

S̃-1(kl) rlukl√
2~ωklΩ

+∞∫
−∞

∫
Ω

d4xl exp{−iklxl}
∞∑
j=0

1
j! ·

·

〈0|Tψ(y1) . . . ψ(yn)ψ(x1) . . . ψ(xm)
(
− i

~

+∞∫
−∞

dτ H(τ)
)j
|0〉

〈0|T
∞∑
r=0

1
r!
(
− i

~

+∞∫
−∞

dτ H(τ)
)r
|0〉

Here it is assumed that only nucleons (but no antinucleons) are going in and
out. If an antinucleon is coming in, then rlukl must be replaced by −rj v̄kl
and ψ(xl) must be replaced by ψ(xl). If an antinucleon is going out, then
rj ūqj must be replaced by −rjvqj and ψ(yj) must be replaced by ψ(yj).

To check the consistency of our considerations, we analyze the dimensions:
Each incoming or outgoing particle is adding to (23.20) the dimension[

ū S̃-1√
~ωΩ

d4xψ(x)
]

=
√energy · length-1√

energy · volume
· length4
√

volume
= 1 .

Thus the probability-amplitude is dimension-less, as should be.
The announced small complication is resulting from the fact, that the

spinor-functions of Dirac-theory — in contrast to the scalar functions of
the Klein-Gordon-field — are not commuting in general. We save ourselves
the lengthly investigation of the correct sequence of factors in the LSZ-
formula, and extract from the literature the following simple result: The
rearrangement-operator for spinor-functions US must be inserted into the
LSZ-formula. This is the definition of that operator:
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Definition : The rearrangement-operator US arranges the
spinor-functions A,B, . . . ,Z, which are related to a continuous
fermion line (which may extend over one ore several vertices)
to a product, in which those factors, to which the arrows on
the line are pointing, are arranged left of those factors, from
which the arrows are originating:

A B C D A B C D

=⇒ DCBA =⇒ ABCD

A

B

C

D

A

B

C

D

=⇒ CabDbcAcdBda =⇒ BabAbcDcdCda
= tr{CDAB} = tr{BADC}

It doesn’t matter, where the starting point of a closed fermion
loop is chosen, because the spinor factors are cyclically com-
bined to the trace.

(23.21)

Due to this rule, there will always be a row-spinor at the left end of a product
and a column-spinor at the right end of a product, making the product in
total a spinor-scalar. If the fermion-line does not have a beginning or an
end, because it is closed to a loop of fermion lines, then this rule results
in the trace of a product of spinor matrices, which again is a spinor-scalar.
We will encounter examples for both cases, and the functionality of the
rearrangement-operator will become clear as soon as we will consider those
examples.

23.1.1 Nucleon-Nucleon Scattering

First we investigate a scattering event with two incoming and two outgoing
nucleons (not antinucleons). k1 and k2 are the wavenumbers of the incoming
nucleons. k3 and k4 are the wavenumbers of the outgoing nucleons. Using
the abbreviation
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Nj ≡
√

2~ωkjΩ ,

the probability amplitude

Sk4k3k2k1
(20.1)= 〈k3k4|S |k1k2〉

(20.32)=
∞∑
n=0

S
(n) (23.22)

according to the LSZ-formula is:

S
(n) (23.20)= US

4∏
j=1

S̃-1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj
(−ig

√
~c)n

n! ·

· r4ūk4 r3ūk3 r2uk2 r1uk1 exp{−i(k1x1 + k2x2 − k3x3 − k4x4}

· 〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)
( +∞∫
−∞

∫
Ω

d4y ψ(y)φ(y)ψ(y)
)n
|0〉c

S
(0) is zero, because — same as in (20.14) — the two propagators S(x3−x1)

and S(x4 − x2), to which the matrix element can be contracted in zeroth
order, are not sufficient to compensate the four zero-factors S̃-1 of the LSZ-
formula. In first order there is one operator φ(y) in the matrix element,
and it is again zero because of (23.13). The same holds true for all uneven
orders n = 1, 3, 5, . . . of perturbation theory. Only even orders n = 2, 4, . . .
can add to the probability amplitude.
The leading non-zero term is found in second-order perturbation theory:

S
(2) =̂ 2 ·

x1

x

x

x

2

3 4

y z

︸                        ︷︷                        ︸
S

(2a)

+ 2 ·
x1

x

x

x

2

4 3

y z

︸                        ︷︷                        ︸
S

(2b)

(23.23)

Boson lines are drawn dashed, to contrast them versus the continuous
fermion lines.
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S
(2) = US

4∏
j=1

S̃-1(kj)
Nj

+∞∫
−∞

∫
Ω

d4xj
(−ig

√
~c)2

2!

+∞∫
−∞

∫
Ω

d4y

+∞∫
−∞

∫
Ω

d4z ·

· r4ūk4 r3ūk3 r2uk2 r1uk1 exp{−i(k1x1 + k2x2 − k3x3 − k4x4}
· 〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c (23.24)

There is only one possibility, to combine the two operators φ(y) and φ(z)
to a propagator. The field-operators of the incoming and outgoing nucleons
must not be combined mutually, but must be contracted with the operators
of the interaction terms, to make sure that there is a sufficient number
of propagators to compensate the four zero-factors S̃-1(kj). The options
for combinations are furthermore restricted by the fact, that each nucleon-
propagator must be built from one operator ψ and one operator ψ.
ψ(x1) can be contracted with ψ(y) or ψ(z) (2 alternatives). Subsequently

only one option remains for the contraction of ψ(x2). ψ(x3) can be con-
tracted with ψ(y) or ψ(z) (2 alternative), subsequently the contraction
of ψ(x4) is uniquely fixed. In total there are 4 different non-vanishing
alternatives of contraction. Two of them each are combined to one graph
because their numerical values obviously are equal (they only differ by the
permutation of the vertices y and z). This is characteristic for the Yukawa-
theory (and — as we will see — for quantum electrodynamics as well):
As the three operators ψ φψ, which belong to any vertex, can not replace
themselves mutually, the symmetry factor of any graph with n vertices is n!,
because the permutations of the vertices are the only modifications which
don’t change the graph’s topology. The symmetry factor just compensates
in the Yukawa-theory (and in QED) in all diagrams the factor 1/n!, which
is resulting from the series expansion of the interaction term.

When contracting the field-operators to propagators, a factor (−1) must
be inserted for each permutation of two fermion operators. In the matrix
element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c (23.25a)
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the contractions of the graph

x1

x

x

x

2

3 4

y z

are marked by the horizontal
brackets, which we introduced in section 19.2.1. The brackets are crossing
at 7 positions. Furthermore ψ(x1) must be permuted with ψ(y) and ψ(x2)
with ψ(z), to make sure that in all propagators the annihilation-operators
are left of the creation-operators. Thus in total 9 permutations of fermion
operators are required for the contraction of the matrix element to the
propagators of the diagram, resulting into a factor (-1).

For the diagram

x1

x

x

x

2

4 3

y z
one permutation less is required:

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c (23.25b)

Therefore S(2a) gets a factor (−1), while S(2b) does not.
Remark: If we had not started from the matrix element in (23.24), but

for example from

〈0|Tψ(x4)ψ(x3)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c ,

then we would have found for S(2b) a factor (−1), but not for S(2a). This is
just a particular case of the general indeterminacy of matrix elements in
quantum theory, which are fixed only up to an arbitrary phase-factor. Only
the square-moduli of the matrix elements, i. e. in this case |S(2a) + S

(2b)|2,
can be proved experimentally. For the square modulus it doesn’t matter
which term has the positive sign and which term has the negative sign. But
it is important, and has experimentally verifiable consequences, that the
signs of S(2a) and S(2b) are different.
By application of the re-arrangement operator one eventually arrives at

the following result:



23.1 Scattering Processes 493

S
(2) =

4∏
j=1

1
Nj

+∞∫
−∞

∫
Ω

d4xj
(−ig

√
~c)2

2! ·

· exp{−i(k1x1 + k2x2 − k3x3 − k4x4} · 2G(z − y) ·
(

−
(
r3ūk3S̃-1(k3)S(x3 − y)S(y − x1)S̃-1(k1)r1uk1

)
·

·
(
r4ūk4S̃-1(k4)S(x4 − z)S(z − x2)S̃-1(k2)r2uk2

)
+

+
(
r4ūk4S̃-1(k4)S(x4 − y)S(y − x1)S̃-1(k1)r1uk1

)
·

·
(
r3ūk3S̃-1(k3)S(x3 − z)S(z − x2)S̃-1(k2)r2uk2

))
(23.26)

The spinor-functions of the four last lines each belong to a continuous
fermion-line of a diagram. The factors are arranged according to the
definition (23.21) and result into a spinor-scalar each, because S and S̃ are
4× 4 spinor-matrices — see (12.24) and (12.27) — , while ū is a row-spinor
and u is a column-spinor.
As we did when we computed the structurally similar diagrams (20.42),

one now must substitute appropriate variables, transform the Greensfunc-
tions S into wavenumber-space and cancel them against the zero-factors
S̃-1, thus getting several delta-functions. We do not want to go through
all these exercises step by step again. In box 20.2 on page 421 we listed
the rules, according to which the scattering amplitudes of uncharged Klein-
Gordon fields can be formulated immediately in energy-momentum-space.
The transformations of these rules to the Yukawa-interaction can be found in
box 23.1 on the next page. The new rule K will be justified in section 23.1.4.
We apply the rules of box 23.1 to the scattering of two nucleons (not

antinucleons) which are coming in with wavenumbers k1 and k2:
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Box 23.1 : Feynman-rules in energy-momentum-space for the com-
putation of the component S(n) of the scattering amplitude in Yukawa-
theory
A , B See box 20.1 on page 420
B′ Insert a factor (−1) for each permutation of two fermion operators

when combining them to propagators.

C The structure of any vertex is .

D For n vertices insert a factor
1
n! (−ig

√
~c)n .

E For incoming and outgoing lines with four-dimensional wavenumbers
kin and kout insert a factor

2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout .

F For each outer line with wavenumber kj insert a factor

√
1

2~ωkjΩ
·



ruk for incoming nucleon
rūk for outgoing nucleon
(− r̄vk) for incoming antinucleon
(− rvk) for outgoing antinucleon
1 for incoming or outgoing boson .

G For each inner boson-line with wavenumber k insert a factor
G̃(k) = i

~c(k2 −M2 c2

~2 + iε′)
.

For each inner fermion-line with wavenumber k insert a factor

S̃(k) (12.24)=
i(γνkν +m c

~)
k2 −m2 c2

~2 + iε′
.

H See box 20.2 on page 421
J Insert the rearrangement-operator US = (23.21).
K Inner fermion-lines must always be interpreted as particles (but not as

antiparticles).
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2 ·
k
1

k

k

k

2

3 4

k1 3
k-

+ 2 ·
k1

k

k

k

2

4 3

k1 4k- =̂ S
(2) = (−ig

√
~c)2

2! ·

·
( 4∏
j=1

√
1

2~ωkjΩ

)
2πΩ δ

(
k0

1 + k0
2 − k0

3 − k0
4

)
δ(k1+k2),(k3+k4) ·

·
(
− 2 (r3ūk3 r1uk1)(r4ūk4 r2uk2) i

~c
(
(k1 − k3)2 −M2 c2

~2 + iε′
) +

+ 2 (r4ūk4 r1uk1)(r3ūk3 r2uk2) i

~c
(
(k1 − k4)2 −M2 c2

~2 + iε′
)) (23.27)

The rearrangement-operator (23.21) has already been applied here, and
therefore is not displayed again explicitly.

The computation of the four spinor-products rαūkα rβukβ is demonstrated
in appendix A.21. It is shown there, that the following approximations hold
in the non-relativistic limit:

rūf suk≈ 2mc2 δrs (23.28a)
rv̄f svk≈ − 2mc2 δrs (23.28b)
rūf svk≈ 0 (23.28c)
rv̄f suk≈ 0 (23.28d)
if |c~f | � mc2 and |c~k| � mc2.

In the non-relativistic limit, the spin of the nucleons is conserved at
each vertex. If the nucleons are coming in with different spins (r1 , r2),
then the second term in the scattering amplitude will vanish. This term is
based on the assumption, that the outgoing particle k3 in (23.26) can be
described either by the propagator S(x3 − y), or — with equal right — by
the propagator S(x3 − z). But if we define to name that one of the two
outgoing particles k3, which has the spin r1, then the second diagram in
(23.27) must be discarded. Then the scattering amplitude simplifies to
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2 ·
k
1

k

k

k

2

3 4

k1 3
k-

=̂ S
(2) ≈ ig2 4m2c4 δr3r1 δr4r2

(k1 − k3)2 −M2 c2

~2 + iε′
·

·
( 4∏
j=1

√
1

2~ωkjΩ

)
2πΩ δ

(
k0

1 + k0
2 − k0

3 − k0
4

)
δ(k1+k2),(k3+k4)

if |c~kj | � mc2 for j = 1, 2 and r1 , r2 . (23.29)

23.1.2 Antinucleon-Antinucleon Scattering

In all energy-momentum-space diagrams considered so far, the directions
of the triangular arrows and the directions of the particle momenta have
been identical. But in case of antiparticles it is common practice to draw
the directions of the triangular arrows in the diagrams in opposite direction
to the particle momenta.
Consequently the diagram allows for different interpretations:
∗ A nucleon is arriving from left at the vertex. There it interacts with a
boson, and then continues to the right.
∗ An antinucleon is arriving from right at the vertex. There it interacts
with a boson, and then continues to the left.
∗ A nucleon is coming in from left, and an antinucleon is coming in from
right. At the vertex they meet and annihilate into a boson, which is
going out upwards.
∗ A boson is coming in from top. At the vertex it decays due to pair
production into a nucleon, which is going out to the right, and into an
antinucleon, which is going out to the left.

To ensure unique interpretations, the directions of the antinucleon momenta
can be indicated by additional arrows at the outer lines (not at the inner
lines, as will be explained below) of the diagrams.

According to rule C of box 23.1, there is always one fermion-arrow directed
towards the vertex and one fermion-arrow directed away from the vertex.
Never both fermion-arrows are pointing towards the vertex or away from
the vertex. This rule of Yukawa-theory is reflecting the observation, that
atomic nuclei, which are composed of several nucleons, do not annihilate
into bosons.
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While the Feynman-graphs in time-position-space are looking identical

for nucleon-nucleon-scattering and for antinucleon-antinucleon-scattering,
the matrix elements of antinucleon-antinucleon-scattering are different from
(23.25), and different contractions are required.

To build the graph

x1

x

x

x

2

3 4

y z
for antinucleon-antinucleon-scattering

from the matrix element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c , (23.30a)

11 permutations of fermion operators are needed, resulting in a factor (-1).

For the diagram

x1

x

x

x

2

4 3

y z one permutation less is required:

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c (23.30b)

Thus one gets a factor (+1). Consequently the only difference inbetween
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k1 3
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+ 2 ·
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k
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4 3
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=̂ S
(2) = (−ig

√
~c)2

2! ·

·
( 4∏
j=1

√
1

2~ωkjΩ

)
2πΩ δ

(
k0

1 + k0
2 − k0

3 − k0
4

)
δ(k1+k2),(k3+k4) ·

·
(
− 2 (r3v̄k3 r1vk1)(r4v̄k4 r2vk2) i

~c
(
(k1 − k3)2 −M2 c2

~2 + iε′
) +

+ 2 (r4v̄k4 r1vk1)(r3v̄k3 r2vk2) i

~c
(
(k1 − k4)2 −M2 c2

~2 + iε′
)) (23.31)

and (23.27) is the replacement of all spinors ū and u by v̄ and v. In the non-
relativistic approximation the spin of the antinucleons is conserved at each
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vertex because of (23.28). If the antinucleons are coming in with different
spin, then the second term will vanish for the reason named after (23.28).
As the both negative signs mutually compensate in the product

(r3v̄k3 r1vk1)(r4v̄k4 r2vk2)
(23.28)
≈ (−2mc2)2 δr3r1 δr4r2 (23.32)

if |c~kj | � mc2 for j = 1, 2, 3, 4 ,

one gets for the elastic scattering of antinucleons by antinucleons in the
non-relativistic approximation exactly the same amplitude (23.29) as for
the elastic scattering of nucleons by nucleons.

23.1.3 Nucleon-Antinucleon-Scattering

As a third variant we consider the scattering of a nucleon, which is coming in
with wavenumber k1 and going out with wavenumber k3 by an antinucleon,
which is coming in with wavenumber k2 and going out with wavenumber k4.
This process can be described by two graphs:

S
(2) =̂ 2 ·

k
1

k

k

k

2

3 4

k1 3
k-

+ 2 ·
k
1

k

k

k

3

2 4

k1 2
k+

(23.33)

Note, that these two graphs differ only by the labeling (and the accompa-
nying text), but not by the lines and arrows. In the first graph, time is
proceeding from top to bottom. A nucleon is coming in with wavenumber
k1, emits a boson, and then goes out with wavenumber k3. An antinucleon
comes in with wavenumber k2, absorbs a boson, and then goes out with
wavenumber k4. In the second diagram, time is proceeding from left to
right. A nucleon with wavenumber k1 and an antinucleon with wavenumber
k2 annihilate into a boson, which then decays due to pair creation into a
nucleon with wavenumber k3 and an antinucleon with wavenumber k4.
The nucleon, which is incoming with wavenumber k1, can dock at either

vertex (2 alternatives), after that the remaining parts of the two graphs are
uniquely fixed. According to the rules of box 23.1 the probability amplitude
is
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S
(2) = 2 · (−ig

√
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2!
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√
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2~ωkjΩ
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·

· 2πΩ δ
(
k0

1 + k0
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·
(

(r3ūk3 r1uk1)(r2v̄k2 r4vk4) i
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− (r2v̄k2 r1uk1)(r3ūk3 r4vk4) i

~c
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(k1 + k2)2 −M2 c2

~2 + iε′
)) . (23.34)

To check the signs, we start from the matrix element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c ,

which has been constructed with regard to (23.17). One gets the two graphs
due to the contractions

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c

=⇒ 2 ·
k
1

k

k

k

2

3 4

k1 3
k-

(23.35a)

and

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c

=⇒ 2 ·
k
1

k

k

k

3

2 4

k1 2
k+

. (23.35b)

In the first matrix element there are 4 crossings of the contraction brackets.
Furthermore ψ(x1) must be permuted with ψ(y), and ψ(x2) with ψ(y),
to achieve the propagators of the graph. The 6 permutations of fermion
operators result into the factor (+1).
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There is 1 crossing of the contraction brackets in the second matrix
element. Furthermore ψ(x1) must be exchanged with ψ(y) and ψ(x2) with
ψ(y), to get the propagators of the graph. The 3 permutations of fermion
operators result into a factor (-1).
In the low-energy limit, the spinor products of the second term are zero

according to (23.28). This seems surprising in the first moment. We know,
that a proton and an antiproton, which are colliding with arbitrarily low
energy, will mutually annihilate. But the product of that annihilation
is not a Yukawa-boson, but a photon. This means that for a complete
description of the interactions between nucleons we must include quantum
electrodynamics into our considerations. There exists, however, in Yukawa-
theory a process of nucleon-antinucleon-annihilation into two bosons. We
will consider that process later.

The sign of the first term, which is describing the elastic scattering of a
nucleon and an antinucleon, differs from the sign of the scattering events
considered before, because of

(r3ūk3 r1uk1)(r2v̄k2 r4vk4)
(23.28)
≈ −(2mc2)2 δr3r1 δr2r4 (23.36)

if |c~kj | � mc2 for j = 1, 2, 3, 4 .

This is compensated by the fact, that this term gets a positive sign due to
the even number of permutations of fermion operators, while the analogous
term for the scattering of nucleons by nucleons or for the scattering of
antinucleons by antinucleons required an odd number of operator permuta-
tions and thus got a negative sign. Therefore in total also the scattering of
nucleons by antinucleons is described in the low-energy approximation by
equation (23.29). According to Yukawa-theory, for all three alternatives of
(anti-)nucleon scattering in non-relativistic approximation
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if |c~kj | � mc2 for j = 1, 2 . (23.37)

The value and the sign are identical for all three diagrams. From that
equation it is not obvious, however, whether the interaction is attractive or
repulsive in all three cases. Of course we might simply thrust that Yukawa,
who wanted to construct an attractive interaction, did the job right. We
postpone the proof, that Yukawa-interaction indeed is attractive, to our
discussion of quantum electrodynamics. There we will confirm the attractive
nature of Yukawa-interaction by comparing (23.37) with (24.73).

23.1.4 Inner Fermion-Lines

Until now we computed diagrams, in which the inner line was a boson-
line. Ambiguities turn up as soon as there is an inner fermion-line in a
diagram. A simple example of a scattering diagram with an inner fermion
line is the annihilation of a nucleon (coming in with wavenumber k1) and
an antinucleon (coming in with wavenumber k2) into two bosons (going out
with wavenumbers k3 and k4), see the left diagram:

k
1

k

k

k

2

3 4

y z
1k 1k

y z (23.38)

This diagram allows for two different interpretations: Either a nucleon
moves to y, emits a boson, then moves to z, and annihilates there with an
antinucleon into the boson with wavenumber k4. Or an antinucleon emits
at z a boson, then moves to y, and annihilates there with a nucleon into
the boson with wavenumber k3. For two reasons, the both interpretations
give different results. Firstly there is the matrix element
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〈0|Tφ(x3)φ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉

in the probability amplitude of the scattering event. The fermion operators
must definitely be contracted as indicated. If the inner line is interpreted
as an antiparticle moving from z to y, then the sequence of the operators
ψ(y) and ψ(z) is already correct, because the creation operator must be on
the right side. But if the inner line is interpreted as a particle moving from
y to z, then the operators ψ(y) and ψ(z) must be permuted, resulting into
a change of sign.
Secondly according to rule G of box 23.1 the propagator

S̃(k) (12.24)=
i(γνkν +m c

~)
k2 −m2 c2

~2 + iε′
,

which is linear in k, must be inserted for the inner line. For an antinucleon
moving from z to y, the momentum’s sign is opposite to that of a nucleon
moving from y to z. This difference of sign is not compensated by the sign
change due to permutation of the operators in the matrix element, because
the sign of mc/~ does not change.

Another example: If a perturbative computation is done for the propagator
of the Yukawa-boson, similar to the perturbative computation done in
(20.47) for the boson-propagator of ψ4-theory, then in 2. order the right
diagram in (23.38) is encountered. This diagram again allows for different
interpretations. First interpretation: The boson is moving with wavenumber
k1 from left to y, decays due to pair-creation into a fermion and an anti-
fermion, which then at z mutually annihilate into a boson, which is going
out with wavenumber k1 to the right. Second interpretation: A boson is
moving from left to y, while at the same time a fermion is moving from
z to y. At y the fermion absorbs the boson, moves on to z, and there
emits a boson, which is going out to the right with wavenumber k1. Third
interpretation: A boson moves from left to y, while at the same time an
anti-fermion is moving from z to y. At y the anti-fermion absorbs the boson,
then moves to z, and there emits a boson, which moves out to the right
with wavenumber k1.
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To compute the diagram, a matrix element must be contracted to propa-

gators. The contractions are incompatible for the different interpretations:

〈0|Tφ(x1)φ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉

The contraction brackets of the fermions are identical for all three inter-
pretations. There are no crossings of fermion brackets. With the first
interpretation (a nucleon and an antinucleon are moving from y to z) the
operators of both fermion-pairs must be permuted, because the creation
operators must be right of the annihilation operators. The 2 permutations in
total give a factor (+1). The second interpretation (one nucleon moves from
z to y, and one nucleon moves from y to z) requires only the permutation
of ψ(y) and ψ(z), resulting into a factor (-1). The third interpretation (one
antinucleon moves from z to y, and one antinucleon moves from y to z)
requires only the permutation of ψ(z) and ψ(y), again giving the factor (-1).
The graphs are not painted arbitrarily, but they are abstract represen-

tations of algebraic formulas, which we are translating back to algebraic
formulas following the rules of box 23.1. If there are ambiguities, then we
must go a step backwards, and clarify the correct application and interpre-
tation of the graphs due to algebraic computations ab initio. We avoid that
tedious task, and take without proof from the literature the simple result:

Theorem : The computations of graphs of Dirac fields are
consistent with algebraic computations if and only if inner
fermion lines are interpreted with no exceptions as particles
but not as antiparticles.

(23.39)

This rule has been inserted as K in box 23.1. A general result can be
concluded from this rule: If in a graph there is a loop consisting of n
fermion-lines and zero boson-lines, then in the matrix element there is a
factor

〈0| . . . ψ(y1)ψ(y1)ψ(y2) . . . ψ(yn−1)ψ(yn)ψ(yn) . . . |0〉 .

The contraction of the 2× n fermion operators to a loop of n particles (and
zero antiparticles) always adds a factor (−1) to the overall result, because
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always one operator pair ψ ψ must be permuted to close the loop.

23.1.5 Annihilation into Bosons

The annihilation of a nucleon (which is coming in with wavenumber k1) and
an antinucleon (which is coming in with wavenumber k2) into two bosons
(which are going out with wavenumbers k3 and k4) has been mentioned
already in the previous section as an example for a graph with an inner
fermion line. Now we are going to investigate this process in detail.

S
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y z (23.40)

The momentum ~(k1 − k3) resp. ~(k1 − k4) tagged to the inner line is
interpreted according to rule K of box 23.1 parallel (not antiparallel) to the
triangular arrow, because the inner line must be interpreted as a particle
(not as an antiparticle).

The particle coming in with k1 may dock to vertex y or z:

〈0|Tφ(x3)φ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c

〈0|Tφ(x3)φ(x4)ψ(x1)ψ(x2)ψ(y)φ(y)ψ(y)ψ(z)φ(z)ψ(z) |0〉c

In the first variant of the possible contractions of the fermion operators
there are 3 crossings of the contraction brackets. In addition, all 3 operator-
pairs must be permuted to make sure that the creation operator is always
on the right side. Thus one gets in total the factor (+1). In the second
variant there are no crossings of the contraction brackets. Only 2 operator-
pairs need to be permuted, because the sequence of the pair ψ(y)ψ(z) is
already correct (the virtual inner fermion is moving in this case from z to
y). Thus we again get a factor (+1) in this case, and both alternatives
can be combined to a graph with symmetry factor 2. As in all diagrams of
Yukawa-theory (and of QED) the symmetry factor (in this case 2!) is caused
exclusively by the permutations of the vertices, and will be compensated
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in the following by the factor 1/2! caused by the Taylor expansion of the
interaction term. This comes due to the fact, that — different from ψs-
interaction — the three operators ψ(y)φ(y)ψ(y) of an interaction term can
not mutually replace themselves.
The outgoing boson k3 can be constructed by contraction of φ(x3) with

φ(y) or with φ(z). The contraction of the second, outgoing boson then is
uniquely fixed. There is a factor (-1) due to rule F of box (23.1) for the
incoming antinucleon. Thus one gets in second order of perturbation theory
the following probability amplitude for the annihilation of a nucleon and an
antinucleon into two bosons:

S
(2) (23.40)= −2 · (−ig

√
~c)2

2!

·
( 4∏
j=1

√
1

2~ωkjΩ

)
2πΩ δ

(
k0

1 + k0
2 − k0

3 − k0
4

)
δ(k1+k2),(k3+k4)

· r2v̄k2

( i
(
γν(k1 − k3)ν +m c

~

)
(k1 − k3)2 −m2 c2

~2 + iε′
+
i
(
γν(k1 − k4)ν +m c

~

)
(k1 − k4)2 −m2 c2

~2 + iε′

)
r1uk1 (23.41)
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24 Quantum Electrodynamics

Quantum electrodynamics is the description of the interaction of the electri-
cally charged elementary fields with their gauge field. The

photon = γ

is the quantum of the gauge field. These electrically charged elementary
fields are known:

The three leptons

electron = e = e− myon = µ = µ− tauon = τ = τ−

and their three antiparticles

positron = e+ anti-myon = µ+ anti-tauon = τ+

as well as the six quarks

up = u down = d strange = s

charm = c bottom = b top = t

and their six antiparticles

anti-up = ū anti-down = d̄ anti-strange = s̄

anti-charm = c̄ anti-bottom = b̄ anti-top = t̄

and the two vector bosons

W+ W− .

The photon, the W+, and the W− have no antiparticles.1 The photon

1 Some people say: The photon is it’s own antiparticle. That’s a question of definition. If
the notion particle/antiparticle is defined such that particle and antiparticle are related
due to a C transformation (see section 11.2.3), then the photon indeed is the antiparticle
of the photon, and the W+ is the antiparticle of the W−. But if the definition is, that a
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carries no electric charge. The charge of the three leptons and the W− is

−e = −1, 6 · 10−19C ,

while the charge of the three antileptons and the W+ is

+e = +1, 6 · 10−19C .

The electrical charge of the quarks u, c, t is +2e/3, the charge of the quarks
d, s, b is −e/3. Their antiparticles carry the reversed charges, respectively.
Attention: Different from us, about 50% of the authors define +e =
−1, 6 · 10−19C.
The three leptons have same charges and same spins, but differ by their

masses and electric and magnetic moments. The masses of the six quarks
are different from another as well. The photon (the gauge boson of electro-
magnetic interaction) has rest mass zero, while the gauge bosons W+ and
W− of weak interaction have finite rest mass.
Leptons and quarks are the quanta of Dirac fields, i. e. their spin is ~/2.

The photon and the W+ and the W− have spin ~.
All listed particles are assumed to be elementary particles with no sub-

structure.

24.1 Feynman-Rules

In the previous chapter we listed in box 23.1 the rules for the computation
of S-matrix elements of Yukawa-theory. To transfer these rules to quantum-
electrodynamics, all formulas which are referring to the pion-field of Yukawa-
theory must be translated into the corresponding formulas of the photon
field. That has been done in box 24.1 on page 510. We now will check the
translation of those rules step by step:

particle and it’s antiparticle can be created pairwise due to decay of a photon, and that
a particle and it’s antiparticle can annihilate pairwise into a photon, then the notion of
particles and their antiparticles is applicable only to fermions. Neither photons, nor
W+/W− bosons nor Z0 bosons nor gluons nor Higgs bosons are created in pairs due
to photon decay, nor can they pairwise annihilate into photons. In this book, the latter
definition for particles/antiparticles is preferred.
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Rule C: The lines of massless bosons are drawn in Feynman-graphs as

wavy lines. According to experience, the flavor of Fermions is conserved at
any vertex in QED. That means: If e. g. an e− is coming in at a vertex, then
the second fermion line at this vertex must be either an outgoing electron
or an incoming positron. If a c̄ is coming in, then the second fermion line
at this vertex can’t be anything else than an incoming c or an outgoing
c̄. Thus always one fermion-arrow is directed towards the vertex, and one
fermion-arrow is directed away from the vertex. If the fermion-arrow of
an external line is pointing towards the vertex, then it could symbolize a
fermion moving towards the vertex, or an antifermion moving away from
the vertex. A unique interpretation of the diagram can be enforced by
additional little arrows drawn at the side of the fermion lines, which are
indicating the direction of the momentum. Inner lines must according to
theorem (23.39) always be interpreted as particles (not antiparticles), whose
momentum direction is identical to the direction of the triangular fermion
arrows.

The direction of photon momentum is in general not indicated by arrows
on the wavy lines. If needed, the momentum direction can be indicated by
a little arrow at the side of the wavy line. For inner lines, the direction of
photon momentum does not matter, as the photon propagator is a function
of k2, see rule G.
Rule D: The Lagrangian of quantum electrodynamics is

L (8.21)= ψ(W )

(
i~cγν(dν + i

~
qA(W )ν)−mc2

)
ψ(W ) −

1
4µ0

FστF
στ .

Comparing this with the Lagrangian

L (23.8)= ψ(W )

(
i~cγνdν − g(~c)3/2φ(W ) −mc2

)
ψ(W ) +

+ 1
2
(
~2c2dµdµ −M2c4

)
φ2

(W )

of Yukawa-theory, the following replacement in the interaction term is
obvious:
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Box 24.1 : Feynman-rules in energy-momentum-space for the com-
putation of the component S(n) of the scattering amplitude in quantum
electrodynamics
A S

(n) is equal to the sum of all connected 1PI graphs with n vertices.
B The symmetry factor is the number of alternatives for the pairwise

contraction of the operators, which are building up the graph, to the
propagators of the graph. Only one of the equivalent graphs is inserted
into the scattering amplitude, and multiplied by the symmetry factor.

B′When combining the operators to propagators, each permutation of
two fermion operators gives a factor (−1).

C The structure of any vertex is .

D For the n vertices insert a factor
1
n!
(−iqγν
~

)n
.

Contract the index ν with the corresponding index of the docking
photon.

E For incoming and outgoing lines with four-wavenumbers kin and kout
insert a factor

2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout .

F For each external line with wavenumber k insert a factor

√
1

2~ωkΩ ·



ruk for incoming lepton
rūk for outgoing lepton
(−r̄vk) for incoming antilepton
(−rvk) for outgoing antilepton
ε
(α)
kν ~c

√
µ0 for incoming photon

ε
(α)∗
kν ~c

√
µ0 for outgoing photon .

continued on next page!
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(continued from previous page)
G For each inner photon-line with wavenumber k insert a factor

D̃νµ(k) (17.86)= −igνµ µ0~c

k2 + iε′
.

For each inner fermion-line with wavenumber k insert a factor

S̃(k) (12.24)= i(γνkν +mc/~)
k2 − (mc/~)2 + iε′

.

H Sum and integrate over the wavenumber k of an inner line by

1
Ω
∑
k

+∞∫
−∞

dk0

2π ,

if k is not fixed due to conservation of energy and momentum.
J Apply the rearrangement-operator US = (23.21).
K Inner fermion-lines must always be interpreted as particles (not as

antiparticles).

−g(~c)3/2φ(W ) −→ +i~cγν i
~
q A(W )ν

=⇒ vertex factor: − ig
√
~c −→ −iqγν

~

The index ν is contracted by factors, which we will encounter in rules F
and G. For q always insert into the vertex factor the charge of the field,
not the charge of the antifield, no matter whether the fermion lines which
are connected to the vertex are interpreted as fields or as antifields. The
vertex factors of an electron current and of a positron current both are
+ieγν/~ = +i|e|γν/~. The vertex factors of an up current and an anti-up
current both are −i2eγν/(3~). From the point of view of classical physics
it is surprising, that QED is using identical charge parameters, no matter
whether one is considering particles or antiparticles. But we will see, that
the differences — which of course must exist — are accomplished by a
different number of permutations of fermion operators (when applying rule
B′) as well as by different spinor functions (when applying rule F).
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Rule F: The rules for fermions can be transferred from box 23.1 of Yukawa-
theory. To fix the rule for photons, we must go back to the derivation of the
LSZ-reduction-formula, which we investigated in section 19.3 for uncharged
Klein-Gordon-fields. For that purpose we compare the field-operator of the
uncharged Klein-Gordon field

φ(x) (19.11)=
∑
k

√
1

2~ωkΩ
(
ak exp{−ikx} + a†k exp{+ikx}

)
with the four space-time components

Aν(x) (17.79)=
∑
k

3∑
α=0

√
µ0c2~2

2~ωkΩ ·

·
(
ε
(α)ν
k c

(α)
k exp{−ikx}+ ε

(α)ν∗
k c

(α)†
k exp{+ikx}

)
of the photon field-operator. As usual and defined in (19.21), field-operators
with an index (W ) are the complete operators of interacting fields. Operators
without this index are operators in the interaction picture. In the derivation
of the LSZ-formula, the relations (A.187) of the Klein-Gordon field are
replaced by the following relations for the ν-component of the photon field:

3∑
α=0

ε
(α)ν
k c

(α)
k = ic

√
~

2ωkΩµ0c2~2

∫
Ω

d3x exp{ikx}←→d0A
ν(x) (24.1a)

3∑
α=0

ε
(α)ν∗
k c

(α)†
k = −ic

√
~

2ωkΩµ0c2~2

∫
Ω

d3x exp{−ikx}←→d0A
ν(x) (24.1b)

The second relation is the adjoint of the first. The first can be checked by
insertion of the field-operator, as done in (A.187).
Now (24.1a) is multiplied by

∑3
ν=0 ε

(β)∗
kν , and (24.1b) is multiplied by∑3

ν=0 ε
(β)
kν . As the index ν is showing up twice in these product, the sign∑

ν is dispensable due to the sum-convention. The imaginary parts of the
polarization vectors — see (17.9) — disappear in the product. As these
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vectors are unit vectors,

3∑
α=0

ε
(β)∗
kν ε

(α)ν
k =

3∑
α=0

ε
(β)
kν ε

(α)ν∗
k = 1 .

Thus one gets the Fourier-operators

c
(β)
k = ic

√
~

2ωkΩ

∫
Ω

d3x exp{ikx}←→d0
Aν(x) ε(β)∗

kν

c~
√
µ0

c
(β)†
k = −ic

√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0
Aν(x) ε(β)

kν

c~
√
µ0

.

These operators are dimension-less scalars, as needed. Comparing these
relations with (A.187), one can see that in the following steps of the deriva-
tion of the LSZ-formula, which correlate to (A.187)ff, the field-operators of
the uncharged Klein-Gordon bosons must be replaced as follows:

incoming or outgoing KG-boson : φ(x)

incoming photon, polarization ε(α)
k : Aν(x) ε(α)

kν

c~
√
µ0

outgoing photon, polarization ε(α)
k : Aν(x) ε(α)∗

kν

c~
√
µ0

(24.3)

After that we inserted (
k2 −m2 c

2

~2

)
= i

~c
G̃-1(k) (24.4)

into (A.201). Instead of that we now replace for photons (because their
rest-mass is zero)

k2 (17.86)= −igστ µ0~c D̃
-1
στ (k) . (24.5)

As an exception, there is no automatic summation on the right side over
the indices σ and τ . We will return immediately to the question, how the
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space-time indices shall be handled. In the LSZ-formula (19.49) there is
for each incoming or outgoing Klein-Gordon particle a factor G̃-1(k)φ(x).
Because of (24.5) and (24.3), this factor must be replaced for each incoming
or outgoing photon by

incoming photon, polarization ε(α)
k :

G̃-1(k)φ(x) −→ −gστ ~c
√
µ0 D̃

-1
στ (k)Aν(x) ε(α)

kν

outgoing photon, polarization ε(α)
k :

G̃-1(k)φ(x) −→ −gστ ~c
√
µ0 D̃

-1
στ (k)Aν(x) ε(α)∗

kν . (24.6)

Those factors, which are new in comparison to Yukawa-theory, are indicated
in rule F.
We spare ourselves the tiresome evaluation, how in (24.5) and in the

following formulas the space-time indices of the photon functions and of
the factors gνµ shall be handled, and take from the literature the simple
and plausible result: The index ν of the vertex-factor (rule D) must be
contracted with the index ν of the polarization vector (rule F) resp. with
the index ν of the propagator (rule G) of the photon which is docking to
this vertex. This is documented in rule D in box 24.1. Due to this rule, the
probability amplitude in total is a Lorentz-scalar.

Not indicated in rule F: If the spin resp. the polarization is not observed,
then the mean value of the spinor indices r = 1, 2 of the fermion-operators
resp. of the polarization indices α = 0, 1, 2, 3 of the photon-operators must
be taken (for incoming particles) resp. their sum must be taken (for outgoing
particles).

Rule G: The photon propagator has been computed in section 17.5. The
indices µ and ν of the photon propagator and the indices µ and ν of the vertex
factors (rule D) are summed-up according to the summation convention.
For that purpose, clearly the vertex factor γµ at one end of the inner photon
line must be indexed by µ, and the vertex factor γν at the other end of
the inner photon line by ν. Due to this multiplication the product of the
photon-propagator and the vertex factors becomes a Lorentz-scalar.

Rule J: This rule is transferred without any change from Yukawa-theory.
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Due to this rule, all fermion-products become spinor-scalars. This rule could
be “spared”, if we would write down all spinor indices explicitly, like we are
writing down in the rules all space-time indices explicitly. According to the
aesthetic taste of the author, however, rule J is less nasty than lots of spinor
indices. The scattering amplitude in total is a scalar, because all vector-
factors of the photons and all spinor-factors of the fermions are combined
to scalar products.

Rule K: This rule, which is based on theorem (23.39), again was transferred
without change from Yukawa-theory.

24.2 Cross-Section and Decay-Rate

Let NA particles or antiparticles of type A be in a cylindric volume of length
LA and cross-section area F . Let in a second cylindric volume of length LB
and cross-section area F be NB particles or antiparticles of type B (which
may or may not be identical to the particle type A). The two bundles of
particles are beamed upon another such, that the both head areas F exactly
hit one another, and the both bundles penetrate one another along their
lengths. Let the particle density be in both bundles so low, and the lengths
LA and LB of the bundles so small, that essentially never one particle is
covered by another particle of the same bundle (is “in the wind shadow” of
another particle of same type). Then the count of scattering events will be
proportional to the number of incoming particles ZA, proportional to the
number of incoming particles ZB, and inversely proportional to the cross
section F of the bundles:

count of scattering events = σ
ZAZB
F

(24.7)

The proportionality factor σ, whose dimension obviously is area, is simply
called “cross section”. It is not explicitly mentioned in this equation, that the
cross section not only is dependent of the number and types of the particles,
but also of their respective energies and their respective polarizations. Note
that the count of scattering events is independent of the lengths of the
bundles, due to the assumption of very sow particle density. Consequently
this formula is invariant under coordinate transformations between different
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reference systems, provided that the origin of the systems is on the line of
movement of the particle bundles, because only LA and LB change under
such coordinate transformations due to relativistic length contraction, while
the area F is invariant. Often systems are chosen, whose origin is defined
by the common center of mass of one particle A and one particle B, or by
the center of mass of one of the two bundles.
Equation (24.7) is the definition of the total or integral cross section.

Frequently subdivisions (“channels”) of the cross section are defined with
regard to different types of scattering events. If e. g. a bundle of electrons
collides with a bundle of positrons, then — provided the energy is sufficiently
high — many different reactions like e−e+ → e−e+, e−e+ → µ−µ+, e−e+ →
hadrons, e−e+ → τ−τ+γ, . . . may be observed. Separate cross sections
can be assigned to each of these scattering events.
Further details of a scattering events may be documented by differential

cross sections. If for example in a scattering event (besides other particles)
a myon is created, then the differential cross section

dσµ
dΩ̃

= myon count in spherical angle dΩ̃
ZAZB/F

(24.8)

may be measured by counting the number of myons spreading from the
scattering center into the spherical angle dΩ̃. (We mark the spherical angle
Ω̃ by a tilde, to avoid confusion with the normalization volume Ω.) If
furthermore the energies of these myons are measured, then the double
differential cross section

d2σµ

dΩ̃dE
= myon count within (E,E + dE) and dΩ̃

NANB/F
(24.9)

can be indicated. In spite of the notation as differentials, the quantities dΩ̃
and dE are not infinitesimally small in these formulas, but denote finite
intervals ∆Ω̃ and ∆E, the size of which is dependent of the resolution
capabilities of the detectors.
The cross section clearly is closely related to the scattering amplitude,

which was computed in the previous chapters. Before explaining the exact
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relation, we define the scattering matrixM. In all scattering amplitudes
S, a normalization factor is showing up for each incoming or outgoing
particle, and furthermore for all particles together a delta function and a
Kronecker symbol, which guarantee conservation of energy and momentum.
A scattering matrixM is defined by

S
(n) (23.27)

≡ M(n) ·
(∏

in

√
1

2~ωkinΩ

)(∏
out

√
1

2~ωkoutΩ

)
·

· 2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout . (24.10)

We might callM the “interesting” factor of the scattering amplitude, and
the remainder the “self-evident” factor. In the slang of high-energy physicists
however,M is called the “dynamic” factor, while the reminder is called the
“kinematic” factor.

The S-matrix Sk3...kn,k1k2
(19.43b)= 〈k3 . . .kn|S |k1k2〉 (24.11)

is the probability amplitude of a scattering event, in which two particles with
momenta ~k1 and ~k2 are coming in, and (n− 2) particles with momenta
~k3 . . . ~kn are going out. The probability of this event is

|S|2 = |M|2 ·
(∏

ein

1
2~ωkeinΩ

)(∏
aus

1
2~ωkausΩ

)
·

·
∣∣∣2π δ(∑

ein
k0

ein −
∑
aus

k0
aus

)∣∣∣2 Ω2 δ∑einkein ,
∑

auskaus . (24.12)

Here already |Ωδ∑inkin ,
∑

outkout |2 = Ω2δ∑inkin ,
∑

outkout has been inserted.
The modulus-square of the delta function under an integral gives
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+∞∫
−∞

dkin δ(kin − kout) f(kout) = f(kout) =⇒

+∞∫
−∞

dkin δ(kin − kout) δ(kin − kout) = δ(kout − kout) = δ(0) .

For a better understanding of the irritating factor δ(0), remember that we
used only for the sake of convenience the notation t = −∞ to t = +∞ for
the time interval, during which the scattering is taking place. In the sequel
of this definition in (19.48), however, we emphasized that actually a finite
time interval T = ta − te is meant, with T being very large as compared
to all other time intervals which are characteristic for this scattering event.
We define ∆k0 ≡

∑
in k

0
in −

∑
out k

0
out as a shorthand notation, and compute

the delta function

δ(∆k0) =(7.16b) lim
T→∞

1
2π

+cT/2∫
−cT/2

dx0 exp{+i∆k0x0}

= lim
T→∞

1
2π

2 sin(∆k0cT/2)
∆k0 . (24.13)

Using the rule of l’Hospital, this results into

δ(0) = lim
∆k0→0

δ(∆k0) = lim
T→∞

1
π

lim
∆k0→0

c T cos(∆k0cT/2)
2

≈ c T

2π for very large T . (24.14)

Consequently the modulus square of the scattering amplitude is

|S|2 = |M|2 ·
(∏

in

1
2~ωkinΩ

)(∏
out

1
2~ωkoutΩ

)
·

· ΩcT 2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout . (24.15)
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According to (24.11), this is the probability that (n− 2) scattered particles
with wave numbers k3 . . .kn will go out, if two particles with wavenumbers
k1 and k2 come in. As we don’t have detectors of infinite precision at our
disposal, this modulus square must be multiplied by the count of possible
wavenumbers in unmeasurable close neighborhood of k3 . . .kn. With a
resolution capability ∆k of the detectors, we call that neighborhood

U(kj) ≡ set of all k with |k − kj | ≤ |∆k| . (24.16)

Due to the finite normalization volume Ω, any wavenumber kj meets the
condition

kij Ω1/3 = nij 2π with i = 1, 2, 3 and nij ∈ N . (24.17)

Therefore an outgoing particle, whose momentum is measured to be ~kj ,
may actually have one particular of

3∏
i=1

nij =
∑
U(kj)

Ω
(2π)3

( 3∏
i=1

ki
)

(24.18)

different momenta. Consequently

|Sk3...kn,k1k2 |2 ·
( n∏
j=3

∑
U(kj)

Ω
(∏3

i=1 k
i
j

)
(2π)3

)
=

= |M|2 ΩcT
( 2∏
j=1

1
2~ωkjΩ

)( n∏
j=3

∑
U(kj)

(∏3
i=1 k

i
j

)
2~ωkj (2π)3

)
·

· 2πΩ δ
(∑

in
k0

in −
∑
out

k0
out

)
δ∑inkin ,

∑
outkout (24.19)

is the probability of a scattering event, which can not be discerned from
Sk3...kn,k1k2 due to the finite resolution of the instruments. Our formulas
now are becoming quite laborious and confusing, because on the one hand
we are assuming a discrete spectrum of possible wavenumbers (caused by
the finite normalization volume Ω), while on the other hand we are explicitly
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considering by summation over U(kj) that the wavenumber spectrum is
seemingly continuous due to the finite resolution of the detectors. Therefore
it is better at this point, to change to a throughout continuum-notation due
to

∑
U(kj)

(∏3
i=1 k

i
j

)
2~ωkj (2π)3 →

∫
U(kj)

d3kj
1

2~ωkj (2π)3

Ω δ∑inkin ,
∑

outkout → (2π)3δ(3)
(∑

in
kin −

∑
out
kout

)
.

The (n− 2)-dimensional lorentzinvariant “phase-space-volume” is defined
by

Φ(n−2)
LIPS ≡

( n∏
j=3

∫
U(kj)

d3kj
2~ωkj (2π)3

)
(2π)4 δ(4)

(∑
in
kin −

∑
out

kout
)

=

=
( n∏
j=3

∫
U(kj)

dΩ̃ d|kj | |kj |2

2~ωkj (2π)3

)
(2π)4 δ(4)

(∑
in
kin −

∑
out

kout
)
. (24.20)

The spherical angle Ω̃ must not be confused with the normalization volume
Ω. The index LIPS stands for “lorentz-invariant phase space”. Φ(n−2)

LIPS is
lorentzinvariant, because the four-dimensional delta function enforces the
Lorentz invariance of the three-dimensional integrals. Φ(m)

LIPS contains the
factor (24.18). Thus it is proportional to the phase-space volume accessible
to the outgoing particles. But Φ(m)

LIPS itself is no phase-space volume. If the
normalization factors Nj are dimension-less, then instead it has the strange
dimension [

Φ(m)
LIPS

]
= wavenumber3m−4

energym . (24.21)

Φ(n−2)
LIPS contains the factor
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n∏
j=3

d3kj
~ωkj

= 4π
n∏
j=3

d|kj | |kj |2

~ωkj
.

Due to this factor, the scattering products with energy ~ωkj will be more
likely light particles with large momenta than heavy particles with small
momenta. This is caused by the fact, that nj in (24.17) is small for small
|kj |, i. e. that only relatively few finite states are available for this scattering
event. We say that the creation of heavy scattering products is “phase-
space-suppressed”.
The normalization volume Ω does not show up any more in Φ(n−2)

LIPS . We
also must remove it somehow from the normalization factors of the two
incoming particles for the following reason. Though we are describing
the incoming particles as plain waves, which may be detected anywhere
in Ω with same probability, we know (because the experimental setup is
arranged accordingly) that the both particles will be during the time interval
T = ta − te of the scattering in the much smaller scattering volume

|vrel|TF � Ω (24.22)

with vrel = relative velocity of the two incoming particles. In a laboratory
system, in which the incoming particle1 is at rest, |vrel| = |v2| is equal to
the velocity of the other incoming particle. From the literature [48, §12] we
take the lorentz-invariant generalization

~ωk1~ωk2 |vrel| = ~ωk1~ωk2

√
(v1 − v2)2 − (v1 × v2)2 , (24.23)

which sometimes is called flow-factor. If v1 and v2 are antiparallel, then

|vrel| = |v1 − v2| if v1 = rv2 with r ∈ R . (24.24)

We spare ourselves the tedious task to describe the incoming particles as
wave packets, with their wavenumbers centered around k1 and k2. Instead
for the sake of simplicity we continue to write them as plain waves k1 aund
k2, and only replace the factor Ω by |vrel|TF :
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|Sk3...kn,k1k2 |2 ·
( n∏
j=3

∫
U(kj)

d3kj

)
Z|M|2 c

|vrel|F

( 2∏
j=1

1
2~ωkj

)
Φ(n−2)

LIPS

with Φ(n−2)
LIPS = (24.20) and vrel = (24.23) (24.25)

The cross section

σ
(24.7)= count of scattering events · F

ZAZB

has been indicated above for ZA and ZB incoming particles. In equation
(24.25), the

scattering probabilityk3...kn,k1k2

ZAZB
with ZA = ZB = 1

is computed. Thus the cross section of this scattering event is

σk3...kn,k1k2 = |M|2 c

|vrel|

( 2∏
j=1

1
2~ωkj

)
Φ(n−2)

LIPS

with vrel = (24.23) and Φ(n−2)
LIPS = (24.20) .

(24.26)

The cross section can be measured, and the theory can be tested by means
of this formula. As the scattering matrix M, the phase-space volume
Φ(n−2)

LIPS = (24.20), and the flow-factor (24.23) all are lorentz-invariant, the
cross section (24.26) is lorentz-invariant as well.
In case n = 4, i. e. if two particles only are going out, then in the center-

of-mass system (cms) k2 = −k1 and k4 = −k3 . Thereby the integral over
k4 in the phase-space of the outgoing particles can be computed:

Φ(2)
LIPS =(24.20)

∫
U(k4)

d3k4

∫
U(k3)

d3k3
(2π)4 δ(k0

1 + k0
2 − k0

3 − k0
4) δ(3)(k3 + k4)

4~2ωk4ωk3(2π)6

=
∫

U(k3)

d3k3
δ(k0

1 + k0
2 − k0

3 − k0
4)

16π2~2ωk4ωk3

(24.27)
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In this integral, k0

3, k
0
4, ωk3 , ωk4 are not independent because of

k0
j =

ωkj
c

(7.18)=

√
k2

3 +m2
j

c2

~2
for j = 3, 4 . (24.28)

Instead they are all uniquely fixed by |k3|. As the total energy in the cms
(center-of-mass system)

ECM = ~ck0
CM ≡ ~c(k0

1 + k0
2) (24.29)

is to be considered constant as well, k3 is the only variable in the integral
(24.27). Defining

k0
34 ≡ k0

3 + k0
4 (24.30)

dk0
34

d |k3|
=(24.28) |k3|

k0
3

+ |k3|
k0

4

d|k3| =
dk0

34

|k3|
(
(k0

3)-1 + (k0
4)-1

) ,
and using ∫

U(k3)

d3k =
∫

U(k3)

dΩ̃3 d|k3|k2
3 ,

Φ(2)
LIPS may be written in the form

Φ(2)
LIPS =

∫
U(k3)

dΩ̃3 dk0
34

|k3| δ(k0
CM − k0

34)
16π2~2c2k0

4k
0
3

(
(k0

3)-1 + (k0
4)-1

)
=

∫
U(k3)

dΩ̃3 dk0
34
|k3| δ(k0

CM − k0
34)

16π2~2c2k0
34

=
∫

U(k3)

dΩ̃3
|k3|

16π2~cECM
. (24.31)
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Thus the differential cross section is

dσk3k4,k1k2

dΩ̃3
= |M|2 |k3|
|vrel| ~ 16π2E3

CM

in the cms with vrel = (24.23) .
(24.32)

In appendix A.22 the useful relation

|k3|
(A.154)= S34

2ECM~c
(24.33a)

S34 ≡
√(

E2
CM − (m3 +m4)2c4

)(
E2

CM − (m3 −m4)2c4
)

(24.33b)

is proved, by which the cross section can be written in the form

dσk3k4,k1k2

dΩ̃3
= |M|2 S34
|vrel| ~2c 32π2E4

CM
in the cms

with vrel = (24.23) and S34 = (24.33b) (24.34)

In this notation, the momenta of the outgoing particles do not show up
explicitly any more.
If the rest masses of the two incoming particles are identical (which is

quite often the case in everyday laboratory work), then in the cms

~ωk1 = ~ωk2 = 1
2ECM , (24.35)

and furthermore — as the particle flavor is conserved at each vertex —

m3 = m4 and ~ωk3 = ~ωk4 = 1
2ECM (24.36)

must hold as well. Thereby the cross section in the cms simplifies to

dσk3k4,k1k2

dΩ̃3
= |M|2

√
E2

CM − (2m3c2)2

|vrel| ~2c 32π2E3
CM

in the cms with vrel = (24.23), if m1 = m2 and m3 = m4 .

In this result it is clearly visible, that heavy scattering products m3 +m4 =
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2m3 → ECM/c

2 are phase-space-suppressed. Usually the incoming particles
are accelerated to high-relativistic velocities. Then the formula simplifies
further because of ECM � m1c

2 =⇒ |vrel| ≈ 2c to

dσk3k4,k1k2

dΩ̃3
= |M|2

√
E2

CM − (2m3c2)2

~2c2 64π2E3
CM

in the cms (= center of mass system) ,
if m1 = m2 and m3 = m4 and ECM � m1c

2 .

(24.37)

A final possible simplification, which typically becomes possible in case
m3 = m1, can be made in case m3c

2 � ECM. Then one finds

dσk3k4,k1k2

dΩ̃3
= |M|2

~2c264π2E2
CM

(24.38)

in the cms, if m1 = m2 and m3 = m4

and ECM � m1c
2 and ECM � m3c

2 .

So far we always considered the case, that 2 particles are coming in, and
(n−2) scattered particles are going out. The S-matrix (24.10) holds with no
changes as well in case that only 1 particle is coming in, and (n− 1) particle
are going out. This case is not called scattering, but decay of the particle
number 1. The probability for an incoming particle with wavenumber k1 to
decay within the time interval T into (n− 1) particles with wavenumbers
k2 . . .kn, is

|Sk2...kn,k1 |2 ·
( n∏
j=2

∫
U(kj)

d3kj

)
(24.19)= |M|2 ΩcT 1

2~ωk1Ω Φ(n−1)
LIPS

with

Φ(n−1)
LIPS

(24.20)=
( n∏
j=2

∫
U(kj)

d3kj
2~ωkj (2π)3

)
(2π)4 δ(4)

(
k1 −

n∑
l=2

kl
)
. (24.39)

The probability per time for this decay is called decay rate:
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Γk2...kn,k1 = |M|2 c

2~ωk1

Φ(n−1)
LIPS with Φ(n−1)

LIPS = (24.39) (24.40)

Often there exist different “channels” for the decay of a particle, i. e. different
types of decay. The sum of all types of decay rates is the total decay rate,
the inverse of which is called the lifetime of the particle:

lifetime ≡ τ ≡ 1
Γtotal

≡ 1∑
all channels Γ (24.41)

While the factorsM and Φ(n−1)
LIPS are lorentz-invariant, the factor

~ωk1 = m1c
2√

1− (v/c)2 , (24.42)

in which v is the decaying particle’s velocity, is not. The lifetime of an
unstable particle becomes arbitrarily long in a reference frame, in which the
velocity of the particle approaches the speed of light. The first experimentally
confirmed examples for this relativistic effect are the myons, which are
generated by the cosmic radiation in the upper earth atmosphere (≈ 10 km
above ground). In the rest system their lifetime2 is τ0 = 2.2µs. To cover the
distance to ground, they need approximately the time 10 km/c ≈ 150 · τ0, if
they are moving with almost the speed of light. From observation [49] it
became obvious, that a much higher percentage of them is reaching ground,
than could be explained without the realistic effect (24.42).
If a particle decays into only 2 particles, then in the cms, with k1 = 0

and k3 = −k2, the invariant phase-space Φ(2)
LIPS can be read from (24.31).

Only ECM needs to be replaced by m1c
2, and the indices 3 and 4 must be

replaced by 2 and 3 :

2 Myons decay due to weak interaction. Insofar the example does not really fit into this
chapter dealing with QED.
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Φ(2)
LIPS

(24.31)=
∫

U(k2)

dΩ̃2
|k2|

16π2~cm1c2
(24.33)=

=
∫

U(k2)

dΩ̃2

c4
√(

m2
1 − (m2 +m3)2

)(
m2

1 − (m2 −m3)2
)

32π2~2c2 (m1c2)2 (24.43)

Thereby on finds the differential decay rate

dΓ
dΩ̃2

(24.40)= |M|2
c5
√(

m2
1 − (m2 +m3)2

)(
m2

1 − (m2 −m3)2
)

64π2~2c2 (m1c2)3

decay m1 → m2,m3 in the cms . (24.44)

Attention: Some authors emphasize, that a factor 1/n! shall be inserted
when computing the phase-space volume ΦLIPS, if the decay should result
into n scattering- or decay-products of same type, which are not discernible
experimentally. But this is correct only, if the scattering amplitudeM is
defined in a less accurate manner than according to our rules. According
to our definitions, all possible cases with regard to identical or discernible
particles are already considered in the computation ofM, and thus must
not be inserted a second time as a modification of ΦLIPS.

24.3 Tree-Graphs

24.3.1 Lepton-Lepton Scattering

As a first example we will compute the scattering of a lepton by another
lepton (not antilepton). Let two leptons with wavenumbers k1 and k2,
spin variables r1 and r2, and mass parameters m1 and m2 come in, and
two leptons with wave numbers k3 and k4 and spin variables r3 and r4 go
out after the scattering event. As the fermion flavor is conserved at each
vertex, the masses of the outgoing particles must be identical to the masses
m1 and m2 of the incoming particles. The computation of the scattering
amplitude is almost identical to that which we computed on pages 490ff for
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the scattering of nucleons in Yukawa-theory. Just the Klein-Gordon bosons
of Yukawa-theory must be replaced by photons.

The probability amplitude S(0) in first order of perturbation computation
is zero, because — just as in (20.14) — the two propagators S(x3− x1) and
S(x4 − x2), which are constructed in zeroth order from the matrix element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2) |0〉c ,

are not sufficient to compensate the four zero-factors S̃-1 in the LSZ-formula.
In first order, the matrix element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y) γµAµ(y)ψ(y) |0〉c

contains one operator γνAν(y), and again is zero because of (23.13). The
same holds for all odd orders n = 1, 3, 5, . . . of perturbation theory. Only
even orders n = 2, 4, . . . can contribute to the scattering amplitude.
The leading non-vanishing term is found in second order perturbation

theory, namely the matrix element

〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y) ·
· γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉c . (24.45)

It can be contracted to these graphs:

S
(2) =̂ 2 ·

x1

x

x

x

2

3 4

y z

︸                        ︷︷                        ︸
S

(2a)

+ 2 ·
x1

x

x

x

2

4 3

y z

︸                        ︷︷                        ︸
S

(2b)

(24.46)

The second graph only exists, if both leptons are of same flavor. In other
cases this term vanishes, because the scattered particles are discernible,
see the arguments in the sequel of (23.28). Without any changes, the
justification of the two symmetry factors can be extracted from the text
following (23.24). From the same text we can take over the consideration
that there is a factor (−1) in S(2a) but not in S(2b) due to the number of
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permutations of fermion operators.

Thus far we worked through rules A, B, and B′ of box 24.1. By means of
the further rules in this box we arrive at the following scattering amplitude:

2 ·
k
1 k

k

2

4

k
1 3
k-

k
3

+ 2 ·
k
1 k

k

2

3

k
1 4
k-

k
4

=̂

=̂ S
(2) =

( 4∏
j=1

√
1

2~ωkjΩ

)
M(2) ·

· 2πΩ δ
(
k0

1 + k0
2 − k0

3 − k0
4

)
δ(k1+k2),(k3+k4) (24.47a)

M(2) = 2 · 1
2!
(+ie
~

)2
·

·
(
− (r3ūk3 γµ r1uk1) (−igµν µ0~c)

(k1 − k3)2 + iε′
(r4ūk4 γν r2uk2) +

+ (r4ūk4 γµ r1uk1) (−igµν µ0~c)
(k1 − k4)2 + iε′

(r3ūk3 γν r2uk2)
)

(24.47b)

Here the replacement-operator (23.21) has already been applied and there-
fore does not need to be stated explicitly again. The spinor factors belonging
to the second graph have been colored green. If the two outgoing particles
are of different flavors and thus are discernible, then this graph is not
applicable, and all green factors must be set to zero.
In the propagators of the intermediary photons, the variables

s ≡ (k1 + k2)2 , t ≡ (k1 − k3)2 , u ≡ (k1 − k4)2 (24.48)

defined by Mandelstam3 are showing up. Therefore the first diagram in
(24.47b) sometimes is called t-channel, and the second is called u-channel of
the scattering event. (Examples for s-channel scattering will be encountered
below.) In general no conservation law holds for the spin variable r. But in
the non-relativistic limit, spin is conserved:

3 Stanley Mandelstam (1928 – 2016)
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(r3ūk3 γµ r1uk1) gµν (r4ūk4 γν r2uk2)
(A.153)
≈ 4m1m2c

4 δr3r1 δr4r2

(r4ūk4 γµ r1uk1) gµν (r3ūk3 γν r2uk2)
(A.153)
≈ 4m1m2c

4 δr4r1 δr3r2

if |c~k1| � m1c
2 and |c~k2| � m2c

2 (24.49)

Thus lepton spin is conserved at each vertex. In case r1 , r2 the particles
are discernible even for m1 = m2, and the second term in (24.47b) will
vanish even in case of same flavor. (In case m1 , m2 it is always zero,
because then the particles are discernible, independent of their polarization.)
Consequently in the non-relativistic limit the matrix for the scattering of
two leptons is

2 ·
k
1 k

k

2

4

k
1 3
k-

k
3

≈̂ M(2) ≈ −ie
2 4m1m2c

4 µ0c~
-1 δr3r1 δr4r2

(k1 − k3)2 + iε′

if
(
|c~kj | � mjc

2 for j = 1, 2
)
and

(
r1 , r2 if m1 = m2

)
. (24.50)

We emphasize again, that we always put the “corresponds to”-sign, but
not the equal-sign between the graphs and the algebraic formulas, because
the interpretation of a graph does always depend on the context. Here the
graph corresponds toM, while in (24.47a) the graphs correspond to S. It
is instructive, to compare the result (24.50) with equation (23.29), which
is describing the scattering of a nucleon or antinucleon by a nucleon or
antinucleon due to Yukawa-interaction. The signs of (24.50) and (23.29)
are different. This difference can be traced back to the different signs of the
boson-propagators

G̃(k) = i

~c
(
k2 − (Mc/~)2 + iε′

) ←→ D̃νµ(k) = −igνµ µ0~c

k2 + iε′

in rule G of the boxes 23.1 and 24.1. Note that in the non-relativistic
approximation because of (A.153) only the term with −g00 = −1 is different
from zero.
Not the scattering amplitude, but only the cross section
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dσk3k4,k1k2

dΩ̃3

(24.32)= |M|2 |k3|
|vrel| ~64π2~ωk1~ωk2ECM

in the cms with vrel = (24.23)

for the scattering event with two incoming and two outgoing particles can be
checked experimentally. To compute the cross section, the modulus square
|M|2 =M∗M of the scattering matrix (24.47b) must be known. To find it,
we first compute the complex-conjugated of the spinor product

(ūγµv)∗ = v†γµ†γ0†u
(8.12)= v†gµνγνγ0u

(8.9)=
= gµνv†(2gν0

1− γ0γν)u = v†γ0γµu = v̄γµu . (24.51)

Consequently we have:

∣∣∣M(2)
∣∣∣2 (24.47b)= e4µ2

0c
2

~2
·

·
((r1ūk1 γµ r3uk3)(r3ūk3 γν r1uk1)(r2uk2 γµ

r4ūk4)(r4ūk4 γν
r2uk2)

(k1 − k3)4 + ε′2

− (r1ūk1 γµ r3uk3)(r4ūk4 γτ r1uk1)(r2uk2 γµ
r4ūk4)(r3ūk3 γτ

r2uk2)
(k1 − k3)2(k1 − k4)2 + ε′2

− (r1ūk1 γσ r4uk4)(r3ūk3 γν r1uk1)(r2ūk2 γσ
r3uk3)(r4ūk4 γν

r2uk2)
(k1 − k4)2(k1 − k3)2 + ε′2

+ (r1ūk1 γσ r4uk4)(r4ūk4 γτ r1uk1)(r2ūk2 γσ
r3uk3)(r3ūk3 γτ

r2uk2)
(k1 − k4)4 + ε′2

)
(24.52)

In this formula, some certain spin orientation is specified for each incoming
or outgoing particle due to rj . If in an experiment the spins of the incoming
particles are not controlled, then the measured cross section is equal to the
mean value of the cross sections with all possible orientations of the spins
of the incoming particles. If furthermore the spins of the outgoing particles
is not controlled, then the measured cross section is equal to the sum of
all cross sections with all possible orientations of the spins of the outgoing
particles. Thus the cross section must be computed by
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∣∣∣M(2)
∣∣∣2
SNO

= 1
2

2∑
r1=1

1
2

2∑
r2=1

2∑
r3=1

2∑
r4=1

∣∣∣M(2)
∣∣∣2 (24.53)

if the spins of the incoming and outgoing leptons are unknown. The index
SNO means “spins not observed”. In section 8.5 we already computed the
spin-sums

2∑
r=1

ruk rūk
(8.77a)= cγµpµ +mc2 (24.54a)

2∑
r=1

rvk rv̄k
(8.77b)= cγµpµ −mc2 . (24.54b)

Using the

Feynman-dagger ≡ /b ≡ γµbµ (24.55)
as a shorthand notation, we get for the first half of the first spinor product
in (24.52)∑

r1,r3

r1ūk1
a γµab

r3uk3
b

r3ūk3
c γνcd

r1uk1
d =

∑
r1,r3

r1uk1
d

r1ūk1
a γµab

r3uk3
b

r3ūk3
c γνcd =

= (c~/k1 +m1c
2)daγµab(c~/k3 +m3c

2)bcγνcd =

= ~2c2 tr
{

(/k1 +m1
c

~
) γµ(/k3 +m3

c

~
) γν

}
. (24.56)

Here tr{ } is the trace of the spinor matrix, i. e. the sum of the elements in
the matrix diagonal. The second half of the first spinor product in (24.52)
is formed into a trace by the same method, and the same is done with the
both halfs of the fourth spinor product in (24.52). The second and the
third spinor product can be formed by this method to only one trace each.
Thereby we get
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∣∣∣M(2)

∣∣∣2
SNO

= 1
4

∑
r1,r2,r3,r4

∣∣∣M(2)
∣∣∣2 = e4~2c6µ2

0
4 ·

·
(
tr
{

(/k1 +m1
c
~) γ

µ(/k3 +m3
c
~) γ

ν
}
·

·
tr
{

(/k2 +m2
c
~) γµ(/k4 +m4

c
~) γν

}
(k1 − k3)4 + ε′2

−

−
tr
{

(/k1 +m1
c
~) γ

µ(/k3 +m3
c
~) γτ (/k2 +m2

c
~) γµ(/k4 +m4

c
~) γ

τ
}

(k1 − k3)2(k1 − k4)2 + ε′2
−

−
tr
{

(/k1 +m1
c
~) γ

σ(/k4 +m4
c
~) γν(/k2 +m2

c
~) γσ(/k3 +m3

c
~) γ

ν
}

(k1 − k4)2(k1 − k3)2 + ε′2
+

+
tr
{

(/k1 +m1
c
~) γ

σ(/k4 +m4
c
~) γ

τ
}

(k1 − k4)4 + ε′2
·

· tr
{

(/k2 +m2
c
~) γσ(/k3 +m3

c
~) γτ

})
(24.57)

The trace of a sum is equal to the sum of the traces of each single summand.
As furthermore numeric factors like k3

1, gµν , m1
c
~ , . . . commute with the γ-

matrices, and because numeric factors can be factored out of the trace, the
first trace becomes

A ≡ tr
{

(kα1 γα +m1
c
~) γ

µ(kβ3 γβ +m3
c
~) γ

ν
}

=

= kα1 k
β
3 tr

{
γαγ

µγβγ
ν
}

+ kα1m3
c
~ tr
{
γαγ

µγν
}

+

+m1
c
~k

β
3 tr

{
γµγβγ

ν
}

+m1
c
~m3

c
~ tr
{
γµγν

}
(24.58)

We need to compute the traces of the products of 2, 3, and 4 γ-matrices. In
the equivalent terms in the second and third line of (24.57) there are traces
of products of up to 8 γ-matrices. For their computation, the use of algebraic
computer programs like Reduce, or Maple, or Mathematica is advisable.
Furthermore there exist some useful theorems for the simplification of these
traces. We list the most important of them without proof. A recommendable
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reference, in which these theorems are discussed and motivated in more
detail, is [3, section 5.1].

Theorems on the traces of γ-matrices:
tr{γα . . . γτ︸       ︷︷       ︸

n matrices

} = 0 if n is odd (24.59a)

tr{γαγβ} = 4gαβ (24.59b)
tr{γαγβγγγδ} = 4(gαβgγδ − gαγgβδ + gαδgβγ) (24.59c)
tr{γµ . . . γνγαγβγγγδ} = tr{γµ . . . γνγδγγγβγα} (24.59d)
tr{γµ . . . γνγαγα} = 4 tr{γµ . . . γν} (24.59e)
tr{γµ . . . γνγαγβγα} = −2 tr{γµ . . . γνγβ} (24.59f)
tr{γµ . . . γνγαγβγγγα} = 4gβγtr{γµ . . . γν} (24.59g)
tr{γµ . . . γνγαγβγγγδγα} = −2 tr{γµ . . . γνγδγγγβ} (24.59h)

As factors may be permuted cyclically under the trace, the last five theorems
still are valid if the factors γµ . . . γν are not at the very left of the products.
Furthermore γµ . . . γν = 1 is allowed. Clearly tr{1} = 4.
By means of these theorems we find

A =(24.58)
kα1 k

β
3 4(gαµgβν − gαβgµν + gα

νgµβ) +m1
c
~m3

c
~ 4gµν

= 4(kµ1kν3 − k1k3g
µν + kν1k

µ
3 +m1

c
~m3

c
~ g

µν) (24.60)

tr
{

(/k1 +m1
c
~) γ

µ(/k3 +m3
c
~) γ

ν
}
· tr
{

(/k2 +m2
c
~) γµ(/k4 +m4

c
~) γν

}
=

= 4 (kµ1kν3 − k1k3g
µν + kν1k

µ
3 +m1

c
~m3

c
~ g

µν) ·
· 4 (k2µk4ν − k2k4g

µν + k2νk4µ +m2
c
~m4

c
~ g

µν) =

= 32
(
(k1k2)(k3k4) + (k1k4)(k2k3)− k1k3m2m4c

2/~2−

− k2k4m1m3c
2/~2 + 2m1m3m2m4c

4/~4
)

(24.61)

To spare ourselves the tedious computations of the last three terms in
(24.57), we restrict our further considerations to the concrete case of the
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scattering of an electron (mass me, momentum ~k1) by a myon (mass mµ,
momentum ~k2). Due to flavor conservation at each vertex, one electron
with momentum ~k3 and one myon with momentum ~k4 are going out in
this reaction. As the outgoing particles are discernible, all green factors in
(24.57) must be set to zero. As the myon is about 207 times as heavy as
the electron, furthermore the terms in the last line of (24.61), in which the
electron mass even is showing up quadratically, may be neglected versus
the mass term in the second-last line. Thereby one gets, if the spins of the
electrons and myons are not controlled, as modulus square of the scattering
matrix:∣∣∣M(2)

∣∣∣2
SNO

= 1
4

∑
r1,r2,r3,r4

∣∣∣M(2)
∣∣∣2 (24.57)= (24.62)

= 8e4~2c6µ2
0

(k1 − k3)4 + ε′2

(
(k1k2)(k3k4) + (k1k4)(k2k3)− k1k3m

2
µc

2/~2
)

Before we apply this result to find the scattering cross section, we modify
it such, that instead of the four-wavenumbers the energies, masses, and
scattering angles of the particles become explicitly visible. In the center-of-
mass system

e - k
1

k
2

e - k
3 θ

µ -
µ -k

4

x 3

cms: k2 = −k1 , k4 = −k3

we have

|k1| = |k2| = |k3| = |k4| =

√(E1
~c

)2
−
(mec

~

)2
=

√(E2
~c

)2
−
(mµc

~

)2

E3 = E1 , E4 = E2 . (24.63)

In the sequel, we will assume that the electrons are high-relativistic:
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E1 � mec
2 (24.64)

=⇒ |k1| =
E1
~c

=⇒ k1k1 = k0
1k

0
1 − k2

1 = 0 .

Then the factors in equation (24.62) can be written in the following form:

k1k2 = k0
1k

0
2 − k1k2 = E1

(~c)2 (E2 + E1)

k1k3 = E2
1

(~c)2 (1− cos θ)

k1k4 = E1E2
(~c)2 −

E2
1

(~c)2 cos(π − θ) = E1
(~c)2 (E2 + E1 cos θ)

k2k3 = k1k4 , k3k4 = k1k2

(k1−k3)4 (24.48)= t2 = 4(k1k3)2 (24.65)

In the next step, the first of the relations

1− cos θ = 2 sin2(θ/2) , 1 + cos θ = 2 cos2(θ/2) (24.66)

will be used. We will make use of the second in (24.69). With (24.65)
the modulus square of the scattering matrix becomes, if the spins are not
observed,

∣∣∣M(2)
∣∣∣2
SNO

(24.62)= e4~2c6µ2
0

(E2 + E1)2 + (E2 + E1 cos θ)2 − (1− cos θ)m2
µc

4

2E2
1 sin4(θ/2)

if mec
2 � E1 . (24.67)

Here θ , 0 was assumed, such that the ε′2 in the denominator could be
skipped. Insertion of this scattering matrix into (24.32) and use of ε0µ0 = c-2
results, if the spins are not observed, into the following cross section for the
scattering of an electron by a myon:
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( dσ
dΩ̃3

)
SNO

(24.32)=

=
( e2

4πε0~c
)2
~2c3 (E2 + E1)2 + (E2 + E1 cos θ)2 − (1− cos θ)m2

µc
4

|vrel| 8E2
1E2(E1 + E2) sin4(θ/2)

in the cms with vrel = (24.23) and mec
2 � E1 (24.68)

In the high-relativistic case mµc
2 � E2 furthermore the third term in the

numerator may be neglected, and |vrel| = 2c and E1 = E2 ≡ E may be
assumed: ( dσ

dΩ̃3

)
SNO

(24.32)=
( e2

4πε0~c
)2
~2c2 1 + cos4(θ/2)

8E2 sin4(θ/2)
in the cms, if mµc

2 � E (24.69)

We check the dimensions: e2/4πε0~c ≈ 1/137 is the dimension-less fine
structure constant of quantum electrodynamics. (It is a product of the char-
acteristic constant e2/4πε0 of classical electrodynamics, the characteristic
constant c of special relativity theory, and the characteristic constant ~ of
quantum theory.) Therefore

[σ] = (energy · time)2 · length2

time2 · energy2 = area ,

which is correct.
At the beginning of this section, we started to compute the scattering

amplitude for leptons of same flavor. But then we evaded the tedious
computation of the last three lines in (24.57), and restricted the evaluation
to the scattering of an electron by a myon. The complete amplitude for the
scattering of two leptons of same flavor in second-order perturbation theory
— including the interference-terms of (24.57) — has been published in 1932
by Møller4 [50]. He found the result

4 Christian Møller (1904 - 1980)
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( dσ
dΩ̃3

)
SNO

=
( e2

4πε0~c
)2 ~2c2

8E2 ·

·
(1 + cos4(θ/2)

sin4(θ/2)
+ 2

sin2(θ/2) cos2(θ/2)
+ 1 + sin4(θ/2)

cos4(θ/2)

)
in the cms, if mc2 � E , (24.70)

with E being the energy of each incoming or outgoing lepton in the center-
of-mass system. In the first term, which is dominating the result for small
scattering angle θ, the t-channel scattering (24.69) is discernible. The third
term is describing the u-channel scattering. The second term, which — same
as the two other terms — is ≥ 0 for arbitrary scattering angles, is brought
about by interference of the both channels.
In case of θ → 0, which is called forward-scattering, the first two terms

are diverging. As the frequency of the intermediary photon in the left graph
(24.47a) becomes unmeasurable small in the case of forward-scattering, this
divergence is called infrared divergence. In section 24.3.6 we will discuss the
problem of IR-divergences, which is encountered at many places in QED.

24.3.2 Antilepton-Antilepton Scattering

For the scattering of an antilepton by an antilepton, the symmetry factors
are the same as indicated in (23.31) for the scattering of an antinucleon by
an antinucleon in Yukawa-theory. Also the number of required permutations
of fermion operators is the same as in the matrix elements (23.30); therefore
the two terms have same signs as in (23.31). The scattering matrix

M(2) =̂ 2 ·
k
1 k

k

2

4

k
1 3
k-

k
3

+ 2 ·
k
1 k

k

2

3

k
1 4
k-

k
4
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M(2) = 2 · 1
2!
(+ie
~

)2
·

·
(
− (r3v̄k3 γµ r1vk1) (−igµν µ0~c)

(k1 − k3)2 + iε′
(r4v̄k4 γν r2vk2) +

+ (r4ūk4 γµ r1uk1) (−igµν µ0~c)
(k1 − k4)2 + iε′

(r3v̄k3 γν r2vk2)
)

(24.71)

of the antileptons differs from (24.47b) by nothing else than the replacement
of the spinors ū and u by the spinors v̄ and v. In particular the signs of
both equations are identical. Also the modulus square of the scattering
matrix differs from (24.52) only by the replacement of all spinors ū and u
by the spinors v̄ and v.
If the scattering matrix and the cross section are computed for the case

that the spins of incoming and outgoing particles are not observed, then the
masses get the inverse signs as in case of lepton scattering because of (24.54).
But when computing the traces in (24.57) one gets in all terms with an
odd number of mass factors also the trace of an odd number of γ-matrices,
which are zero according to the theorems (24.59). Only terms with an
even number of mass factors survive, and in these terms the negative signs
mutually compensate. Consequently one finds, if the spins of the incoming
and outgoing particles are not observed, for the scattering of antileptons by
antileptons exactly the same scattering matrix and the same cross section as
for the scattering of leptons by leptons, namely (24.68) resp. (24.69) for the
scattering of antileptons of different flavors, and (24.70) for the scattering
of antileptons of same flavor.
The second term in (24.71) vanishes if the scattering particles are dis-

cernible. This is always the case for particles of different flavor, but for
particles of same flavor only in the non-relativistic limit in case of different
polarizations. Due to (A.153h) = (A.153e), the non-relativistic scattering
matrix (24.50) holds as well for antilepton-antilepton scattering.



540 24 Quantum Electrodynamics

24.3.3 Lepton-Antilepton Scattering

Let a lepton with wavenumber k1, spin variable r1, and mass m1, and an
antilepton with wavenumber k2, spin variable r2, and mass m2 come in. And
let after the scattering event a lepton with wavenumber k3, mass m3 and
spin variable r3, and an antilepton with wavenumber k4, spin variable r4,
and mass m4 go out. The symmetry factors and signs are identical to those
found in Yukawa-theory for the scattering of a nucleon by an antinucleon,
see (23.34). Application of the rules of box 24.1 results into

M(2) =̂ 2 ·
k
1 k

k

2

4

k
1 3
k-

k
3

+ 2 ·
k
1 k

k

3

4

k
1 2
k+

k
2

M(2) = 2 · 1
2!
(+ie
~

)2(
(r3ūk3 γµ r1uk1) (−igµν µ0~c)

(k1 − k3)2 + iε′
(r2v̄k2 γν r4vk4)−

− (r2v̄k2 γµ r1uk1) (−igµν µ0~c)
(k1 + k2)2 + iε′

(r3ūk3 γν r4vk4)
)
. (24.72)

The second term is describing “s-channel” scattering, compare (24.48). In
QED this term is different from zero only in case m1 = m2, because fermion
flavor is conserved at each vertex. The by far most important example in
experimental practice is the scattering of electrons by positrons, which has
been intensively investigated in the last decades of the recent century. If
after the scattering again an electron and a positron are going out, then
both the t-channel and the s-channel are contributing to the cross section,
and there will be interferences between both types of scattering. To evade
the quite extensive formulas of that interesting case, we will instead consider
two simpler scenarios: First the scattering of an electron by an antimyon
(to which only the t-channel is contributing, while the s-channel is zero),
and then the annihilation of an electron and a positron into a photon, from
which due to pair creation a myon and an antimyon are generated (only the
s-channel is contributing to this process, while the t-channel is zero).
Only the first graph in (24.72) is contributing to the scattering of an

electron by an antimyon. As
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(r3ūk3 γµ r1uk1)gµν(r2v̄k2 γν r4vk4)
(A.153)
≈ 4m1m2c

4 δr3r1 δr2r4

if |c~kj | � mjc
2 for j = 1, 2 ,

the scattering matrix becomes in non-relativistic approximation

M(2) ≈ ie2 4m1m2c
4 δr3r1 δr2r4 µ0~

-1c
(k1 − k3)2 + iε′

≈̂ 2 ·
k
1 k

k

2

4

k
1 3
k-

k
3

≈

(24.50)
≈ −2 ·

k
1 k

k

2

4

k
1 3
k-

k
3

(24.50)
≈ −2 ·

k
1 k

k

2

4

k
1 3
k-

k
3

if |c~kj | � mjc
2 for j = 1, 2 . (24.73)

The sign of the scattering matrix is negative if the signs of the charges
of the scattering particles are equal. If the signs of the charges of the
scattering particles are different, then the sign of the scattering matrix is
positive. We know from classical electrostatic theory, that charges with
equal signs are mutually repelling, while charges with different signs are
mutually attracting. Thus negative sign of the scattering matrix is indicating
repulsion, while positive sign of the scattering matrix is indicating attraction.
In equation (23.37) of Yukawa-theory, the sign of the amplitude is always
positive, indicating that Yukawa-interactions always are attractive, no
matter whether nucleons are interacting with nucleons, or antinucleons with
antinucleons, or nucleons with antinucleons. (In the sequel of (23.25b) we
had noted that the value of a matrix element in quantum theory is fixed
only up to a phase factor which may be chosen arbitrarily. Our comparison
between the signs of scattering matrices in Yukawa-theory and QED still is
sensible and correct, because we applied for their computation exactly the
same matrix elements, which are differing merely by the boson-operator φ
resp. A, but not by any phase factor.)

Not the charge parameters (e or g) cause attraction or repulsion between
fermions in quantum field theory, as the charge parameters of particles and
antiparticles are inserted into the formulas with same signs. Whether an
interaction is attractive or repulsive is instead fixed first by the number
(which is identical in Yukawa-theory and in QED) of permutations of fermion
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operators needed for the contraction of matrix elements to propagators, and
second by the different signs of the products

rūf suk
(A.153a)
≈ 2mc2 δrs

rūf γ0 suk
(A.153e)
≈ 2mc2 δrs

rv̄f svk
(A.153d)
≈ −2mc2 δrs

rv̄f γ0 svk
(A.153h)
≈ 2mc2 δrs ,

(which in case of differently signed charges of the scattering particles result
in different signs of the total products in Yukawa-theory versus QED). In
this respect, quantum field theory is by far more intricate than classical
theory.
Now we assume t (24.48)= (k1 − k3)2 , 0. Then the term iε′ in the denomi-

nator of the scattering matrix may be skipped. We compute the modulus
square of the scattering matrix for the t-channel at arbitrary energy:

∣∣∣M(2)
∣∣∣2 (24.51)= e4µ2

0c
2

~2(k1 − k3)4 · (24.74)

· (r3ūk3 γµ r1uk1)(r1ūk1 γν r3uk3)(r2v̄k2 γµ
r4vk4)(r4v̄k4 γν

r2vk2)

If the spins of the incoming and outgoing particles are not observed, then∣∣∣M(2)
∣∣∣2
SNB

= 1
4

∑
r1,r2,r3,r4

∣∣∣M(2)
∣∣∣2 =

= e4µ2
0c

2

4~2(k1 − k3)4

∑
r1,r3

(r3uk3
d
r3ūk3

a γµab
r1uk1

b
r1ūk1

c γνcd ) ·

·
∑
r2,r4

(r2vk2
d

r2v̄k2
a γµab

r4vk4
b

r4v̄k4
c γν cd) =

=(24.54) e4µ2
0~

2c6

4(k1 − k3)4 tr
{

(/k3 +m3
c
~) γ

µ(/k1 +m1
c
~) γ

ν
}
·

· tr
{

(/k2 −m2c/~) γµ(/k4 −m4c/~) γν
}
. (24.75)

The only differences of this result versus the first term in (24.57) are, that
the indices 1 and 3 are permuted under the trace, and that the signs of the
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masses m2 and m4 are negative. From (24.61) it is visible, that these both
differences will exactly compensate in the computation. Consequently the
cross section of the scattering of an electron by an antimyon is exactly equal
to the cross section (24.68) resp. (24.69) for the scattering of an electron by
a myon.
Now we are going to consider lepton-antilepton s-channel scattering. To

avoid interferences with the t-channel, we will investigate the annihilation
of an electron and a positron into a virtual photon, from which then due to
pair-creation a myon and an antimyon are generated, see the second graph
in (24.72). For this reaction the center-of-mass energy must be minimum
2mµc

2 ≈ 414mec
2. Thus there is no low-energy limit. In the sequel we

assume s(24.48)= (k1 + k2)2 , 0. Therefore the term iε′ in the denominator of
the scattering matrix may be skipped. We compute the modulus square of
the scattering matrix for the s-channel:

∣∣∣M(2)
∣∣∣2 (24.51)= e4µ2

0c
2

~2(k1 + k2)4 · (24.76)

· (r1ūk1 γν r2vk2)(r4v̄k4 γν
r3uk3)(r2v̄k2 γµ r1uk1)(r3ūk3 γµ

r4vk4)

If the spins are not observed, then the same manipulations which we already
applied in (24.54)ff lead to∣∣∣M(2)

∣∣∣2
SNO

= 1
4

∑
r1,r2,r3,r4

∣∣∣M(2)
∣∣∣2 =

= e4µ2
0~

2c6

4(k1 + k2)4 tr
{

(/k1 +m1c/~) γν(/k2 −m2c/~) γµ
}
·

· tr
{

(/k4 −m4c/~) γν(/k3 +m3c/~) γµ
}

= e4µ2
0~

2c6

4(k1 + k2)4

(
kα1 k

β
2 tr

{
(γαγνγβγµ

}
−m1

c
~m2

c
~ tr
{
γνγµ

})
·

·
(
kγ4k

δ
3 tr
{
γγγνγδγµ

}
−m4

c
~m3

c
~ tr
{
γνγµ

})
. (24.77)

Terms with the traces of three γ-matrices have been skipped from the outset
because of (24.59). Using (24.59), we then find:
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∣∣∣M(2)
∣∣∣2
SNO

= e4µ2
0~

2c6

4(k1 + k2)4 · (24.78)

·
(
kα1 k

β
2 4(gανgβµ − gαβgνµ + gα

µgνβ)− 4gνµm1m2c
2/~2

)
·

·
(
kγ4k

δ
3 4(gγνgδµ − gγδgνµ + gγµgνδ)− 4gνµm4m3c

2/~2
)

= 8e4µ2
0~

2c6

(k1 + k2)4

(
(k1k4)(k2k3) + (k1k3)(k2k4) + (k1k2)m4m3c

2/~2
)

Here two terms, in which the product m1m2 of the masses of electrons
and positrons are showing up, have been skipped because the terms are
negligible as compared to the three other terms in this expression. We
re-formulate this expression such, that instead of the four-wavenumbers
the energies, masses, and scattering angles of the particles become visible.
As the masses of positrons and electrons are equal, and as the masses of
antimyons and myons are equal, we get in the center-of-mass system

e - k
1

k
2
e+

k
3 θµ -

µ +k
4

x 3

k2 = −k1 , k4 = −k3

E1 = E2 = E3 = E4 .

As the electron mass is negligible, we furthermore get

|k3| = |k4| =

√(E3
~c

)2
−
(mµc

~

)2

|k1| = |k2| =
E1
~c

k2k2 = k1k1 = k0
1k

0
1 − k2

1 = 0 .

Thereby the factors in equation (24.78) can be written as follows:

k1k2 = k0
1k

0
2 − k1k2 = (k0

1)2 + |k1|2 = 2
(E1
~c

)2
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k1k3 =
(E1
~c

)2
− E1
~c

√(E1
~c

)2
−
(mµc

~

)2
cos θ

k1k4 =
(E1
~c

)2
+ E1
~c

√(E1
~c

)2
−
(mµc

~

)2
cos θ

k2k3 = k1k4 , k2k4 = k1k3

k3k4 =
(E1
~c

)2
+
(E1
~c

)2
−
(mµc

~

)2

(k1+k2)4 (24.48)= s2 = 4(k1k2)2 = 16
(E1
~c

)4
(24.79)

Insertion into equation (24.78) results into

∣∣∣M(2)
∣∣∣2
SNO

= e4µ2
0~

4c8

2E2
1

((E1
~c

+ |k3| cos θ
)2

+

+
(E1
~c
− |k3| cos θ

)2
+ 2

(mµc

~

)2)
= e4µ2

0~
2c6

(
1 +

m2
µc

4

E2
1

+
(
1−

m2
µc

4

E2
1

)
cos2 θ

)
. (24.80)

This again must be inserted into the cross section (24.34). As the electrons
and positrons are high-relativistic, |vrel| = 2c . Using ε0µ0 = c-2, we get for
the annihilation of an electron and a positron into a myon and an antimyon,
if the spins are not observed, this cross section:

( dσ
dΩ̃3

)
SNO

(24.34)=
( e2

4πε0~c
)2 ~2c2

16E2
1

√
1−

m2
µc

4

E2
1
·

·
(

1 +
m2
µc

4

E2
1

+
(
1−

m2
µc

4

E2
1

)
cos2 θ

)
(24.81)

in the center-of-mass system

If the energy of the incoming particles is much larger than the rest mass of
the myons, then E1 = E2 ≡ E in the cms, and the cross section simplifies to
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( dσ
dΩ̃3

)
SNO

=
( e2

4πε0~c
)2
· ~2c2 · 1 + cos2 θ

16E2

in the cms, if mµc
2 � E . (24.82)

We considered the scattering of electrons and myons resp. their antiparticles,
to evade the tedious computations of the interference terms between t-
channel scattering and s-channel scattering. In 1936 Bhabha5 published [51]
the computation of the scattering with incoming and outgoing leptons and
antileptons of same flavor, including the interference-terms. His result is

( dσ
dΩ̃3

)
SNO

=
( e2

4πε0~c
)2
· ~

2c2

8E2 ·

·
(1 + cos2 θ

2 − 2 cos4(θ/2)
sin2(θ/2)

+ 1 + cos4(θ/2)
sin4(θ/2)

)
(24.83)

in the cms, if mc2 � E .

In the first term we discern the s-channel scattering (24.82), and in the
third term the t-channel scattering (24.69). The second term, which always
is ≤ 0, is caused by interference of both channels.

24.3.4 Crossing Symmetries

In the high-relativistic case

kjkj = k0
jk

0
j − kjkj = |kj | · |kj | − kjkj = 0 , (24.84)

in which the masses of all particles taking part in the scattering event are
negligible, the Mandelstam-variables assume the form

s
(24.48)= (k1 + k2)2 = +2k1k2 (24.85a)

t
(24.48)= (k1 − k3)2 = −2k1k3 (24.85b)

u
(24.48)= (k1 − k4)2 = −2k1k4 . (24.85c)

5 Homi Jehangir Bhabha (1909 - 1966)
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In this case, the modulus-squares of the scattering matrix in case of not
observed spins can be written for the t-channel as follows:

e−µ− −→ e−µ− : k
1 k

k

2

4
k
1 3
k-

k
3

e -

e - -µ
-µ

γ

∣∣∣M(2)
∣∣∣2
SNO

(24.62)= 8e4µ2
0~

2c6 (k1k2)(k3k4) + (k1k4)(k2k3)
(k1 − k3)4

(24.65)= 2e4µ2
0~

2c6 s
2 + u2

t4
(24.86a)

In the same approximation we find for the s-channel

e−e+ −→µ−µ+ : k
1

k

k

2

4

k
1 2
k+

k
2

e+

e-

-µ

+µγ

∣∣∣M(2)
∣∣∣2
SNO

(24.78)= 8e4µ2
0~

2c6 (k1k4)(k2k3) + (k1k3)(k2k4)
(k1 + k2)4

(24.79)= 2e4µ2
0~

2c6 u
2 + t2

s4 . (24.86b)

Thus in case of high-relativistic energies the modulus-squares of the scat-
tering matrices for t-channel scattering and s-channel scattering differ by
nothing than the exchange t ↔ s. This close formal relation is called
“crossing symmetry”. This symmetry does not really come as a surprise,
because the two black-painted diagrams (24.86) are identical. Only their in-
terpretations, printed in colors, is different. Again we see, that antiparticles
may formally be considered particles, which are moving backwards through
time.
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24.3.5 Photon-Electron-Scattering

k
1

k
4k

1 2
k+k

2

k
3 k

3

k
4k

2 3
k-k

2

k
1

(24.87)

v-channel w-channel

v-channel scattering and w-channel scattering are contributing to the scat-
tering of a photon at an electron, which is called Compton-scattering6. The
names v-channel and w-channel are not common in the literature. We
defined these names to facilitate referencing. In v-channel scattering, an
electron with wavenumber k2, mass m, and polarization r2 absorbs a photon
with wavenumber k1 and polarization ε(α1)

k1
. Subsequently the electron emits

a photon with wavenumber k3 and polarization ε
(α3)
k3

, and goes out with
wavenumber k4 and polarization r4. In w-channel scattering, an electron
with wavenumber k2, mass m, and polarization r2 emits a photon with
wavenumber k3 and polarization ε(α3)

k3
. Subsequently the electron absorbs

a photon with wavenumber k1 and polarization ε
(α1)
k1

, and goes out with
wavenumber k4 and polarization r4.

First we consider the signs and symmetry factors of the two diagrams.
In both diagrams, we name the left vertex y, the right vertex z. The
contractions are

v-channel:

〈0|Tψ(x4)A(x3)ψ(z)A(z)ψ(z)ψ(y)A(y)ψ(y)ψ(x2)A(x1) |0〉c (24.88a)

w-channel:

〈0|Tψ(x4)A(x3)ψ(z)A(z)ψ(z)ψ(y)A(y)ψ(y)ψ(x2)A(x1) |0〉c (24.88b)

In both cases, no permutations of fermion operators are needed. Therefore
both diagrams contribute with same signs to the scattering matrix. The
symmetry factor of each diagram is 2, because ψ(x2) can be combined to
6 named in honor of Arthur Holly Compton (1892 - 1962), who investigated in the early
twenty-twenties this type of scattering experimentally and theoretically [52].
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a propagator with ψ(y) or with ψ(z). After this choice is made (which is
equivalent to a permutation of the vertices y ↔ z), only one unique method
each is left for the construction of the rest of the two diagrams.
Applying the rules of box 24.1 the following scattering matrix is found:

M(2) = 2 · US
1
2!
(+ieγν

~

)(+ieγµ

~

)
~2c2µ0 ·

·
(
ε
(α1)
k1ν

r2uk2
i
(
γσ(k1 + k2)σ +mc/~

)
(k1 + k2)2 − (mc/~)2 + iε′

ε
(α3)∗
k3 µ

r4ūk4 +

+ ε
(α3)∗
k3ν

r2uk2
i
(
γτ (k2 − k3)τ +mc/~

)
(k2 − k3)2 − (mc/~)2 + iε′

ε
(α1)
k1 µ

r4ūk4

)
(24.89)

As the electron’s mass is m and the photon’s mass is zero,

(k1 + k2)2 − m2c2

~2
= 0 + 2k1k2 + m2c2

~2
− m2c2

~2
= 2k1k2

(k2 − k3)2 − m2c2

~2
= m2c2

~2
− 2k2k3 + 0− m2c2

~2
= −2k2k3 .

Using this result, and applying the rearrangement-operator US defined in
(23.21), the scattering matrix assumes the somewhat simpler form

M(2) = −ie2c2µ0
r4ūk4 γµ

(
ε
(α3)∗
k3 µ

γσ(k1 + k2)σ +mc/~

2k1k2 + iε′
ε
(α1)
k1ν
−

− ε(α1)
k1 µ

γτ (k2 − k3)τ +mc/~

2k2k3 − iε′
ε
(α3)∗
k3ν

)
γν r2uk2 . (24.90)

Here a new type of divergence becomes visible: As the photon’s rest mass
is zero, it’s wave number is not bounded from below. In case k1 → 0 and/
or k3 → 0 the scattering matrix diverges. We encountered such infrared-
divergences neither in ψs-theory nor in Yukawa-theory, because their bosons
are massive. In ψs-theory and in Yukawa-theory only UV-divergences are
known, which are showing up in graphs with some certain types of loops.
We will see, that there are loops with UV-divergences in QED as well.
In addition, however, there are IR-divergences in QED which already are
showing up in tree-graphs with external photon lines, due to the photon’s
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vanishing rest mass.
In contrast to UV-divergences, IR-divergences are not treated by renor-

malization, but by compensation due to other graphs.

24.3.6 Bremsstrahlung and IR-Divergences

Since the end of the 19. century it is known experimentally, that electrically
charged particles emit electromagnetic radiation, if they are accelerated.
This radiation is called bremsstrahlung. For a scattering event with an
incoming electron, an incoming myon, an outgoing electron, an outgoing
myon, and an outgoing bremsstrahlungs-photon, in 3. order perturbation
computation these two diagrams are found (besides others):

k
1

k

k

2

4k
1 5
k-

k
3

k
5

k
1 5
k-

3
k-

k
1

k

k

2

4

k
1 5
k-

k
3

k5

k
3 5
k+

3
k-

(24.91)

The electron comes in with wavenumber k1, and goes out with wavenumber
k3. The myon comes in with wavenumber k2, and goes out with wavenumber
k4. The bremsstrahlungs-photon goes out with wavenumber k5.
Clearly there will be bremsstrahlung at the myon-current as well. But

as the scattering matrix — as we will see immediately — is inversely
proportional to the square of the mass of the charged particle, and as the
probability of the scattering event again is proportional to the square of the
scattering matrix, the probability of bremsstrahlung at the myon current
is 10-9 times the probability of bremsstrahlung at the electron current,
and thus may be neglected. (Remember that the rest mass of a myon is
about 207 times as large as the rest mass of an electron.) Therefore, when
considering the scattering of electrons by myons, we may concentrate the
investigation of bremsstrahlung in good approximation to the two diagrams
displayed above.
Permutations of boson operators with arbitrary other operators don’t

change the matrix element’s value. Therefore in the matrix element
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〈0|Tψ(x3)ψ(x4)ψ(x1)ψ(x2)ψ(y)ψ(y)ψ(z)ψ(z)ψ(w)ψ(w)
A(x5)A(y)A(z)A(w) |0〉c , (24.92)

the boson operators could be shifted to the right, to make the contraction
brackets fit into one line each. Those contractions are indicated, which lead
to the left diagram. The same diagram is found after arbitrary permutations
of the 3 vertices, thus the symmetry factor of this diagram is 3! = 6. This
is a general rule in QED: The symmetry factor is equal to the faculty of the
vertex count. The vertex count again is equal to the order of perturbation
computation. Therefore the symmetry factor cancels versus the factor
1/3!, which comes from the Taylor-expansion of the interaction term. 11
permutations of fermion operators are needed to realize the contraction,
resulting into a factor (-1).
To construct the second graph instead of the first from the same matrix

element, only boson operators need to be permuted and contracted differently.
Therefore the symmetry factors and the signs of both graphs are equal.
Applying the rules of box 24.1 the following scattering amplitude is found:

S
(3) =M(3) ·

( 1
2~Ω

) 5
2

√
1

ωk1ωk2ωk3ωk4ωk5

·

· 2πΩ δ
( ∑
j=1,2

k0
j −

∑
j=3,4,5

k0
j

)
· δ∑

j=1,2kj ,
∑
j=3,4,5kj (24.93a)
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M(3) = 3!
3!
(+ie
~

)3
~c
√
µ0 ·

·
((

r3ūk3 γν
i(γτ (k1 − k5)τ +me

c
~)

(k1 − k5)2 −m2
e
c2

~2 + iε′
γσ r1uk1

)
·

· ε(α)∗
k5σ

(−igνµ µ0~c)
(k1 − k5 − k3)2 + iε′

(
r4ūk4 γµ r2uk2

)
+

+
(
r3ūk3 γσ

i(γτ (k3 + k5)τ +me
c
~)

(k3 + k5)2 −m2
e
c2

~2 + iε′
γν r1uk1

)
·

· ε(α)∗
k5σ

(−igνµ µ0~c)
(k1 − k5 − k3)2 + iε′

(
r4ūk4 γµ r2uk2

))
(24.93b)

The incoming and outgoing particles are on mass-shell. Therefore k2
5 = 0

for the outgoing photon , k2
1 = k2

3 = m2
ec

2/~2 for the electron, and the
denominators of the electron propagators can be written in the form

(k1 − k5)2 − (mec/~)2 + iε′ = −2k1k5

(k3 + k5)2 − (mec/~)2 + iε′ = +2k3k5 . (24.93c)

The tiny imaginary term can be skipped, as we are assuming that k1, k3, k5
all are different from zero.

The scattering amplitude (24.93) holds for the emission of bremsstrahlung
of arbitrary energy. In the reminder of this section we restrict ourselves to
the limit of very low frequency, soft bremsstrahlungs-photons, in which

k1 − k5 ≈ k1 , k3 + k5 ≈ k3 . (24.94)

Then within the first spinor product in (24.93b) there is the factor

(γτk1τ +mec/~)γσ r1uk1ε
(α)∗
k5σ

=
(8.9)= 2gστ ε(α)∗

k5σ
k1τ

r1uk1 − γσε(α)∗
k5σ

(γτk1τ −mec/~)r1uk1︸                           ︷︷                           ︸
0

=
(8.60)= 2ε(α)τ∗

k5
k1τ

r1uk1 . (24.95)

By the same method in the first spinor product of the second term the
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factor

r3ūk3 γσ (γτk3τ +mec/~) ε(α)∗
k5σ

=

= r3ūk3 2gστk3τ ε
(α)∗
k5σ
− r3ūk3 (γτk3τ −mec/~)︸                           ︷︷                           ︸

0

γσ ε
(α)∗
k5σ

=

= r3ūk3 2ε(α)τ∗
k5

k3τ (24.96)

can be identified. In the photon propagator’s denominator, the approxima-
tion (24.94) results into

(k1 − k5 − k3)2 ≈ (k1 − k3)2 . (24.97)

Thus in the approximation of soft bremsstrahlung the scattering matrix
becomes

M(3) =
(+ie
~

)3
~c
√
µ0

(
(
r3ūk3 γν

i2ε(α)τ∗
k5

k1τ

−2k1k5
r1uk1

) (−igνµ µ0~c)
(k1 − k3)2 + iε′

(
r4ūk4 γµ r2uk2

)
+

+
(
r3ūk3

i2ε(α)τ∗
k5

k3τ

2k3k5
γν r1uk1

) (−igνµ µ0~c)
(k1 − k3)2 + iε′

(
r4ūk4 γµ r2uk2

))
= −

(+ie
~

)2
(r3ūk3 γν r1uk1) (−igνµ µ0~c)

(k1 − k3)2 + iε′
(r4ūk4 γµ r2uk2) ·

· ec√µ0ε
(α)τ∗
k5

( k3τ
k3k5

− k1τ
k1k5

)
. (24.98)

This result differs from the scattering matrix for elastic scattering of electrons
by myons in 2. order perturbation theory only by the factor in the last line,
compare the first term in (24.47b).

This results holds much more generally, than only for the scattering of an
electron by a myon. We consider in arbitrary order n of perturbation theory
an arbitrary scattering process, in which an arbitrary fermion (particle
or antiparticle) is coming in with wavenumber k1 and going out with
wavenumber k3. If this fermion emits in this process a bremsstrahlungs-
photon with wavenumber k5, then we call the scattering matrix of this
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processM(n)
with. The same process without emission of bremsstrahlung, but

identical for the rest, is found in perturbation computation of order n− 1.
We call the scattering matrix of the latter process M(n−1)

without, and state
without proof:

M(n)
with =M(n−1)

without · ec
√
µ0 ε

(α)τ∗
k5

( k3τ
k3k5

− k1τ
k1k5

)
if k1 − k5 ≈ k1 and k3 + k5 ≈ k3 (24.99)

The dimension of the factor[
ec
√
µ0 ε

(α)τ∗
k5

( k3τ
k3k5

− k1τ
k1k5

)]
=

=
√
energy · volume =

[√
2~ωk5Ω

]

is just compensated by the normalization factor
√

1/2~ωk5Ω, which is
(because of the outgoing photon) inserted additionally into the scattering
amplitude S(n) according to rule F of box 24.1 .
No photon-detector is able to detect bremsstrahlung of arbitrary low

energy. If for example in an experiment the scattering of an electron by
a myon is observed, and no photon is thereby detected, then it can not
be excluded that still a bremsstrahlungs-photon was emitted which just
because of it’s low energy escaped detection. If the cross section for any
scattering event is computed in QED, therefore always the cross section
of the same event with additional emission of unmeasurable low-energy
bremsstrahlung must be added. Without that we can not expect that
experimental observations and theory will match.
Because of

lim
|k5|→0

ec
√
µ0 ε

(α)τ∗
k5

( k3τ
k3k5

− k1τ
k1k5

)
= ±∞ (24.100)

the adder of scattering events with bremsstrahlung of unmeasurable low
energy does diverge. In this book we will encounter many similar formulas
with infrared-divergences. The detailed investigation of the IR-divergences of
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QED is a most tedious business. The results can be found in a comprehensive
publication by Yennie, Frautschi, and Suura [53]. The essential result is
quite simple:

The infrared-divergences of QED mutually compensate, i. e.
they vanish, if all graphs are considered, which — with or
without bremsstrahlung of unmeasurable low energy — are
contributing to an observed phenomenon.

(24.101)

We spare ourselves the difficult proof of this fact. Instead whenever we
encounter IR-divergent results, we will merely refer to (24.101) and refrain
from any further investigation.

24.3.7 The mass of virtual particles

We start our investigations with the t-channel scattering of a fermion, which
is coming in with wavenumber k1, by another fermion, which is coming in
with wavenumber k2:

t-channel:
k
1 k

k

2

4

k
1 3
k-

k
3

m2
γc

2

~2
= (k3 − k1)2 < 0 (24.102)

mγ is the rest-mass of the virtual photon in t-channel scattering. It can not
be zero, because then k3 = k1 would hold, i. e. no scattering would happen
at all. It may however be arbitrarily close to zero in case of weak scattering
(k3 ≈ k1).

We exploit the fact, that the particles number 1 and number 3 are of same
flavor, and consequently have same mass. Furthermore we now assume, that
these particles are free, observable particles “on mass-shell”, for which the
relation k2

j = (mc/~)2 holds. Then we have:
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m2
γc

2

~2
= (k3 − k1)2 (7.18)= (k0

3 − k0
1)2 − (k3 − k1)2 =

= (k0
3)2 − k2

3︸          ︷︷          ︸
(mc/~)2

+ (k0
1)2 − k2

1︸          ︷︷          ︸
(mc/~)2

−2
√

(k2
3 +m2c2/~2)(k2

1 +m2c2/~2) + 2k3k1

(24.103)

We consider the process in the center-of-mass frame of the particles number
1 and number 3. This reference frame is defined by k3 = −k1. The invariant
wavenumber-square of the virtual photon is in this reference frame

m2
γc

2

~2
= 2 m

2c2

~2
− 2k2

1 − 2 m
2c2

~2
− 2k2

1 = −4k2
1 < 0 . (24.104)

The invariant wavenumber-square is called invariant, because it is identical
in any inertial system. Thus the invariant wavenumber-square of the virtual
photon is smaller than zero in t-channel scattering, i. e. it’s mass is imaginary.
This proves (24.102). Attention: The wavenumber-square of the virtual
photon is an invariant, which is independent of the reference system, and
which is smaller than zero. But this invariant is not equal to −4k2

1 in any
arbitrary reference system, because not k2

1 but k2
1 = (k0

1)2 − k2
1 is invariant.

s-channel:
k
1 k

k

3

4

k
1 2
k+

k
2

m2
γc

2/~2 = (k1 + k2)2 > 4m2c2/~2 (24.105)

mγ is the virtual photon’s rest mass in s-channel scattering, m is the rest
mass of the fermion particle coming in with wavenumber k1, and the rest
mass of the antiparticle coming in with wavenumber k2. In s-channel
scattering again the invariant wavenumber-square of the virtual photon can
not be zero for the following reason: We always have k1 , −k2 , because
k0

1 = +k0
2 for the null-components in case k1 = −k2.

Assuming that the incoming particles are observable particles on mass-
shell, the virtual photon’s invariant wavenumber-square is
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m2
γc

2

~2
(24.103)= 2 m

2c2

~2
+ 2

√
(k2

1 +m2c2/~2)(k2
2 +m2c2/~2)− 2k1k2 .

We will do the computation in the center-of-mass frame k2 = −k1:

m2
γc

2

~2
= 4 m

2c2

~2
+ 4k2

1 > 4 m
2c2

~2

This proves (24.105).
The virtual photon is space-like (m2

γ < 0) in t-channel scattering (the
same holds true for u-channel scattering), while the virtual photon is time-
like (m2

γ > 4m2 > 0) in s-channel scattering. In second order perturbation
computation there are no virtual photons in QED with masses in the intervall
0 ≤ mγ ≤ 2m. (There are no virtual particles at all in zeroth and first order
of perturbation computation in QED.)

Therefore it would be pointless to discuss in t-channel scattering (or in u-
channel scattering) whether a particle, which is coming in with wavenumber
k1, first does emit a virtual photon which later is absorbed by another
particle coming in with wavenumber k2, or vice versa. For events with
space-like relations, notions like earlier or later are without meaning. In
contrast, one may in case of s-channel scattering reasonably state that first
a particle and it’s antiparticle annihilate into a virtual photon, and that
later this virtual photon decays due to pair creation into a particle and it’s
antiparticle.

On the other hand, in case of t-channel scattering (and u-channel scatter-
ing) it is very well possible to determine the locations, where the interaction
of the photon with the fermions happens. One can for example let two
particle beams cross with well-controlled distance, and measure the (weak)
scattering. But it is impossible to determine the relation in space of the
locations, where in s-channel scattering the particles are annihilated and
where they are created. (In the center-of-mass system they are annihilated
and created at the same location, name at the coordinate system’s origin.
But we clearly are considering a spacelike relation in the laboratory system
of the observer.)
The invariant wavenumber-square of the virtual electron in v-channel

scattering is
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v-channel:
k
1

k
4k

1 2
k+k

2

k
3

m2
vc

2

~2
= (k1 + k2)2 >

m2c2

~2
. (24.106)

mv is the virtual fermion’s rest mass, m is the observed fermion’s rest mass.
Assuming that the incoming particles are observed particles, we have

m2
vc

2

~2
(24.103)= 0 + m2c2

~2
+ 2

√
k2

1(k2
2 +m2c2/~2)− 2k1k2 .

In the center-of-mass system k2 = −k1 of the incoming particles follows

m2
vc

2

~2
= m2c2

~2
+ 2

√
k2

1(k2
1 +m2c2/~2) + 2k2

1 >
m2c2

~2
+ 4k2

1 .

This proves (24.106).
In w-channel scattering the virtual fermion’s invariant wavenumber-square

is

w-channel:
k
3

k
4k

2 3
k-k

2

k
1

m2
wc

2

~2
= (k2 − k3)2 <

m2c2

~2
. (24.107)

Assuming that the particles number 2 and number 3 are observed, in the
center-of-mass system k3 = −k2

m2
wc

2

~2
=(24.103) 0 + m2c2

~2
− 2

√
k2

2(k2
2 +m2c2/~2)− 2k2

2

<
m2c2

~2
− 4k2

2 <
m2c2

~2
.

This proves (24.107).
As our last example we consider the annihilation of a particle and it’s

antiparticle into two photons. We will use for this process the (not commonly
established) name z-channel scattering:
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z-channel:
k
3

k
2k

1 3
k

k
1

k
4

-

m2
zc

2

~2
= (k2 − k3)2 /

m2c2

~2
. (24.108)

This symbol is indicating, that the invariant wavenumber of the virtual
fermion is only slightly smaller than that of the free particle. Assuming
that the particles number 1 and number 3 are observed, in the center-of-
mass system holds

m2
zc

2

~2
=(24.103) m2c2

~2
+ 0− 2

√
(k2

1 +m2c2/~2)k2
1 + 2k2

1 /
m2c2

~2
.

This proves (24.108).
In second order of perturbation computation there is no gap in the range

of possible wavenumber-squares of virtual fermions — in contrast to virtual
photons. In v-channel scattering the invariant wavenumber-square of the
virtual fermions may assume any arbitrary value > m2c2/~2 , in w-channel
scattering any arbitrary (even negative) value < m2c2/~2. This difference
is caused by the fact, that observed photons may have any arbitrary energy
> 0, while the energy of observed fermions always is ≥ mc2.
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25 Degree of Divergence, and
Regularization

25.1 The superficial Degree of Divergence

Any loop in a diagram, whose wavenumber is not fixed by a delta function,
leads to an integral with a factor d4k ∼ k4 in the numerator. If this factor
is not compensated due to sufficiently high powers of k in the denominator,
then the integral will diverge. In section 20.3 we already observed

structure : d4k

kn
(20.95)=⇒


n = 2 : quadratic divergence
n = 4 : logarithmic divergence
n ≥ 6 : no divergence .

The loop-exponent d = 4− n defined by

d4k

kn
∼ k4−n = kd (25.1)

determines whether and how the loop diverges. d = 0 leads to a logarithmic
divergence, d = 1 to a linear divergence, d = 2 to a quadratic divergence,
and so on. For d < 0 the loop is convergent. The superficial degree of
divergence D, which we are going to define immediately, differs from the
loop-exponent d. D is an index, which gives a measure for the “tendency to
divergence” of a complete diagram with an arbitrary number of lines, loops,
and vertices.

When counting the powers of wavenumbers in the denominator, we must
discern fermions and bosons, because the fermion-propagator is proportional
to k-1, while the boson-propagator is proportional to k-2. Using the notations

L ≡ number of loops
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V ≡ number of vertices
Be ≡ number of external boson lines
Fe ≡ number of external fermion lines
Bi ≡ number of internal boson lines
Fi ≡ number of internal fermion lines , (25.2)

the superficial degree of divergence is defined by

D ≡ 4L− 2Bi − Fi . (25.3)

D is called “superficial”, because — being an overall measure for the
complete diagram — it can not describe the divergence (or convergence) as
clearly and uniquely as the loop-exponent d of a single loop. In any case 4L
is the power of k showing up in total in the numerators of the loop-integrals.
The total number of powers of k in the denominators of all loop-integrals
may very well be larger or smaller than 2Bi + 1Fi, because on the the one
hand not all inner lines of a graph necessarily are integrated into loops. If
only some part of the inner lines is integrated into loops, then dmax > D
will hold for that loop in the graph with the largest loop-index dmax. On
the other hand inner lines may be parts of several loops at the same time.
In that case the superficial degree of divergence gives an overly pessimistic
impression. For example, the superficial degree of divergence of the double-
loop of ψ4-theory is D = 8− 6 = 2, while the largest loop-index is
merely dmax = 0. Consequently this graph diverges not quadratically, but
only logarithmically. Another example for the type of divergence, which is
not obvious from the superficial degree of divergence, are the three graphs

L = 2 V = 4 Be = 6 Bi = 5 (25.4)

of ψ4-theory. The superficial degree of divergence is the same for all three of
these diagrams (namely D = −2), and even their values of Be, Bi, V , L are
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equal. We already know from section 20.3, that the left graph is convergent
because of dmax = −2, while the second graph is diverging logarithmically
because of dmax = 0, and the right graph is diverging quadratically because
of dmax = +2. D will be approximately equal to dmax only, if the lines are
distributed to the loops such, that dmax assumes the smallest possible value
for a given number of lines and vertices.
Thus it’s better to evaluate the maximum loop-index dmax, if exact

informations of the possible divergence of a certain graph are required. The
definition of D serves a different purpose. We want to find out, whether in
some quantum field theory again and again new types of diverging loops
will turn up in again and again higher orders of perturbation computations,
which must be fixed by new types of renormalization, or whether a finite
number of renormalizations will secure the convergence of the theory in
arbitrary orders of perturbation computations. New types of loops will show
up — if at all — just in diagrams with minimum dmax, and thus can be
identified due to D ≥ 0.
It will turn out useful, to formulate D as a function of Be, Fe and V .

A graph is free of loops (i. e. a tree-graph), if it contains V = Bi + Fi + 1
vertices in case of Bi + Fi inner lines. Then 0 = Bi + Fi − V + 1 . If in this
graph the numbers Bi or Fi are increased, or if the number V is decreased,
then there will be

L = Bi + Fi − V + 1 (25.5)

loops in that graph. Insertion into (25.3) gives the result

D = 2Bi + 3Fi − 4V + 4 . (25.6)

For the moment being we restrict the investigation to ψs-theory. The V
vertices are made of s · V field-operators. If all the operators are mutually
combined to propagators, a vacuum-bubble with Bi = sV/2 inner lines is
created. If in contrast an even number Be of the vertex-operators is combined
to propagators with external operators, then only Bi = (sV −Be)/2 inner
lines can be constructed, and
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2Bi = sV −Be . (25.7)

This is inserted into (25.6). As we are considering only ψs-theory for the
moment being, Fi = 0 :

ψs-theory: D = (s− 4)V −Be + 4 (25.8)

In case of ψ3-theory, the result is

ψ3-theory: D = −V −Be + 4 . (25.9)

As −V and −Be are negative in these equations, new types of divergences
can turn up only in diagrams with few external lines in low orders of
perturbation theory. There exist exactly two:

V = 2 Be = 0 D = 2 dmax = 2

V = 2 Be = 2 D = 0 dmax = 0
(25.10)

In section 20.3 we ignored the vacuum bubble, because there we were
interested only in connected diagrams, and canceled all vacuum bubbles
from the LSZ-formula. In higher orders of perturbation theory, diverging
graphs may still turn up, but only if the loop-indices within one graph are
quite different. For example, in case of two external lines one finds in fourth
oder of perturbation computation the two graphs

V = 4 Be = 2 D = −2 dmax = −2

V = 4 Be = 2 D = −2 dmax = 0 .

In spite of D < 0, only the first graph is convergent, while the second graph
is diverging logarithmically. But this is happening only because in the
second graph not all of the 5 inner lines are integrated into the two loops.
The type of divergence of the loops of the second graph is already known
from second order perturbation computation, and has been cured due to
mass renormalization. No divergences of any new type can show up in any
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order of perturbation computation of ψ3-theory, besides the one already
known from (25.10).
In ψ4-theory, the superficial degree of divergence

ψ4-theory: D = −Be + 4 (25.11)

remarkably is independent of the number V of vertices, and consequently
independent of the order n = V of perturbation computation. New types of
divergences can show up only in graphs with less than 5 external lines. In
total there are four:

V = 1 Be = 0 D = 4 dmax = 2
V = 1 Be = 2 D = 2 dmax = 2
V = 2 Be = 2 D = 2 dmax = 0
V = 2 Be = 4 D = 0 dmax = 0

(25.12)

Again we see, that the superficial degree of divergence indeed is “superficial”,
and only gives a quite rough picture of the actual divergences of a graph:
The vacuum bubble in the first line is consisting of two tadpoles, each of
them diverging quadratically. And the double-loop in the third line actually
is diverging logarithmically, but not quadratically. The essential result,
however, is that there exist in ψ4-theory only 3 different types of loops (the
vacuum bubble is just a doubled tadpole). Not any new types of loops are
possible in any graph. After the diverging graphs in the three bottom lines of
(25.12) have been cured due to the renormalizations described in section 22,
ψ4-theory is convergent in all orders of perturbation computations.

ψ5-theory: D = V −Be + 4 (25.13)

In ψ5-theory, and in any further ψs-theory with s ≥ 5, D contains the
number V of vertices with positive sign. Consequently we must be aware
of ever new types of diverging loops in all of the infinitely many orders
of perturbation theory, which must be treated due to renormalization of
infinitely many parameters.

For historical reasons, such theories are called “not renormalizable”. That
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notion is not accurate. “Not renormalizable” theories actually are very well
renormalizable; just ever new renormalizations are needed in any new order
of perturbation computation. In contrast, “renormalizable” theories need
renormalizations only in the lowest orders of perturbation computations,
but not any more in higher orders.
As long as theorists still hoped to construct quantum field theories,

which are correct for arbitrarily huge wave numbers, the difference between
“renormalizable” and “not renormalizable” theories seemed to be very im-
portant. They changed their point of view, however, since they learned to
consider any renormalized quantum field theories as merely effective theories,
which are valid only for a limited range of wave numbers (see section 21.3).
To compute results for a limited range of wave numbers, only a finite number
of parameters need to be renormalized in both “renormalizable” and “not
renormalizable” theories. Thus by today “not renormalizable” theories are
considered as absolutely acceptable.
In quantum-electrodynamics, each vertex is containing two fermion op-

erators and one photon operator. For the construction of a graph with Bi
inner and Be outer photon lines,

V = 2Bi +Be (25.14a)

vertices are needed. For the construction of a graph with Fi inner and Fe
outer fermion lines,

V = 2Fi + Fe
2 (25.14b)

vertices are needed. Addition of these equation results into

(25.14a) + 3 · (25.14b) = 4V = 2Bi + 3Fi +Be + 3
2Fe . (25.15)

This is inserted into (25.6):

QED: D = 4−Be −
3
2Fe (25.16)
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Like in ψ4-theory, the superficial degree of divergence is in quantum electro-
dynamics as well independent of the order n = V of perturbation computa-
tion, and does depend only on the numbers of external lines. As the sign of
these numbers are negative, new types of divergences can show up only in
diagrams with few external lines.
A loop can diverge, if the loop-index is

d =(25.1) 4− fi − 2bi ≥ 0 (25.17)
fi ≡ count of fermion lines in the loop
bi ≡ count of boson lines in the loop .

There exist exactly 5 loops in QED, for which this condition is fulfilled:
They are listed in table 25.1 . It will be shown in section 26.5, that the
graph in the second-last line of the table may be skipped, because is is
exactly compensated by another graph. And the value of photon-photon
scattering is finite, see section 26.6. There exist only three diverging graphs
in QED, namely the three graphs in the first lines of table 25.1. The first
and the second diagram are showing up both in propagator-corrections
and as parts of larger graphs. The vertex correction exists only as a part
of larger diagrams, not as self-contained graph, because all incoming and

(bi, fi) Graph D d Name
(0, 2) 2 2 vacuum polarization

(1, 1) 1 1 fermion self-energy

(1, 2) 0 0 vertex correction

(0, 3)
A

B

C
1 1 —-

(0, 4) 0 0 photon-photon scattering

Tab. 25.1 : The 5 possibly diverging loops of QED



25.1 The superficial Degree of Divergence 567
outgoing particles of a diagram must fulfill the relation (7.18), i. e. they
must be “on mass-shell”. That’s impossible in a diagram with two external
fermion lines and one external photon line.
When we computed Feynman-graphs of ψs-theory with diverging loops

in chapter 20, we encountered integrals for which we derived the generic
formula (20.64), which can be written — using (20.63) — in the form

1
Ω
∑
k

+∞∫
−∞

dk0

2π
J(

k2 −K2 + iε′
)r (20.64)= i(−1)r

+∞∫
0

dR
(2π)4

2π2R3JE(
R2 +K2

)r

with



1 ≤ r ∈ N , 0 ≤ K2 ∈ R
J = 1 kµ k2 kµkν (k2)2

JE = 1 0 −R2 −gµνR2/4 R4

r = ≥ 1 — ≥ 2
{
≥ 2 if µ = 0
≥ 0 if µ , 0

≥ 3

(25.18)

On the left side, k is a four-vector in Minkowski-metric, while on the right
side R is the radial component of four-dimensional euclidean spherical coor-
dinates. The factor i is resulting from the transformation of the component
k0 in Minkowski-metric into the component ik0

E in euclidean metric. In
chapter 26 we will find out, that the diverging loop diagrams of QED result
into integrals of the same form. If the loop-index d, which has been defined
in (25.1), is larger than zero, then these integrals will diverge.
To cure the divergences, one proceeds in two steps:∫

dxA(x)B(x)︸                  ︷︷                  ︸
±∞

= lim
Y→∞

∫
dxC(x)D(x, Y )︸                      ︷︷                      ︸
finite for Y <∞

=

= lim
Y→∞

∫
dxC(x)Dmeasured(x)︸                                     ︷︷                                     ︸

finite

(25.19a)

In the first step, called regularization, an appropriate parameter D is written
as limit limY→∞D(Y ) of an expression D(Y ), which is finite for finite Y .
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The second step is the renormalization of D, i. e. the replacement of D(Y )
by the experimentally determined value Dmeasured.
As an alternative to renormalization, in many computations the exis-

tence of a fundamental length according to (21.29) is assumed. Then after
regularization, Y →∞ is replaced by Ymax:∫

dxA(x)B(x)︸                  ︷︷                  ︸
±∞

= lim
Y→∞

∫
dxC(x)D(x, Y )︸                      ︷︷                      ︸
finite for Y <∞

=

=
∫
dxC(x)D(x, Ymax)︸                           ︷︷                           ︸

finite

(25.19b)

Whether (25.19a) or (25.19b) is applied, in either case regularization is
required as a first step, to get reasonable results. In the following sections
we will discuss the most important methods which have been invented for
the regularization of diverging loop-integrals.

25.2 Cut-off Regularization

We already regularized diverging integrals by this method in the previous
chapters. Cut-off regularizaton does mean, that the integration is cut off at
some maximum wavenumber Λ:

+∞∫
0

dR R3JE(
R2 +K2

)r = lim
Λ→∞

Λ∫
0

dR R3JE(
R2 +K2

)r (25.20)

If we assume the existence of a fundamental length according to (21.29), then
we must consequently introduce the cut-off wavenumber Λmax = (21.29b).
In that case we will not take the limit Λ→∞.
Cut-off regularization is not suitable for quantum electrodynamics, be-

cause it does damage the gauge-invariance of the theory. Loss of gauge-
invariance would result into a huge amount of new problems. Therefore
alternative methods for the regularization of diverging integrals have been
invented. In the sequel we will occupy ourselves with the two most important
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of them.

25.3 Pauli-Villars Regularization

The regularization method developed by Pauli1 and Villars2, which is based
on the introduction of counter-terms, is preserving both the gauge-invariance
and the Lorentz-invariance of the theory.
Using the step-function

Θ(R− Λa) =


1 if R > Λa
1
2 if R = Λa
0 if R < Λa ,

the cut-off regularization may be written in the form

+∞∫
0

dR R3JE
(R2 +K2)r

(25.20)= lim
Λa→∞

Λa∫
0

dR R3JE
(R2 +K2)r =

= lim
Λa→∞

∞∫
0

dRR3JE

( 1
(R2 +K2)r −

Θ(R− Λa)
(R2 +K2)r

)
. (25.21)

Now we replace the hard step by the soft transition
∞∫
0

dRR3JE
Θ(R− Λa)
(R2 +K2)r =

∞∫
0

dRR3JE
1

(R2 + Λ2)r . (25.22)

For any 0 < Λa <∞ a 0 < Λ <∞ can be found, which is a solution of this
equation. Thereby we get instead of (25.21):

1 Wolfgang Ernst Pauli (1900 – 1958)
2 Felix Villars (1921 – 2002)
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+∞∫
0

dR R3JE
(R2 +K2)r = lim

Λ→∞

∞∫
0

dRR3JE

( 1
(R2 +K2)r −

1
(R2 + Λ2)r

)

This is the most simple form of Pauli-Villars regularization. It can be made
more flexible, if instead of only one term an arbitrary number N of counter-
terms is added to the integrand:

+∞∫
0

dR R3JE
(R2 +K2)r = lim

Λj→∞

+∞∫
0

dR
(

R3JE
(R2 +K2)r +

N∑
j=1

Cj
R3JE

(R2 + Λ2
j )r
)

(25.23a)

The integral will become convergent due to the added counter-terms, if the
constants Cj are chosen such that

N∑
j=1

Cj = −1 . (25.23b)

Note that the Pauli-Villars method is applicable only if the counter-terms
are zero for Λj →∞ at finite R, i. e. Λ must be in the denominator but not
in the numerator.
As the limits Λj → ∞ are taken only after the integration (if they are

taken at all), all K2 and all Λ2
j are negligible at R→∞. Consequently the

integral (25.23a) is convergent.

25.4 Dimensional Regularization

This method, which has been developed3 by ’tHooft4 and Veltman5, does
preserve both the gauge-invariance and the Lorentz-invariance of the theory.
Most important, it can be used — different from the Pauli-Villars method
3 Until early November 2012, this has been the generally accepted point of view regarding
the invention of dimensional regularization. A differing, and possibly more correct point
of view [54] in contrast is stating, that this method has been developed and published
already one year earlier by Carlos Guido Bollini (1926 - 2009) and Juan José Giambiagi
(1924 - 1996).

4 Gerardus (Gerard) ’t Hooft (∗ 1946)
5 Martinus Justinus Godefriedus Veltman (∗ 1931)
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— as well in case of the non-Abelian gauge theories of the weak and strong
interactions.
The basic idea of dimensional regularization of a diverging integral is to

consider it as an analytic function of it’s space-time dimension. For that
purpose, the integer dimension n = 1, 2, 3, 4, . . . is replaced by

D ≡ n− ε , ε ∈ C , (25.24)

with an arbitrary complex ε. With the real part of D sufficiently small,
almost any integral will become convergent. For example in case of the
generic four-dimensional loop-integral

(25.18) = i(−1)r
+∞∫
0

dR
(2π)4

2π2R3JE(
R2 +K2

)r (25.25a)

we get

(25.18) = lim
D→4

i(−1)r
∞∫
0

dR
(2π)D

SDJE(
R2 +K2

)r . (25.25b)

Note that the integral over the radial wavenumber R is a simple, one-
dimensional integral. All problems with D-dimensional integration have
been absorbed into the factor SD, which is representing the surface of a D-
dimensional Euclidean sphere with radius R, and is replacing the surface
S4

(20.62)= 2π2R3 of the four-dimensional sphere in (25.25a). How can we find
SD for non-integer dimensional D?

From the recursion formulas (20.62) we can derive the following formula
for the surface Sn of an n-dimensional Euclidean sphere with radius R:

2 ≤ n ∈ N :

Sn =
(2π
n

)(n−2)/2
πnRn−1 if n is even (25.26a)

Sn =
(2π
n

)(n−3)/2 4π
3 nRn−1 if n is odd (25.26b)
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The volume of a one-dimensional sphere with radius R is the length V1 = 2R,
and consequently

S1 = dV1
dR = 2 (25.26c)

is it’s surface. Now we employ the gamma-function

Γ(z) ≡ lim
ν→∞

ν! νz

z(z + 1)(z + 2) . . . (z + ν) , ν ∈ N , z ∈ C , (25.27)

which is defined for arbitrary z ∈ C, except for the poles at z = 0,−1,−2, . . ..
A graph of the gamma-function with real arguments is displayed in fig. 25.1
on page 576. The basic property of the gamma-function is

Γ(z + 1) = z Γ(z) , z ∈ C . (25.28)

Of particular importance for our purpose is the gamma-function with integer
and half-integer real arguments:

Γ(n) = (n− 1)! , 1 ≤ n ∈ N (25.29a)

Γ(n+ 1/2) = (2n)!
n! 4n

√
π , 0 ≤ n ∈ N (25.29b)

Γ(−n+ 1/2) = n! (−4)n

(2n)!
√
π , 1 ≤ n ∈ N (25.29c)

By explicit computation, it’s easy to check that

Sn
(25.26)= 2πn/2

Γ(n/2)R
n−1 for n = 1, 2, 3, 4, 5 . (25.30)

Note that this relation does not hold for n ≥ 6 . Thats no grave restriction,
as we almost exclusively need to solve integrals in dimensions n = 1, 2, 3, 4 .
Thus the
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Definition: SD ≡
2πD/2

Γ(D/2) R
D−1 ≡ surface of a D-dimensional

sphere with radius R , 0.5 < Re(D) < 5.5 (25.31)

certainly is reasonable and will lead to consistent results, as in any case we
need eventually to consider the limit limD→n with n = 1, 2, 3, 4, 5 . With
this surface factor, our standard loop-integral gets this form:

(25.25) = lim
D→4

i(−1)r

2D−1πD/2Γ(D/2)

∞∫
0

dR RD−1JE(
R2 +K2

)r (25.32)

We evaluate the most simple integral with JE ≡ 1:

ID ≡
∞∫
0

dR RD−1(
R2 +K2

)r (20.63)= 1
2

∞∫
0

dR2 (R2)D/2−1(
R2 +K2

)r (25.33)

We assume
K2 > 0 (25.34a)

and substitute

X ≡ K2

R2 +K2 , dR2 = −K
2

X2 dX , R2 = K2 1−X
X

. (25.34b)

Thereby (25.33) becomes

ID = − 1
2(K2)r−D/2

0∫
1

dXXr−D/2−1(1−X)D/2−1 . (25.35)

Using the beta-function

Beta(α, β) ≡
1∫

0

dxxα−1(1− x)β−1 = Γ(α) Γ(β)
Γ(α+ β) , (25.36)

we get
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ID =
∞∫
0

dR RD−1(
R2 +K2

)r = +Γ(r −D/2) Γ(D/2)
2(K2)r−D/2 Γ(r)

,

and by insertion into (25.32)

lim
D→4

+∞∫
−∞

dDk
(2π)D

1(
k2 −K2 + iε′

)r = lim
D→4

i(−1)r Γ(r −D/2)
2DπD/2 Γ(r) (K2)r−D/2

. (25.37)

We won’t compute the integrals with J , 1 by ourselves, but take them
from the literature6:

1
Ω
∑
k

+∞∫
−∞

dk0

2π
J(

k2 −K2 + iε′
)r (25.18)= i(−1)r

+∞∫
0

dR
(2π)4

2π2R3JE(
R2 +K2

)r =
(25.38a)

= lim
D→4

i(−1)η

(4π)D/2
JD Γ(η − D

2 )
Γ(r)

( 1
K2

)η−D2 (25.38b)

with



1 ≤ r ∈ N , 0 ≤ K2 ∈ R
J = 1 kµ k2 kµkν (k2)2

JE = 1 0 −R2 −gµνR2/4 R4

r = ≥ 1 — ≥ 2
{
≥ 2 if µ = 0
≥ 0 if µ , 0

≥ 3

JD = 1 — D/2 gµν/2 D(D + 2)/4
η = r — r − 1 r − 1 r − 1

These functions have poles at (η − 2) = 0,−1,−2, . . . due to the factor
Γ(η −D/2) (25.24)= Γ(η − 2 + ε/2). See the graph of the gamma-function on
page 576. By means of the expansion

6 These and many many further useful formulas related to dimensional regularization
can be found in the textbook of Peskin and Schroeder [3, section 7.5 and appendix A.4].
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Γ(z) =
[
z · eγz ·

∞∏
ν=1

(
1 + z

ν

)
e−z/ν

]−1
(25.39)

γ = Euler-Mascheroni constant = lim
ν→∞

(
− ln ν +

ν∑
j=1

1
j

)
≈ 0.5772

the gamma-function can be approximated nearby the pole Γ(0):

Γ(ε/2) =
[ ε
2 ·
(
1 + γε

2 +O(ε2)
)
·
(
1 +O(ε2)

)]−1
=

= 2
ε
·
(
1− γε

2 +O(ε2)
)

= 2
ε
− γ +O(ε2) (25.40a)

Γ(ε/2− n) with n = 1, 2, 3, . . . can by means of the basic property (25.28)
of the gamma-function

Γ(ε/2) = (ε/2− 1) Γ(ε/2− 1) = (ε/2− 1)(ε/2− 2) Γ(ε/2− 2) =
= (ε/2− 1)(ε/2− 2)(ε/2− 3) Γ(ε/2− 3) = . . .

Γ(ε/2− n) = Γ(ε/2) ·
n∏
ν=1

1
ε/2− ν , n = 1, 2, 3, . . . (25.40b)

be reduced to Γ(ε/2). Note that

lim
ε→0

Γ(ε/2) =


+∞ if Re(ε) > 0
−∞ if Re(ε) < 0
undefined if Re(ε) = 0 ,

(25.41)

see the graph of the gamma-function in fig. 25.1 on the next page. Fur-
thermore the unphysical minus-sign for the limit with Re(ε) < 0, and the
unphysical minus-sign resulting from application of (25.40b) with odd n
must be avoided. These considerations motivate the following rules:

∗ Choose a path in the complex plane with Re(ε) , 0
when taking the limit lim

ε→0
Γ(ε/2) . (25.42a)
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∗ Insert a factor 1 · sign
(
Re(ε)

)
when taking the limit lim

ε→0
Γ(ε/2) . (25.42b)

∗ Insert a factor (−1)n when applying (25.40b) . (25.42c)

In the sequel we will continue to evaluate the regularized integral (25.38b)
for simplicity with JD = 1 and hence η = r. In view of (25.42) we decide
for 0 < ε ∈ R. Furthermore we insert (25.24):

(25.38b) = lim
ε→0

i(−1)r

(4π)2−ε/2
Γ(r − 2 + ε/2)

Γ(r)
( 1
K2

)r−2+ε/2
(25.43)

With r ≥ 3 there is no divergence, and there would be no reason to apply
any regularization in the first place. Therefore we will consider only the
cases r = 1 and r = 2, starting with r = 1.
With Γ(1) = 1 and

Γ(ε/2− 1) (25.40b)= −2
ε

+ γ − 1 +O(ε) (25.44)

and the factor (−1) according to (25.42c) we get

Γ(x)

x

543210
−1−2

−3

−4

10

5

−5

−10
Fig. 25.1 : The gamma-function with x ∈ R
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(25.38b) r=1= −i lim
ε→0

(K
4π
)2(2

ε
− γ + 1

)( 4π
K2

)ε/2
+O(ε) . (25.45)

Now we make use of

aε = exp{ε ln a} =
∞∑
n=0

1
n! (ε ln a)n = 1 + ε ln a +O(ε2) (25.46)

and define an undetermined constant κ with dimension [κ] = wavenumber,
to get the logarithm dimension-less:

(25.38b) =r=1 −i lim
ε→0

(K
4π
)2( 1

κ2

)ε/2(2
ε
− γ + 1

)[
1 + ε

2 ln
(4πκ2

K2

)]
= −i lim

ε→0

(K
4π
)2[2

ε
− γ + 1 + ln

(4πκ2

K2

)]
(25.47)

We have skipped — considering limε→0 — all terms O(ε) in the last line.
Now we turn to the case r = 2. With Γ(ε/2) (25.40a)= 2/ε− γ and Γ(2) = 1

we get

(25.38b) =r=2 lim
ε→0

i

(4π)2

(2
ε
− γ

)( 4π
K2

)ε/2
=(25.46) lim

ε→0

i

(4π)2

( 1
κ2

)ε/2(2
ε
− γ

)[
1 + ε

2 ln
(4πκ2

K2

)]
= lim

ε→0

i

(4π)2

[2
ε
− γ + ln

(4πκ2

K2

)]
. (25.48)

It’s convenient, in a measure called
MS ≡ minimal subtraction ,

to condense the diverging term limε→0 2/ε and the completely undetermined
factor κ to a new variable w:

lim
ε→0

2
ε

+ ln
(4πκ2

K2

) MS−−−−−→ lim
w→∞

ln
(4πw2

K2

)
(25.49a)

In an alternative method, called
MS ≡ modified minimal subtraction ,
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furthermore γ and 4π are absorbed into w:

lim
ε→0

2
ε
− γ + ln

(4πκ2

K2

) MS−−−−−→ lim
w→∞

ln
(w2

K2

)
(25.49b)

Due to MS the regularized integral becomes

+∞∫
−∞

d4k

(2π)4
1(

k2 −K2 + iε′
)r

r=1= −i

(
K
4π

)2[
1 + limw→∞ ln

(
w2

K2

)]
r=2= + limw→∞

i
(4π)2 ln

(
w2

K2

)
.

(25.50a)

(25.50b)

Whatever may be the powers of k in (25.38), due to (25.40b) the divergence
with dimensional regularization always is reduced to

limε→0 2/ε (25.49)∼ limw→∞ ln(w2/K2) .

With cut-off regularization and with Pauli-Villars regularization we con-
sidered a divergence ∼ limΛ→∞ ln(Λ/K) less severe than a divergence ∼
limΛ→∞ Λ/K, and this again less severe than a divergence ∼ limΛ→∞ Λ2/K2.
Of course all these expressions are diverging, but we had in mind that
there might exist some (yet unknown) very small fundamental length, and
hence some maximum wavenumber Λmax, replacing the diverging limits
by (Λmax/K)2 � (Λmax/K)� ln(Λmax/K). No such physical argument is
known to stop the limit ε → 0 resp. w → ∞ at some finite εmin > 0 resp.
wmax <∞. Diverging integrals are still strictly infinite after dimensional
regularization, and the regularization does nothing else than to prepare
them appropriately for renormalization of some parameter. Thus with
dimensional regularization it would be meaningless to discuss the severity
of divergences.

To eliminate the divergence from the theory, in a following step one of the
parameters coupling-constant, or mass, or field-amplitude must be renor-
malized such that it absorbs the diverging parameter limw→∞ ln(w2/K2).
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26 Renormalization of QED

In table 25.1 on page 566 the five loop-diagrams are listed, which possibly
might diverge. In this chapter, we will compute these five diagrams, and
treat them — if needed — by renormalization.

26.1 Vacuum-Polarization

At the beginning of section 20.3 we explained, why the LSZ-formula can
not be applied for the computation of propagator-corrections. The same
clearly holds for the propagator-corrections of QED. Instead we must revert
to the generic formula for matrix elements

〈0|Tψ(W )(xr) . . . ψ(W )(x1) |0〉 (23.11)=

=

〈0|Tψ(xr) . . . ψ(x1)
∞∑
n=0

1
n!
(
− i

~

+∞∫
−∞

dτ H(τ)
)n
|0〉

〈0|T
∞∑
m=0

1
m!
(
− i

~

+∞∫
−∞

dτ H(τ)
)m
|0〉

. (26.1)

As stipulated in (19.21), the operators with index (W ) are the complete
operators of the theory with interactions. Operators without this index are
operators in the interaction-picture. The vacuum bubbles showing up in
the numerator, as usually will be canceled versus the denominator. Thus
only the numerators of connected diagrams need to be computed. As we do
not want to change our notation

S(0)(x2 − x1) ≡ S(x2 − x1) (16.31)= 〈0|Tψ(x2)ψ(x1) |0〉
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D(0)
µν (x2 − x1) ≡ Dµν(x2 − x1) (17.85)= 〈0|TAµ(x2)Aν(x1) |0〉

for Feynman-propagators, we use for propagators with self-interaction the
notation

S(W )(x2 − x1) =
∞∑
n=0

S(n)(x2 − x1) =

= 〈0|Tψ(W )(x1)ψ(W )(x2) |0〉

D(W )
µν (x2 − x1) =

∞∑
n=0

D(n)
µν (x2 − x1) =

= 〈0|TA(W )µ(x1)A(W )ν(x2) |0〉 .

From comparison of boxes 20.4 and 20.2 of ψs-theory it is obvious, that the
Feynman-rules for the computation of propagator-corrections merely differ
by some modifications from the rules for the computation of S-matrices.
To have the rules for the computation of propagator-corrections of QED
conveniently at hand, the accordingly modified rules have been extracted
from box 24.1 and compiled in box 26.1 on the next page. According to
these rules, the first graph in (25.1)

D̃(2)
µν (kγ) =̂ 2 ·

+kγk

k

γkγk

, (26.2)

which often is called self-energy of the photon, gets a negative sign and the
symmetry-factor 2, because according to rule K both inner fermion lines
must be interpreted as particles (not antiparticles):

〈0|TA(x1)A(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉 (26.3a)

Consequently the operator-pair ψ(y)ψ(z) must be reversed, to shift the
creation operator to the right of the annihilation operator. This results into
a factor (-1). We already have pointed out at the end of section 23.1.4, that
this negative sign does always show up for pure fermion loops, no matter
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Box 26.1 : Feynman-rules in energy-momentum space for the com-
putation of propagator corrections of nth order in quantum electrodynamics
A The propagator correction equals the sum of all connected graphs with

the structure
propagator(n) = propagator(0) · F (n) · propagator(0) .

B The symmetry factor is equal to the number of alternatives for the
pairwise combination of the operators, which are building up the graph,
to the graph’s propagators. Only one of the equivalent graphs is inserted
into F (n), and multiplied by the symmetry factor.

B′ When combining the operators to propagators, any permutation of two
fermion operators gives a factor (−1).

C The structure of any vertex is .

D Include for the n vertices a factor
1
n!
(−iqγν
~

)n
.

G Include for each inner photon line with wavenumber k a factor

D̃νµ(k) (17.86)= −igνµ µ0~c

k2 + iε′

and for each inner fermion line with wavenumber k a factor

S̃(k) (12.24)=
i(γνkν +m c

~)
k2 −m2 c2

~2 + iε′
.

H Take the sum and integral over the wavenumber k of an inner line due
to 1

Ω
∑
k

+∞∫
−∞

dk0

2π ,

unless k is fixed by conservation of energy and momentum.
J Apply the rearrangement-operator US = (23.21).
K Inner fermion lines must always be interpreted as particles (not as

antiparticles).
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how many lines are contained in the loop.
As in all diagrams of QED (and of Yukawa-theory) the symmetry factor

n! (in this case 2!) results from the permutation of vertices, which allows
for this second possible contraction:

〈0|TA(x1)A(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉 (26.3b)

Thus the correction of the photon propagator becomes in second order
perturbation computation:

D̃(2)
µν (kγ) = D̃µα(kγ) · FαβP · D̃βν(kγ)

FαβP = −2 · US
1
2!

(−iqγα)
~

1
Ω
∑
k

+∞∫
−∞

dk0

2π

·
i
(
γσ(kγ + k)σ +m c

~

)
(
(kγ + k)2 −m2 c2

~2 + iε′
) (−iqγβ)

~

i
(
γτkτ +m c

~

)
(
k2 −m2 c2

~2 + iε′
)

= −q
2

~2
1
Ω
∑
k

+∞∫
−∞

dk0

2π
tr
{
γα
(
γσ(kγ + k)σ +m c

~

)
γβ
(
γτkτ +m c

~

)}
(
(kγ + k)2 −m2 c2

~2 + iε′
)(
k2 −m2 c2

~2 + iε′
)

(26.4)

In the numerator of the last line, the spinor factors have been linked up to
the trace according to the definition (23.21) of the rearrangement-operator
US. Counting the powers of k, we find the loop-index

kd
(25.1)∼ d4k

k2

k4 ∼ k
2 =⇒ d = 2 .

Consequently a quadratic divergence of this graph is to be expected. Closer
examination will show, however, that the divergence actually is “merely”
logarithmic. To preserve the gauge-invariance of QED, we will not apply
the cut-off method for this integral’s regularization, but the method of Pauli
and Villars, which has been described in section 25.3. This means that we
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add N additional terms to the integrand, which contain constants Mj and
Cj :

FαβP = − lim
Mj→∞

q2

~2
1
Ω
∑
k

+∞∫
−∞

dk0

2π

(

tr
{
γα
(
γσ(kγ + k)σ +mc/~

)
γβ
(
γτkτ +mc/~

)}
(
(kγ + k)2 − (mc/~)2 + iε′

)(
k2 − (mc/~)2 + iε′

) +

+
N∑
j=1

Cj
tr
{
γα
(
γσ(kγ + k)σ +Mjc/~

)
γβ
(
γτkτ +Mjc/~

)}
(
(kγ + k)2 − (Mjc/~)2 + iε′

)(
k2 − (Mjc/~)2 + iε′

)) (26.5)

For |k| → ∞, all masses m and Mj are negligibly small. If the constants
are chosen such that

N∑
j=1

Cj = −1 , (26.6)

then the integral’s divergence is suppressed due to the added counter-terms.
When computing (26.5), we often will encounter the incoming photon’s

invariant wavenumber-square k2
γ . For an observed photon, k2

γ = 0 . Conse-
quently we could skip all terms, in which the factor k2

γ is contained. We will
not do that, however, because we want to do the computation of vacuum
polarization from the outset such, that it covers as well the case that the
propagator correction is an internal part within a larger diagram. For
example, in fourth order perturbation computation of the scattering of a
fermion by it’s antiparticle one encounters besides others this graph:

k

+kγk γkγk
(26.7)

We know from the evaluations in section 24.3.7, that the invariant wavenum-
ber-square of the virtual photon in this graph is k2

γ < 0 (t-channel scattering)
or k2

γ > 4m2c2/~2 (s-channel scattering, withm being the incoming fermion’s
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mass). Furthermore we will allow for 0 < k2
γ ≤ 4m2c2/~2, which is possible

only if the outer fermion lines of the graph (26.7) actually are inner lines of
an even larger diagram.
The computation of FαβP = (26.5) is demonstrated in A.24 in all details.

Thereby the following facts turn up:
∗ Different from our first expectation (based on the loop index d = 2), FαβP

would diverge without regularization due to the counterterms “merely”
logarithmically, but not quadratically.
∗ One single counterterm is sufficient to regularize the integral (26.5) by
means of the Pauli-Villars method. Consequently we fix

N = 1 C1 = −1 M ≡M1 . (26.8)

The computations in appendix A.24 give the following result:

FαβP =(A.182) (kαγ kβγ − k2
γg
αβ) ·Π (26.9a)

Π ≡ lim
M→∞

1∫
0

dξ −q
2(ξ − ξ2)
2π2~2

· V ·

·
(
− ln

(
1−

(ξ − ξ2)k2
γ~

2

m2c2

)
+ ln

(M2

m2

))
(26.9b)

V ≡
{

1 if (ξ − ξ2)k2
γ < m2c2/~2

0 if (ξ − ξ2)k2
γ ≥ m2c2/~2

(26.9c)

FαβP is called polarization tensor, Π is called polarization function. m is
the mass of the fermions constituting the bubble (26.2), M is the mass
in the Pauli-Villars counterterm. From (26.9b) it is obvious, that the
electron — being the lightest electrically charged fermion — gives the
dominating contribution to Π. Therefore in the sequel we will consider
m = me as mass and q = −e as charge of the electron. This is a relatively
rough approximation, because in particular the contributions of the light
quarks (see table 28.1 on page 642) should be included in a more precise
computation.
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legend indicate the
ratio k2

γ~
2/(mc)2.

Fig. 26.2 : 1− (ξ − ξ2)k2
γ~

2/(mc)2 as function of ξ

The dimension-less integration parameter ξ assumes values in the intervall
0 . . . 1. The factor (ξ − ξ2) thus varies inbetween 0 (at ξ = 0 and ξ = 1)
and 0.25 (at ξ = 0.5). Consequently the argument of the first logarithm in
(26.9b) will become zero or negative at ξ = 0.5 if k2

γ ≥ 4m2c2/~2. This is
just the threshold at which the virtual photon’s energy becomes sufficient
for the creation of two real fermions. This competing alternative sucks
probability amplitude off from the graph (26.2). The function V = (26.9c)
blanks this part of the integral out, because it does not contribute to FαβP .
At the same time V will prevent the explosion of the polarization factor Π
caused by the mathematically senseless logarithm with negative argument.
The probability amplitude of the diagram (26.2) will never be zero, not

even for arbitrary large k2
γ , because in any case (ξ − ξ2)k2

γ is smaller than
m2c2/~2 in the neighborhood of ξ = 0 and ξ = 1, or rather 1 − (ξ −
ξ2)k2

γ~
2/(mc)2 is larger than zero, and therefore the function V assumes

the value 1. See1 figure 26.2 . We use the notations η and 1− η for those
values of ξ, at which 1− (ξ− ξ2)k2

γ~
2/(mc)2 is zero, and devide (26.9b) into

three sections:

1 Note that on the axes of fig. 26.2 and fig. 26.3 and fig. 26.4 the comma instead of the
point is used as decimal marker.
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1∫
0

dξ . . .

︸       ︷︷       ︸
Π

=
η∫

0

dξ . . .

︸       ︷︷       ︸
Πa

+
1−η∫
η

dξ . . .

︸         ︷︷         ︸
Πb

+
1∫

1−η

dξ . . .

︸         ︷︷         ︸
Πc

(26.10)

While Πa and Πc are different from zero, Πb is clamped to zero due to the
function V .
To get simple formulas, we restrict our investigation for the rest of this

section to the case k2
γ < 4m2c2/~2, for which V always is 1, independent of

the value of ξ. We emphasize, however, that everything which will be said
in the sequel applies analogously for the case k2

γ ≥ 4m2c2/~2, whereby the
integral over ξ must be sub-divided according to (26.10), and only the two
integrals Πa and Πc will contribute to the result.
Due to insertion of the fine-structure constant

αq = q2µ0c

4π~ = q2

4πε0~c
(26.11a)

α ≡ αe = e2µ0c

4π~ = e2

4πε0~c
≈ 1

137 (26.11b)

into the formulas, (26.9) simplifies to

FαβP =(26.9) (kαγ kβγ − k2
γg
αβ) Π (26.12a)

Π = lim
M→∞

2α
π~µ0c

(
I − 1

6 ln
(M2

m2

))
(26.12b)

I ≡
1∫

0

dξ (ξ − ξ2) ln
(
1−

(ξ − ξ2)k2
γ~

2

m2c2

)
(26.12c)

if k2
γ < 4m2c2/~2

We spare ourselves the tedious analytical computation of the integral I, and
instead let the PC do the work. The result of the numerical integration is
displayed1 in figure 26.3 on the next page. Because of limξ→0 ξ ln(ξ) = 0 it
does not diverge at k2

γ = 4m2c2/~2, but assumes the finite value −0.44 . The
integral’s value raises continuously, is 0 at the invariant wavenumber-square
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further values:
I(−1E12) = 4.33
I(−1E9) = 3.18
I(−1E6) = 2.02
I(−1E3) = 0.87
I(−1E1) = 0.18

Fig. 26.3 : I = (26.12c) as function of k2
γ~

2/(mc)2

k2
γ = 0 of a free photon, and becomes approximately 4 at the wavenumber-

square k2
γ = −1012m2c2/~2 of the space-like virtual photon. Inserting the

mass m ≈ 0.5MeV of an electron, k2
γ = −1012m2c2/~2 corresponds to the

invariant mass ~c|kγ | ≈ 500GeV/c2 of the virtual photon. I is finite, because
k2
γ is finite. In all cases of practical relevance it’s value is −0.44 < I < 5.
Now we are going to consider the modifications of the scattering matrix
M = (24.47b), which we have computed in section 24.3.1 in second order
perturbation computation for the t-channel scattering of an electron by a
muon, due to vacuum polarization, which here is turning up as an effect of
fourth order.

M(2) +M(4)
a =̂ 2 ·

k
1 k

k

2

4

k
1 3
k-

k
3

+ 24 ·
k

+kγk γkγk

1
k

3
k

4
k

2
k

(26.13)

As always in QED, the symmetry factors are equal to the faculty of the
number of vertices. That implies at the same time, that they cancel versus
the factor 1/n! resulting from the Taylor expansion of the interaction term
in the matrix element. In (26.4) we inserted 2/2! = 1, because there
we computed the second-order propagator correction. This factor must
be replaced by 24/4! = 1 in the fourth-order graph, i. e. the change of
symmetry factors will not affect at all the following formulas. The index
a has been inserted, because there are several further corrections versus
the second-order t-channel scattering matrix, which we will discuss only
later. We compose the scattering matrices from equations (24.47b), (26.4),
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and (26.12). As the flavors of the incoming fermions are different, the green
colored factors in (24.47b) (which belong to u-channel scattering) must be
set to zero. Furthermore k2

γ = (k1−k3)2 < 0, because the four outer fermion
lines are considered to be really outer lines.

M(2) +M(4)
a = −

(+ie
~

)2
(r3ūk3 γµ r1uk1) (−igµα µ0~c)

(k1 − k3)2 + iε′
·

·
(
gαν + (−iFαβP ) (−igβν µ0~c)

(k1 − k3)2 + iε′

)
(r4ūk4 γν r2uk2)

= lim
M→∞

e2

~2
(r3ūk3 γµ r1uk1) (−igµα µ0~c)

(k1 − k3)2 + iε′
·

·
(
gαν − i

(
(k1 − k3)α(k1 − k3)β − (k1 − k3)2gαβ

) 2α
π~µ0c

·

·
(
I − 1

6 ln(M
2

m2 )
) (−igβν µ0~c)

(k1 − k3)2 + iε′

)
(r4ūk4 γν r2uk2) (26.14)

One term can be skipped in this expression, because the spinors are solutions
of the free Dirac equation:

r3ūk3 γµ r1uk1gµα(k1 − k3)α = r3ūk3 (/k1 − /k3)r1uk1 =
= r3ūk3 (−/k3 +mc/~︸                      ︷︷                      ︸

0

+ /k1 −mc/~)r1uk1︸                   ︷︷                   ︸
0

= 0

Furthermore we can simplify

gµα(Xgαν + Y gαβgβν) = gµν(X + Y )

and cancel one factor (k1−k3)2. (One term iε′ thereby becomes dispensable.)

M(2) +M(4)
a = e2

~2
(r3ūk3 γµ r1uk1) (−igµν µ0~c)

(k1 − k3)2 + iε′
·

·
(

1 + 2α
π

(
I − 1

6 lim
M→∞

ln
{M2

m2

}))
(r4ūk4 γν r2uk2) (26.15)
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Because of e2 ∼ α, we may write e2 · ( ) in the form

e2
( )

= e2
(
1 + 2α

π
I
)
· Z3 +O(α3)

Z3 ≡ 1− α

3π lim
M→∞

ln
{M2

m2

}
(26.16)

We require that all results shall be correct up to order O(α2). Therefore
the square O(α3) could be completed.

The factor Z3 will be eliminated due to renormalization of the electron’s
charge. That means: The charge e, which turned up in the above equations,
is considered to be the “bare”, not observable charge. For the bare charge
we use the notation e0 with an index zero, while e denotes the charge which
can be observed in experiments. For the fine-structure constant, we use
as well the notation α0, if it contains the product e2

0, but the notation α
if it contains the product e2. The following relation between e0 and e is
postulated:

e2
0 · Z3 = e2

0

(
1− α0

3π lim
M→∞

ln
{M2

m2

}) renormalization−−−−−−−−−−→ e2

measured at k2
γ → 0

(26.17)

The renormalized value of e2, which shall be inserted here, must be fixed
experimentally, for example due to the scattering of electrons by muons.
The measurements shall be done with momentum transfer k2

γ as small as
possible (that is called forward-scattering), to avoid the complicated non-
linear correction due to the factor I. For k2

γ ≈ 0 according to figure 26.3
I ≈ 0.

The renormalized scattering matrix for t-channel scattering with arbitrar-
ily high momentum transfer is
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M(2) +M(4)
a = e2

~2

(
1 + 2

π
α I
)
·

· (r3ūk3 γµ r1uk1) (−igµν µ0~c)
(k1 − k3)2 + iε′

(r4ūk4 γν r2uk2) =

=(24.47b)M(2)
not renormalized ·

e2

e2
0

(
1 + 2

π
α I
)
. (26.18)

For t-channel scattering the factor I is positive due to k2
γ = (k3 − k1)2 <

0. Therefore the experimentally observed effective charge e2(1 + 2αI/π)
increases at increasing momentum transfer. In contrast, it decreases for s-
channel scattering at increasing momentum transfer due to k2

γ > 0. Thus
there exists no obvious pictorial interpretation of the factor I. The effect of
I must not be confused with the “running coupling constant”, which will
be discussed in (26.21)ff.
For a free (not virtual) photon (kγ)2 = 0 and I = 0. Using the not

renormalized fine-structure constant α0 and

α0
3π lim

M→∞
ln
(M2

m2

) (26.17)= 1− Z3 ,

the propagator correction in second-order perturbation computation becomes

D̃(2)
µν (kγ) =(26.4)

D̃µα(kγ) · FαβP · D̃βν(kγ)

=(26.14) (−igµα µ0~c)
(kγ)2 + iε′

kαγ k
β
γ α0

3π~µ0c
lim
M→∞

ln
(M2

m2

) (−igβν µ0~c)
(kγ)2 + iε′

=?
−gµαkαγ kβγ gβν µ0~c(1− Z3)

(kγ)4 + iε′
preliminary only!

This expression is useless, because Z3 is unknown. The factor e2
0 is missing,

with which Z3 would combine to the known product Z3e
2
0 = e2. The

problem is caused by the concept of a free photon, which is physically
questionable. We can get informations on the existence of a photon only
because it once has been emitted by a charged fermion, or because it will
be absorbed by a fermion. Thus in principle any photon line should be
considered as an inner line. From (26.18) one can conclude for the product
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(e2

0 · propagator with self-interaction) of an

inner photon line: e2
0D̃

(W )
µν (kγ) = e2

0D̃
(0)
µν (kγ) + e2

0D̃
(2)
µν (kγ) =

= (−igµν µ0~c)
(kγ)2 + iε′

(
1 + 2

π
α0I

)
Z3e

2
0︸                                         ︷︷                                         ︸

not renormalized

= (−igµν µ0~c)
(kγ)2 + iε′

(
1 + 2

π
αI
)
e2

︸                                   ︷︷                                   ︸
renormalized (26.19)

Translated back to the matrix element (24.45) in time-position space this
means

〈0|T . . . Aµ(W )(y)Aν(W )(z) . . . |0〉c =

= 〈0|T . . .
√
Z3A

µ(y)
√
Z3A

ν(z) . . . |0〉c . (26.20)

The field-operator of the gauge field gets an additional normalization factor√
Z3 due to the self-interaction. Whenever the field docks to a vertex with

charge-factor q0, the product q0
√
Z3 = q is formed. The self-interaction

graph (26.2) disappears from the theory (we should better say: it becomes
invisible), if firstly the charge parameters q0 are replaced by experimentally
determined charge parameters q, and if secondly for each inner photon line
an additional factor (1 + 2αIπ) with I = (26.12c) is inserted.

Multiplying (26.17) by 1/(4πε0~c), one gets an equation for the coupling
constant:

α0 −
α2

0
3π lim

M→∞
ln
{M2

m2

}
= α (26.21)

Obviously α0 must diverge in a well-defined manner, such that the measured
coupling constant α ≈ 1/137 results. Interesting conclusions can be drawn
from this equation, if a fundamental length r according to (21.29) is assumed,
and therefore the integrals over the wavenumbers must be cut off at Λ ≈ π/r.
If Pauli-Villars regularization is applied, then this means that for the mass
of the counter term the finite value

Mc

~
= Λ = π

r
=⇒ M = π~

rc
(26.22a)
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must be inserted. Thereby the coupling constant α0 in (26.21) becomes αr:

αr
[
1− αr

3π ln
{ π2~2

r2c2m2

}]
= α

αr ≈
α

1− α

3π ln
{ π2~2

r2c2m2

} = α

1− α

3π ln
{Λ2~2

m2c2

} ≈ αΛ (26.22b)

Clearly this is an acceptable approximation only if the modulus of the
second term is small versus 1. The measured coupling constant α = 1/137
for r → ∞ (i. e. very small momentum transfer between the scattering
fermions resp. very small |kγ | of the virtual photon) is known, and the
electron’s Compton-wavelength 2π~/(mc) = 2.4 · 10−12m as well. Inserting
these values, one finds

αr ≈ 1/126 for r = 1, 6 · 10−35m = lPlanck
αr ≈ 1/128 for r = 10−30m
αr ≈ 1/134 for r = 10−18m
αr ≈ 1/137 for r = 10−12m ≈ lCompton .

(26.22c)

This is qualitatively, but not quantitatively, in accordance with the measured
values (21.20a). To compute the running coupling constant more precisely,
obviously terms O(α3) must be added, and most of all the contributions of
virtual quarks to the vacuum-polarization must be considered, see the remark
below (26.9). But as a rough approximation we may state, that the relative
change α0/α of the QED coupling constant upon renormalization should be
much less than a factor 2, if the fundamental length r (provided it exists
at all) is not much smaller than the Planck-length. In (26.17) the relative
change of the coupling constant is diverging, because the fundamental length
r = 0 is assumed.
The running coupling constant is illustrated sometimes in the literature

by quite suggestive pictures, in which the dielectric effect of the electron-
bubble is interpreted as the displacement of virtual electrons versus virtual
positrons. Such pictures can be easily misunderstood, to say the least.
According to theorem (23.39), virtual fermions must never be interpreted
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in QED as virtual anti-particles, but always as virtual particles. Thus both
inner fermion lines in the right graph of (26.13) must be interpreted as
electrons with charge −e. The dielectric screening effect is brought about
by the factor (-1), which is resulting from the anti-symmetry of the matrix
elements (26.3) under permutation of two fermion operators. Again we
notice that quantum field theory is much less pictorial than the classical
theory with regard to attraction or repulsion between charged particles.

26.2 Fermion Self-Energy

The propagator of a fermion with self-interaction

S̃(W )(k1) =
∞∑
n=0

S̃(n)(k1) (26.23a)

is in zeroth order perturbation computation equal to the propagator

S̃(0)(k1) ≡ S̃(k1) =̂ (26.23b)

of that fermion in the theory without interactions. The second-order diagram

S̃(2)(k1) =̂ 2! · (26.23c)

is just the second diagram in table (25.1) of the possibly diverging loop-
diagrams of QED. We will compute it immediately. In fourth order there
are (besides others) the following diagrams:

S̃(4)(k1) =̂ 4! · + 4! · +

+ 4! · + 4! · . . . (26.23d)

The third diagram is one-particle-reducibel, see the definition below (20.82)
on page 443. The two other diagrams are 1PI=one-particle-irreducibel,
because they can not be divided into two diagrams by the intersection of
one single line. In sixth order one finds (besides others) the diagrams
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S̃(6)(k1) =̂ 6! · + 6! · +

+ 6! · + . . . (26.23e)

The first diagram is 1PI, the two others are not. We define the sum of all
1PI diagrams with the exception of S̃(0)(k1) as

S̃(k1) Σ(k1) S̃(k1) =̂ 2! · + 4! · +

+ 4! · + 4! · . . . + 6! · + . . . . (26.24)

Note that Σ is not the summation-symbol in this context, but an infinite
series named Sigma. According to this definition, the incoming and outgoing
propagators in these diagrams are not parts of Σ, but only the green-painted
stuff inbetween them. In particular the term O(q2) in in this series is equal
to

k

k1- k1k 1k
=̂ S̃(2)(k1) = S̃(k1) · Σ(2)(k1) · S̃(k1) . (26.25)

Using the definition (26.24), the propagator of a fermion with self-interaction
can be written as a geometric series. We use again the notation with the
Feynman-dagger /k ≡ γνkν :

S̃(W ) = S̃ + S̃ΣS̃ + S̃ΣS̃ΣS̃ + . . .
(12.23),(12.24)=

=

i

/k1 −m0c/~

1− iΣ
/k1 −m0c/~

= i

/k1 −m0c/~− iΣ

(26.26)

In a simplifying wording, the second-order diagram (26.25) often is called
fermion self-energy, even though it is merely the lowest order term of the
complete propagator correction (26.26). The bare fermion mass m0 is not
directly measurable and exists only as a parameter in the theory. What
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can be measured is the effective mass m, which causes the pole in the
renormalized propagator

S̃(W ) = i

/k1 −mc/~
.

We must not, however, simply consider iΣ~/c as mass correction, because
Σ(k1) is not a constant, but does depend in some rather complicated manner
on k1. We therefore expand Σ(k1) in a Taylor series around /k1 = m0c/~:

Σ(k1) =
∞∑
n=0

(/k1 −m0c/~)nWn =

= A+ (/k1 −m0c/~)B︸                        ︷︷                        ︸
O(q2)

+
∞∑
n=2

(/k1 −m0c/~)nWn︸                          ︷︷                          ︸
O(q4)

(26.27)

We need to explain why all terms with (/k1 −m0c/~)n, n ≥ 2 are considered
to be of higher than second order in perturbation theory. For that purpose
we again have a look at the diagrams (24.106), (24.107), and (24.108), and
at the virtual fermion masses estimated there. We see that these masses
differ only slightly from the masses of the free fermions, if realistic values
are assumed for the momenta of the incoming and outgoing particles. This
is caused by the fact that the mass of the incoming and outgoing photons
is zero, because they are free particles. Only in diagrams of higher order,
which contain both virtual photons and virtual fermions, the masses of
virtual fermions may deviate significantly from the masses of free fermions.

Therefore terms (/k1 −m0c/~)n, n ≥ 2 may be neglected in the Taylor-
expansion (26.27), if we content ourselves with the accuracy O(q2) in the
correction of the fermion propagator. This accuracy of the propagator
is equivalent to an accuracy O(q4) in the scattering diagrams with two
incoming and two outgoing particles, because the computations of the
graphs (24.106), (24.107), and (24.108) can be extended to fourth order of
perturbation computation, i. e. O(q4), by attaching to the virtual fermion
line the second-order correction (26.25), which we will compute in the sequel.
Thus one gets a result which is correct up to (and including) O(q2), if the
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coefficients A and B in the Taylor-expansion (26.27) are included, while all
further coefficients Wn with n ≥ 2 are ignored.

The two coefficients A,B ∈ R are of order of magnitude O(q2). Therefore
the denominator of the propagator (26.26) may be written in the form

/k1 −m0c/~− iA
1 + iB

=
/k1 −m0c/~− iA− /k1iB + iBm0c/~−AB

(1 + iB)(1− iB) =

= /k1 −m0c/~−iA− (/k1 −m0c/~)iB︸                             ︷︷                             ︸
−iΣ(2)

+O(q4) . (26.28)

Thus the propagator with self-interaction assumes this form:

S̃(W ) (26.26)= i (1 + iB)
/k1 −m0c/~− iA

+O(q4) = i Z2
/k1 −mc/~

+O(q4)

with Z2 ≡ 1 + iB and m ≡ m0 + iA~/c (26.29)

As we content ourselves with an accuracy O(q2), the coefficients

A
(26.27)= Σ(2)

∣∣∣∣
/k1=m0c/~

and B
(26.27)= ∂Σ(2)

∂/k1

∣∣∣∣
/k1=m0c/~

(26.30)

can be found, once the algebraic form of Σ(2) is known. This we now need
to compute.

We will find a logarithmic divergence of the diagram (26.25). We will cure
that divergence due to the renormalization of the fermion’s mass and due
to another renormalization of it’s charge. Only the mass renormalization
will survive in the end, however, because the second charge renormalization
(remember that we just performed a first charge renormalization to cure the
divergence of vacuum polarization) will be exactly compensated by a third
charge renormalization, which will be applied in the next section to handle
the vertex correction. Therefore we will distinguish in the sequel between
the fermion’s not measurable “bare” mass m0 and it’s renormalized mass m.
The computation of the diagram is done with the not renormalized mass
m0, but with the (in the previous section) renormalized charge. According
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to the rules of box 26.1, this is the value of diagram (26.25):

k

k1- k1k 1k
=̂ S̃(2)(k1) = S̃(k1) · Σ(2)(k1) · S̃(k1) (26.31)

Σ(2) = −2 · US
1
2!

(−iqγα)
~

1
Ω
∑
k

+∞∫
−∞

dk0

2π

· i(γν(k1 − k)ν +m0c/~)
(k1 − k)2 − (m0c/~)2 + iε′

(−i)gαβ µ0~c

k2 + iε′
(−iqγβ)
~

= q2µ0c

~

1
Ω
∑
k

+∞∫
−∞

dk0

2π
γα
(
γν(k1 − k)ν +m0c/~

)
γα(

(k1 − k)2 −m2
0c

2/~2
)
k2 + iε

(26.32)

Here we inserted the symmetry-factor 2, which — as always in QED — is
identical to the faculty of the number of vertices, and consequently cancels
versus the factor 1/2! from the Taylor-expansion of the interaction term.
The self-energy matrix element of a fermion particle (not antiparticle), which
is moving from x1 to y, there emits a photon with wavenumber k, then at z
absorbs that photon again, and eventually moves to x2, has the contraction

〈0|Tψ(x1)ψ(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉 .

5 permutations of fermion operators are needed to construct the propagators.
This gives a factor (-1). If the incoming particle instead moves from x1 to
z, and eventually goes out from y to x2, then the matrix element has the
contraction

〈0|Tψ(x1)ψ(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉 .

1 permutation of fermion operators is needed to construct the propagators.
Again this gives a factor (-1).
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If we instead consider the graph

k

k1- k1k 1k of an antiparticle, which
is moving from x1 to y or to z, there emits a photon with wavenumber k,
then absorbs that photon again at z or at y, and eventually goes out to x2,
then we get a matrix element with these two alternative contractions:

〈0|Tψ(x1)ψ(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉

〈0|Tψ(x1)ψ(x2)ψ(y) γµAµ(y)ψ(y)ψ(z) γνAν(z)ψ(z) |0〉

The symmetry-factor again is 2 in this case. We get a negative sign,
because both contractions require 3 permutations of fermion operators
for the constructions of the propagators. Consequently the self-energy
correction of the antiparticle is identical to the correction (26.32) of the
particle. Therefore no separate computation is needed.
Without the small term iε the integral (26.32) would have poles at

(k1 − k)2 = m2
0
c2

~2 and at k2 = 0. Besides the logarithmic UV-divergence at
|k| → ∞ we will find a logarithmic IR-divergence at |k| → 0. The latter
will however be clearly visible only in (26.44). To keep the IR-divergence in
check, we assign to the photon formally a very small, but finite rest-mass mγ ,
i. e. we shift the pole of the photon propagator towards k2 = m2

γc
2/~2. This

formal measure is acceptable, because eventually the IR-divergence will be
compensated — as stated in section 24.3.6 — by graphs with bremsstrahlung-
photons with immeasurably small energy. This means that there wouldn’t
be an IR-divergence at all if we would consider all relevant graphs.

Now we combine the two factors in the denominator by means of method
(20.72):

1(
(k1 − k)2 −m2

0
c2

~2

)(
k2 −m2

γ
c2

~2

) =
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=
1∫

0

dξ(
ξ
(
(k1 − k)2 −m2

0
c2

~2

)
+ (1− ξ)

(
k2 −m2

γ
c2

~2

))2 =

=
1∫

0

dξ(
(k − ξk1)2 + ξ(1− ξ)k2

1 − (1− ξ)m2
γ
c2

~2 − ξm
2
0
c2

~2

)2 (26.33)

Using the defining relation (8.9) we compute some contractions of γ-matrices:

γαγα = 4 (26.34a)
γαγτγα = (2gατ − γτγα)γα = 2γτ − γτ · 4 = −2γτ (26.34b)

γαγσγτγα = (2gασ − γσγα)γτγα =
= 2γτγσ + 2γσγτ = 4gστ (26.34c)

γαγργσγτγα = (2gαρ − γργα)γσγτγα = 2γσγτγρ − 4gστγρ =
= 4gστγρ − 2γτγσγρ − 4gστγρ = −2γτγσγρ (26.34d)

We make use of (26.34a) and (26.34b), substitute the variable k of summa-
tion and integration by k → κ = k − ξk1, and eventually rename κ into k.
Thus we get the integral

Σ(2) (26.32)= −
1∫

0

dξ 2q2µ0c

~

1
Ω
∑
k

+∞∫
−∞

dk0

2π ·

· (1− ξ)/k1 − /k − 2m0c/~(
k2 + ξ(1− ξ)k2

1 − (1− ξ)m2
γc

2/~2 − ξm2
0c

2~2 + iε
)2 . (26.35)

Here again the Feynman-dagger /k ≡ γνkν has been used. The term /k in the
numerator may be skipped, because it is antisymmetric in ±k, while the
rest of the integrand is symmetric in ±k. Therefore the integral over this
term is zero. The loop-index of the remaining integral is

kd ∼ d4k k-4 =⇒ d = 0 .
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Consequently for |k| → ∞ a logarithmic divergence is to be expected.
Σ(2) can be written in the form

Σ(2) = 2q2µ0c

~

1∫
0

dξ V
(
2 m0c

~
− (1− ξ)/k1

)
·

· 1
Ω
∑
k

+∞∫
−∞

dk0

2π
1(

k2 −K2 + iε
)2 (26.36a)

K2 ≡ −(ξ − ξ2)k2
1 + (1− ξ)m2

γc
2/~2 + ξm2

0c
2/~2 (26.36b)

V ≡
{

1 if K2 ≥ 0
0 if K2 < 0 .

(26.36c)

K~/c here is acting as an effective mass, because Σ(2) has poles at k = ±K.
Neglecting the very small m2

γ we have

K2~2

m2
0c

2 = ξ − (ξ − ξ2) k
2
1~

2

m2
0c

2 .

This function is displayed1 in figure 26.4. For a free particle with k2
1 =

m2
0c

2/~2, K2 is always ≥ 0 at arbitrary ξ. The same holds true for a
virtual particle with k2

1 < m2
0c

2/~2. In contrast, for a virtual particle with
k2

1 > m2
0c

2/~2 there exists a range of small values of ξ, for which K2 < 0, i. e.
the effective mass is imaginary. The imaginary mass is the formal indicator
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ratio k2
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Fig. 26.4 : K2~2/(m0c)2 as a function of ξ



26.2 Fermion Self-Energy 601
of a dissipative process, in which energy is converted into heat and thus
disappears from the evaluated system. In this case dissipation means that a
channel becomes accessible, which is competing with the diagram (26.32):
At k2

1 > m2
0
c2

~2 the energy of the system is sufficient to convert the virtual
photon with wavenumber k into a real photon with wavenumber k, and
convert the virtual fermion with wavenumber k1 − k into a real fermion
with wavenumber k1 − k. Thus (26.32) is replaced by a bremsstrahlung-
process of the type (24.91).
In the integral over ξ, the dissipative range with K2 < 0 is masked by

the function V . Therefore we may apply the generic integral-formula

1
Ω
∑
k

+∞∫
−∞

dk0

2π
1(

k2 −K2 + iε′
)r (20.64)= i(−1)r

16π2

+∞∫
0

dR2 R2(
R2 +K2

)r
r ∈ R, r > 1

2 , K2 ∈ R,K2 ≥ 0 . (26.37)

Thereby we get

Σ(2) =
1∫

0

dξ V
iq2µ0c

(
2m0c/~− (1− ξ)/k1

)
8π2~

+∞∫
0

dR2 R2

(R2 +K2)2 . (26.38)

The integral over R is diverging logarithmically for R→∞. In ψs-theory
we regularized it by means of a cut-off parameter Λ. We do not want to
repeat that method here, because it would spoil the gauge-invariance of
QED. Instead we regularize the integral by the method of Pauli and Villars,
introducing counterterms:

Σ(2) = lim
M→∞

1∫
0

dξ V
iq2µ0c

(
2m0c/~− (1− ξ)/k1

)
8π2~

·

·
+∞∫
0

dR2
(

R2

(R2 +K2)2 −
R2

(R2 +K2
M )2

)
(26.39a)
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K2 =(26.36b) −(ξ − ξ2)k2
1 + (1− ξ)m2

γc
2/~2 + ξm2

0c
2/~2 (26.39b)

K2
M ≡ −(ξ − ξ2)k2

1 + (1− ξ)m2
γc

2/~2 + ξM2c2/~2 ≈
≈ ξM2c2/~2 because of M2 � m2

0 (26.39c)

M , and consequently KM , are chosen large but finite. Thus for R → ∞
both K2 and K2

M will become negligible versus R2, and the two terms in
(26.39a) will mutually compensate to zero.

Σ(2) =(26.39a) lim
M→∞

1∫
0

dξ V
iq2µ0c

(
2m0c/~− (1− ξ)/k1

)
8π2~

·

·
(

K2

R2 +K2 + ln
( R2 +K2

R2 +K2
M

)
− K2

M

R2 +K2
M

)∣∣∣∣∞
0

= iαq
2π

1∫
0

dξ V
(
2 m0c

~
− (1− ξ)/k1

)
lim
M→∞

ln
(K2

M

K2

)
. (26.40)

The finestructure-constant αq has been defined in (26.11).
Observing

(/k1)2 = 1
2kα(γαγβ + γβγα)kβ

(8.9)= 1
2kα2gαβkβ = (k)2 (26.41)

we now are going to compute the coefficients A and B:

A = Σ(2)
∣∣∣∣
/k1=m0c/~

(26.40)= iαqm0c

2π~

1∫
0

dξ V (1 + ξ) lim
M→∞

ln
(k2

M

K2

)

The function V = (26.36c) is prohibiting a general solution of the integral
over ξ. We therefore restrain the evaluation for the rest of this section to
the case k2

1 ≤ m2
0c

2/~2, i. e. to free fermions or space-like virtual fermions.
Under this assumption, K2 is ≥ 0 for arbitrary ξ, and consequently V = 1
always holds. Using



26.2 Fermion Self-Energy 603

ln
(k2

M

K2

)∣∣∣∣
/k1=m0c/~

= ln
( ξM2

(ξ2 − ξ)m2
0 + (1− ξ)m2

γ + ξm2
0

)
=

= ln(ξ) + ln
(M2

m2
0

)
− ln

(
ξ2 + (1− ξ)

m2
γ

m2
0

)
︸                         ︷︷                         ︸

≈ 2 ln(ξ)
1∫

0

dξ (1 + ξ) ln(ξ) = −5
4 ,

1∫
0

dξ (1 + ξ) = 3
2

we then can compute A:

A = iαqm0c

2π~

(3
2 lim
M→∞

ln
(M2

m2
0

)
+ 5

4

)
(26.42)

Now M can be eliminated due to renormalization of the fermion’s bare mass
m0 to the experimentally determined fermion mass m:

m
(26.29)= m0 + i

A~

c

(26.42)= m0 −
αqm0

2π

(3
2 lim
M→∞

ln
(M2

m2
0

)
+ 5

4

)
(26.43)

It’s instructive to compare this mass renormalization to the coupling constant
renormalization

α
(26.17)= α0 −

α2
0

3π lim
M→∞

ln
{M2

m2

}
executed in the previous section. The structure of both renormalization-
equations is identical. Therefore the renormalized mass is as well a “running
constant”, whose value according to (26.22) does depend on the scale of
length r, at which the theory is submitted to experimental test. And same
as in case of the coupling constant we can roughly estimate that the relative
change m0/m of the mass due to renormalization would be less than a
factor 2, if the fundamental length — provided it does exist at all — is not
significantly smaller than the Planck-length. In (26.43) the relative change
of the mass diverges because the fundamental length r = 0 is assumed.
Next we compute the normalization factor Z2 in the propagator (26.29).
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Again we constrain the evaluation to the case k2
1 ≤ m2

0c
2/~2, in which V is

1 for arbitrary ξ:

B = i(1− Z2) = ∂Σ(2)

∂/k1

∣∣∣∣
/k1=m0c/~

(26.40)= iαq
2π lim

mγ→0

1∫
0

dξ
(

(−1 + ξ)

· lim
M→∞

ln
( ξM2c2/~2

(ξ2 − ξ)k2
1 + (1− ξ)m2

γc
2/~2 + ξm2

0c
2/~2

)
+

+
(
2 m0c

~
− (1− ξ)/k1

)
·

· (−2)(ξ2 − ξ)/k1
(ξ2 − ξ)k2

1 + (1− ξ)m2
γc

2/~2 + ξm2
0c

2/~2

)∣∣∣∣
/k1=m0c/~

= iαq
2π

(3
4 −

1
2 lim
M→∞

ln
(M2

m2
0

)
− C

)
(26.44)

C ≡
1∫

0

dξ
( 2(ξ3 − ξ)

ξ2 + (1− ξ)
m2
γ

m2
0

+ (ξ − 1) ln
(
ξ2 + (1− ξ)

m2
γ

m2
0

)
︸                         ︷︷                         ︸

≈ 2 ln(ξ)

)

Before we continue, we replace m0 everywhere in B by the just renormalized
parameter m. mγ , 0 is needed to avoid the IR-divergence in the linear
term (not in the logarithmic term) in C. We can approximate C due to
replacing the term (1− ξ)m2

γ/m
2 by a shift of the lower integration limit:

C ≈
1∫

mγ/m

dξ
(2(ξ3 − ξ)

ξ2 + (ξ − 1) ln(ξ2)
)

= 1−
m2
γ

m2 + ln
(m2

γ

m2

)
−

− 1
2 −

1
2
m2
γ

m2 ln
(m2

γ

m2

)
+ 1

2
mγ

m
+ 2 + mγ

m
ln
(m2

γ

m2

)
− 2mγ

m

C ≈ − ln
(m2

m2
γ

)
+ 5

2 because of mγ � m

Thereby we find
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Z2
(26.29)= 1 + iB = 1 + αq

2π

(1
2 lim
M→∞

ln
(M2

m2

)
+ 7

4 − ln
(m2

m2
γ

))
. (26.45)

The term with mγ , in which for mγ → 0 an IR-divergence turns up, will be
compensated by diagrams with immeasurably low-energy bremsstrahlung,
as stated in section 24.3.6. Thus we may ignore that divergence. The
factor M is treated by renormalization: The term Z2 is contained in the
numerator of the propagator (26.29), and therefore can be considered to be
an additional normalization factor of the field operators in the propagator

〈0|Tψ(W )(x2)ψ(W )(x1) |0〉 = 〈0|T
√
Z2ψ0(x2)

√
Z2 ψ0(x1) |0〉 .

The vertex z of a graph is constructed by the operator product
√
Z2 ψ0(z)√

Z2 ψ0(z)A(z). Thus the vertex-factor — which is −iqγµ/~ according
to Rule D of box 24.1 — is multiplied by

√
Z2
√
Z2 = Z2. Consequently

another renormalization of the fermion’s bare charge q0 becomes necessary
due to the fermion’s self-interaction:

Z2 · q0
renormalization−−−−−−−−−−→ q (26.46)

A first renormalization of the fermion-charge by means of the renormaliza-
tion-constant Z3 has been executed already because of vacuum polarization,
see (26.17). And the evaluation of the vertex correction, which will be done
in the next section, will show that a third renormalization of the fermion-
charge due to a renormalization-constant 1/Z1 is necessary. The overall
result will be √

Z3
Z2
Z1
· q0

renormalization−−−−−−−−−−→ q . (26.47)

But we will also find out Z2 = Z1, i. e. in total the renormalized charge will
have just that value, which we determined by means of Z3 in (26.17).
As a result of the renormalizations (26.43) and (26.46), all self-energy

corrections indicated in (26.24) are to be replaced in all graphs by the simple
propagator-line . This leads to graphs, which have been considered
already in lower order of perturbation computation. The effect is, that
any graph with one of the self-energy corrections (26.24) shall be discarded.
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Thus these graphs become “invisible”. But they do not really disappear
from the theory: Implicitly they are considered in the renormalized fermion
mass m and in the renormalized fermion charge q.

26.3 Vertex Correction

According to rule D of box 24.1 on page 510 a factor

=̂ − iqγ
ν

~
(26.48a)

shall be inserted for each vertex. Furthermore a graph with n vertices gets
a factor 1/n!. Thus in total the rule is

n · =̂ 1
n!
(−iqγν
~

)n
. (26.48b)

Here the vertices have been marked by green dots, to emphasize that these
factors are referring only to the contact points of the incoming and outgoing
propagators, but not to the propagators themselves. We define a corrected
vertex function Γ(k1, k3) by

− iqΓ
ν(k1, k3)
~

=̂

1k 3k

γk

≡

1k 3k

γk

︸         ︷︷         ︸
Γ(0)ν

+ 3! ·

1k 3k

γk

︸             ︷︷             ︸
Γ(2)ν

+

+ 5! ·

1k 3k

γk

+ 5! ·

1k 3k

γk

+ 5! · . . .

︸                                                     ︷︷                                                     ︸
Γ(4)ν

+ . . . . (26.48c)

As always in QED, the symmetry factors are equal to the faculty of the
number of vertices. Note: The index (n) of Γ(n)ν is indicating the number
of vertices which in addition to (26.48a) exist in the graph. Note: Only 1PI-
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diagrams are considered in Γν . Diagrams like e. g.
1k

3k
γk

are not considered,
because this diagram can be divided into two diagrams by the section of one
single line (as indicated by the dashed red line). As energy and momenta
of the incoming and outgoing particles must be conserved, kγ is uniquely
determined by k1 and k3 and does not need to be explicitly specified in the
definition of Γν(k1, k3).
Clearly Γ(0)ν is equal to γν . In the sequel we will compute Γν only up

to (and including) order Γ(2)ν , i. e. only the lowest-order vertex correction.
We will do this for the example of t-channel scattering of an electron by
an muon. We have computed this process in second order of perturbation
computation in section 24.3.1. In section 26.1 we have already evaluated
the vacuum polarization as a fourth-order correction, see graph (26.13).
As a further fourth-order correction we will now consider the lowest order
vertex correction, which has been listed in table (25.1) as the third possibly
diverging diagram of QED.

M(2) +M(4)
b =̂ 2 ·

k
1 k

k

2

4

k
1 3
k-

k
3

+ 24 ·

k
1

k
2

k
3

k
1 k
-

k
4

kγk

k+ kγ
(26.49)

k1 is symbolizing the incoming electron, k2 the incoming muon. The photon
wavenumber is kγ = k2 − k4 = k3 − k1. We will see immediately, that the
vertex correction is proportional to m-4, with m being the fermion mass. As
the muon is about 207 times as heavy as the electron, the vertex correction
of the muon current is by more than 10−9 times smaller than the vertex
correction of the electron current, and may be neglected.
From the second-order matrix element of t-channel scattering

(24.45) = 〈0|Tψ3ψ4ψ1ψ2ψy /Ayψyψz /Azψz|0〉 (26.50)

we conclude that there is a factor (-1), because an odd number of permu-
tations of fermion-operators is required for the contraction of the matrix
element to the graph’s propagators. Furthermore we conclude, that the
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second alternative of contraction, in which the vertices y and z are permuted,
again gets a factor (-1), because it requires an additional even number of
permutations of fermion operators. Obviously this is a generic rule of QED:
As an even number (i. e. two) of fermion operators belong to each vertex, the
permutation of vertices does not result in a change of sign. All contractions
which are leading to the same graph, have the same sign.

The matrix elementM(4)
b is constructed from

〈0|Tψ3ψ4ψ1ψ2ψv /Avψvψw /Awψwψy /Ayψyψz /Azψz|0〉 . (26.51)

Again only one of the 4! = 24 alternative contractions has been indicated
in the graph (26.49). All of them have the same (namely negative) sign,
because there are 6 crossovers of the contraction brackets, and in addition
3 pairs of fermion operators must be permuted, in order that all creation
operators will be right and all annihilation operators will be left.
As always in QED, the symmetry-factor of vertex correction is identical

to the faculty of the number of vertices. Therefore this factor is always
canceled by the factor 1/n!, which is resulting from the Taylor expansion of
the interaction term in the matrix element. By means of the rules compiled
in box 24.1, the term with the vertex correction in the scattering matrix
can be computed:

M(4)
b = −

( ie
~

)4 1
Ω
∑
k

+∞∫
−∞

dk0

2π

r3ūk3 γσ i(/k + /kγ +mc/~)
(k + kγ)2 −m2c2/~2 + iε′

· γ
µ i(/k +mc/~) γτ r1uk1

k2 −m2c2/~2 + iε′
· (−igστ µ0~c)

(k1 − k)2 −m2
ϕc

2/~2 + iε′

· (−igµν µ0~c)
k2
γ −m2

γc
2/~2 + iε′

(r4ūk4 γν r2uk2) (26.52)

Again we have inserted small masses for the virtual photons, to prevent
IR-divergences. mγ is the mass of the photon with wavenumber kγ . mϕ is
the mass of the photon with wavenumber (k1 − k). Care has been taken
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to arrange the sequence of spinor products correctly according to (23.21).
With (24.47b) in mind (where the green factors must be set to zero, because
we now are evaluating t-channel scattering) the scattering matrix may be
written as follows:

M(2) +M(4)
b = −

( ie
~

)2(
r3ūk3 (Γ(0)µ︸  ︷︷  ︸

γµ

+Γ(2)µ) r1uk1
)
·

· (−igµν µ0~c)
k2
γ −m2

γc
2/~2 + iε′

(r4ūk4 γν r2uk2) (26.53a)

Γ(2)µ =
( ie
~

)2 1
Ω
∑
k

+∞∫
−∞

dk0

2π
γσ i(/k + /kγ +mc/~)

(k + kγ)2 −m2c2/~2 + iε′
·

· γ
µ i(/k +mc/~) γτ

k2 −m2c2/~2 + iε′
· (−igστ µ0~c)

(k1 − k)2 −m2
ϕc

2/~2 + iε′
(26.53b)

Γµ = Γ(0)µ + Γ(2)µ + . . . = γµF1 + [γν , γµ] (kγ)ν~
4mc F2 (26.53c)

It’s not obvious that Γµ can be broken down into two parts with “form-
factors” F1 and F2. And it’s also not obvious that F1 and F2 only depend on
k2
γ = (k3−k1)2, i. e. on the square of the four-momentum transfer inbetween

electron and muon in the scattering experiment, but not on the modulus of
k1 and k3. In the sequel we will re-shape Γ(2)µ such that this structure will
become clearly visible.
In second order perturbation computation (i. e. Γµ = γµ) F1 = 1 and

F2 = 0. The values of the two form-factors in fourth order of perturbation
computation (i. e. Γµ = γµ + Γ(2)µ) will be evaluated immediately. With
regard to the physical meaning of the form-factors we remark without
proof (the derivation can be found e. g. in [3, section 6.2]): In scattering
experiments with very small momentum transfer k2

γ → 0 (this is called
forward-scattering), the effective charge of the electron is

eeffective = e · F1(k2
γ ≈ 0) , (26.54a)

and it’s magnetic moment is
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µeffective = g
e

2mS = 2
(
F1(k2

γ ≈ 0) + F2(k2
γ ≈ 0)

) e

2mS , (26.54b)

with S being the electron’s spin, and g being the Landé-factor. Thus the
computation of the form-factors in fourth order (and even higher orders)
will result in radiation corrections of e and g, which can be compared to
the results of precision experiments.
In the spinor product

Y ≡ γσ (/k + /kγ +mc/~) γµ (/k +mc/~) γτgστ =

= γσ
(
(/k + /kγ)γµ/k + (/k + /kγ)γµmc/~+ γµ/kmc/~+ γµm2c2/~2

)
γσ ,

which is a part in the numerator of Γ(2)µ, there are several pairs of contracted
matrix products γσγσ with 3, 2, or 1 further γ-matrices in-between them.
Note that also in each product /k ≡ γαkα with the Feynman-dagger a γ-
matrix is enclosed. Using (26.34) the contractions can be performed:

Y = 2
(
− /kγµ(/k + /kγ) + 2(2k + kγ)µmc/~− γµm2c2/~2

)
(26.55)

Using the formula

1
A1A2A3

=(20.73b)
1∫

0

dx
1∫

0

dy
1∫

0

dz 2 δ(x+ y + z − 1)
(X)3 (26.56a)

X ≡ xA1 + yA2 + zA3 , (26.56b)

the three denominators, in which k is contained, can be combined:

X = x
(
(k + kγ)2 −m2c2/~2

)
+ y(k2 −m2c2/~2) +

+ z
(
(k1 − k)2 −m2

ϕc
2/~2

)
+ (x+ y + z)iε′ =

= (k + xkγ − zk1)2 − (xkγ − zk1)2 + xk2
γ + zk2

1 −
− (1− z)m2c2/~2 − zm2

ϕc
2/~2 + iε′ (26.57)

Here we made use of x+ y + z = 1, and we will do this again repeatedly
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in the following steps. Now we restrict the evaluation to the case that the
incoming and outgoing electrons are free particles, for which the relation

k2
1 = k2

3 = m2c2/~2 = (k3 − k1 + k1)2 = (kγ + k1)2 =
= m2c2/~2 + 2k1kγ + k2

γ =⇒ 2k1kγ = −k2
γ

holds. Thereby the denominator can be further simplified:

X = (k + xkγ − zk1)2 − (−xyk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2 + iε′

We insert X into Γ(2)µ = (26.53b), then substitute k → κ = k + xkγ − zk1,
and eventually rename κ into k:

Γ(2)µ =
1∫

0

dx
1∫

0

dy
1∫

0

dz 2 δ(x+ y + z − 1)
( ie
~

)2
i µ0~c ·

· 1
Ω
∑
k

+∞∫
−∞

dk0

2π
Y

(k2 −K2 + iε′)3 (26.58a)

K2 ≡ −xyk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2 (26.58b)

Y =(26.55) 2
(
− (/k − x/kγ + z/k1)γµ

(
/k + (1− x)/kγ + z/k1

)
+

+
(
4k + 4zk1 + 2(1− 2x)kγ

)µ
mc/~− γµm2c2/~2

)
(26.58c)

We now are going to simplify those terms in Y , in which /k, /kγ , or /k1 is
contained, and start with /k. From (26.58a) we know that the numerator
of the integral over k is symmetric in ±k. Therefore upon integration all
terms in Y , which are linear in k, will give a null result and thus may be
skipped from the outset. In particular the term −/kγµ/k is a composition of
16 sub-terms, of which only 4 are quadratic in kα and consequently give a
non-vanishing contribution upon integration:
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−
∫
d4k

/kγµ/k

X3 = −
∫
d4k

kαγ
αγµγβk

β

X3 =

= −1
4

∫
d4k

kσγ
αγµγαk

σ

X3
(26.34)= 1

2

∫
d4k

k2γµ

X3

Therefore Y can be simplified:

Y = 2
(

1
2k

2γµ + (x/kγ − z/k1)γµ
(
(1− x)/kγ + z/k1

)
+

+
(
4zk1 + 2(1− 2x)kγ

)µ
c/~− γµm2c2/~2

)
(26.59)

In the sequel we make use of kγ = k3 − k1 =⇒ /kγ = /k3 − /k1. This
relation can be concluded from the right diagram (26.49), because the
vertex correction does not change the fact that in the end the balance
of energies and momenta must be correct. By means of the commutator-
relations

/kjγ
µ = γαγµ(kj)α = (2gαµ − γµγα)(kj)α = 2(kj)µ − γµ/kj

/ki/kj = (kj)β(2gαβ − γβγα)(ki)α = 2kikj − /kj/ki

we furthermore re-arrange all products, which contain a Feynman-dagger,
such that /k3 comes to the very left and /k1 to the very right of the product:

Y = 2
(

1
2k

2γµ + 2x(1− x)/k3k
µ
3 − x(1− x)/k3/k3γ

µ +

+ z/k3γ
µ/k1 − (2x+ 2z)(1− x)/k3k

µ
1 + 2(x− x2 + z − xz)k1k3γ

µ−
− 2(x− x2 + z − xz)kµ3 /k1 + (2x− 2x2 + 2z − 4xz − 2z2)kµ1 /k1 +
+ (−x+ x2 + 2xz − z + z2)γµ/k1/k1 +

+ (4z − 2 + 4x)kµ1mc/~+ (2− 4x)kµ3mc/~− γµm2c2/~2
)

(26.60)

As the incoming and the outgoing electron are observed, the spinors r1uk1

and r3ūk3 are solutions of the Dirac equation
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(/k1 −mc/~) r1uk1 = (γνkν −mc/~) r1uk1 = 0

/k1/k1
r1uk1 = r1uk1 m2c2/~2

r3ūk3 (/k3 −mc/~) = 0

r3ūk3 /k3/k3 = r3ūk3 m2c2/~2 .

As Γ(2)µ, and consequently Y , stands in (26.53a) right of the factor r3ūk3

and left of the factor r1uk1 , we find

Y = 2
(
k2γµ/2 + (2x2 − 2x+ 2xz + z2 − 1)γµm2c2/~2 +

+ (2x− 2x2 + 2z − 2xz)k1k3γ
µ + 2(−z + xz + 1− 2x)kµ3mc/~+

+ 2(2x− xz − z2 + 2z − 1)kµ1mc/~
)

= 2
(
k2γµ/2 + (−1 + 2z + z2)γµm2c2/~2 +

+ (−2xy − 2z)γµm2c2/~2 + (2xy + 2z)k1k3γ
µ + 2xzkµ3mc/~+

+ 2yzkµ1mc/~+ (xz − yz − 2x+ 2y)kµγmc/~
)
. (26.61)

Repeatedly we have made use of x+y+z = 1. The denominator of (26.58a)
is symmetric under permutation of x ↔ y because of 1 − z = x + y. For
that reason x and y may be exchanged in the terms of the numerator. This
holds for each term separately, independent of the other terms. Therefore
the last term is zero. Furthermore we insert again kγ = k3 − k1. Now we
find, because x and y may be exchanged,

(−yz − 2x+ 2y + 3xz)kµ3mc/~+ (−xz − 2y + 2x+ 3yz)kµ1mc/~ =
= 2xz(kµ3 + kµ1 )mc/~ = (x+ y)z(kµ3 + kµ1 )mc/~ =
= (1− z)z(kµ3 + kµ1 )mc/~ .

Using m2c2/~2 = k2
1 = k2

3 we can complete the squares:
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Y = 2
(
k2γµ/2 + (−1 + 2z + z2)γµm2c2/~2 +

− (xy + z)k2
γγ

µ + (1− z)z(kµ3 + kµ1 )mc/~
)

(26.62)

The last term can be transformed by means of the

Gordon-identity:

ūkγµ uq = ūk
((k + q)µ

2mc/~ + (k − q)ν
4mc/~ · [γν , γµ]

)
uq , (26.63)

which we apply without proof. After these transformations we have

Γ(2)µ =(26.58a)
1∫

0

dx
1∫

0

dy
1∫

0

dz 2 δ(x+ y + z − 1)
( ie
~

)2
i µ0~c ·

· 1
Ω
∑
k

+∞∫
−∞

dk0

2π
Y

(k2 −K2 + iε′)3 (26.64a)

Y = 2
(
k2/2 + (−1 + 4z − z2)m2c2/~2 − (xy + z)k2

γ

)
γµ−

− 4(1− z)z m
2c2

~2
(kγ)ν
4mc/~ [γν , γµ] (26.64b)

K2 =(26.58b) −xyk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2 . (26.64c)

Now we have arrived at the structure (26.53c), in which (γµ + Γ(2)µ) is
broken down into a form-factor F1, which is proportional to γµ, and a form-
factor F2, which is proportional to [γν , γµ](kγ)ν/(4mc/~).
Next we must perform the summation and integration over k. Counting

the powers of k gives d4k k2/k6. Thus a logarithmic divergence is to be
expected for |k| → ∞. In section 24.3.7 we found that in t-channel scattering,
with which we are dealing here, k2

γ < 0 . Therefore K2 ≥ 0 and K are real,
and the generic loop-integral formula (20.64) is applicable. Thereby we get
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Γ(2)µ =
1∫

0

dx
1∫

0

dy
1∫

0

dz 2 δ(x+ y + z − 1)
( ie
~

)2
µ0~c ·

·
+∞∫
0

dR2 R2

16π2
(R2γµ + Jµ)
(R2 +K2)3 (26.65a)

Jµ ≡ 2
(
(−1 + 4z − z2)m2c2/~2 − (xy + z)k2

γ

)
γµ−

− 4(1− z)z m
2c2

~2
(kγ)ν~
4mc [γν , γµ] (26.65b)

K2 =(26.58b) −xyk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2 . (26.65c)

The integral

+∞∫
0

dR2 R2

(R2 +K2)3 =
(
− 1
R2 +K2 + K2

2(R2 +K2)2

)∣∣∣∣∞
0

= 1
K2 −

K2

2K4 = 1
2K2

does converge. In contrast, the integral

+∞∫
0

dR2 R4

(R2 +K2)3 =
(

ln(R2 +K2) + 2K2

R2 +K2 −
K4

2(R2 +K2)2

)∣∣∣∣∞
0

is diverging logarithmically, as expected. To avoid the divergence, we
regularize the integral according to the Pauli-Villars method by insertion of
a counter-term:

L2 ≡ (1− z)2M2c2/~2 ,

+∞∫
0

dR2 R4

(R2 +K2)3 =
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= lim
M→∞

+∞∫
0

dR2
(

R4

(R2 +K2)3 −
R4

(R2 + L2)3

)
=

= lim
M→∞

(
− ln

(K2

L2

)
− 2K2

K2 + K4

2K4 + 2L2

L2 −
L4

2L4

)
= lim

M→∞
ln
( L2

K2

)
Before the limit is taken, M is a large but finite mass. K2 and L2 become
negligible for R → ∞. Thus the integral’s convergence is enforced. The
result with the counterterm is

Γ(2)µ=−
1∫

0

dx
1∫

0

dy
1∫

0

dz δ(x+ y + z−1) α

2π

(
γµ lim

M→∞
ln
( L2

K2

)
+ Jµ

2K2

)
.

(26.66)

Here the finestructure-constant α = e2µ0c/(4π~) ≈ 1/137 has been inserted.
In (26.53c) we defined the two form-factors

Γµ (26.53c)= γµF1 + [γν , γµ] (kγ)ν~
4mc F2 .

Using

1∫
0

dx
1∫

0

dy
1∫

0

dz δ(x+ y + z − 1) f(x, y, z) =
1∫

0

dz
1−z∫
0

dy f(1− y − z, y, z)

we now can state the form-factors explicitly in the approximation Γµ ≈
γµ + Γ(2)µ:
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F1 = 1−
1∫

0

dz
1−z∫
0

dy α

2π

(
ln
(
(1− z)2

)
+ lim
M→∞

ln
(M2

m2

)
−

− ln
(
− (1− y − z)y

k2
γ~

2

m2c2 + (1− z)2 + z
m2
ϕ

m2

)
+

+
(−1 + 4z − z2)m2c2/~2 − ((1− y − z)y + z)k2

γ

−(1− y − z)yk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2

)
(26.67a)

F2 = α

2π

1∫
0

dz
1−z∫
0

dy
( 2(1− z)zm2c2/~2

−(1− y − z)yk2
γ + (1− z)2m2c2/~2 + zm2

ϕc
2/~2

)
(26.67b)

F1 would have an IR-divergence at z → 1 for forward-scattering, i. e. for
very weak scattering with k2

γ ≈ 0 , unless we had prevented that divergence
by means of the small photon mass mϕ. Even though we continue to
concentrate our evaluation to the vertex correction in t-channel scattering,
in which k2

γ = (k3 − k1)2 < 0 holds for the virtual photon, we must not
simply ignore the possible value k2

γ ≈ 0, because no detector can measure
with arbitrary accuracy. Therefore it is reasonable to keep in mind the limit
k2
γ ≈ 0 (in the sense of immeasurably small k2

γ) even in case of t-channel
scattering. Note: The IR-divergence is not prevented by the fictive mass
mγ of that photon, which is transferring the momentum −kγ to the muon,
but by the fictive mass mϕ of the photon with momentum k1 − k in the
graph (26.49):

F1(k2
γ ≈ 0) =(26.67) 1−

1∫
0

dz
1−z∫
0

dy α

2π

(
ln
(
(1− z)2

)
+

+ lim
M→∞

ln
(M2

m2

)
− ln

(
(1− z)2

)
+ (−1 + 4z − z2)m2

(1− z)2m2 + zm2
ϕ

)
=

= 1− α

2π

(1
2 ln

(M2

m2

)
+

1∫
0

dz (1− z) (−1 + 4z − z2)
(1− z)2 + zm2

ϕ/m
2

)

The small term with m2
ϕ/m

2 has been neglected in the logarithm. A
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good approximate estimation of the integral’s value can be found, if the
divergence-preventing term in the denominator is replaced by an appropriate
modification of the upper limit in the integral over z. As z and m2

ϕ/m
2 both

are showing up in the integrand’s denominator quadratically, we replace the
integration limit 1 by 1−mϕ/m with linear mϕ/m:

1−mϕ
m∫

0

dz (1− z)(−1 + 4z − z2)
(1− z)2 =

1−mϕ
m∫

0

dz
(
− 1 + z + 2z

1− z
)

=

= −
(
1− mϕ

m

)
+ 1

2
(
1− mϕ

m

)2
− 2

(
1− mϕ

m

)
− 2 ln

(mϕ

m

)
Because of mϕ/m� 1 we thus get

1
Z1
≡ F1(k2

γ ≈ 0) (26.67)= 1− α

2π

(1
2 lim
M→∞

ln
(M2

m2

)
− 5

2 + ln
(m2

m2
ϕ

))
.

(26.68)

We may ignore the IR-divergence atmϕ → 0, because it is compensated — as
stated in section 24.3.6 — by a graph with bremsstrahlung of immeasurably
low frequency. And by a further charge renormalization the parameter
limM→∞ ln(M2/m2) can be eliminated. According to rule D of box 24.1 a
factor −iqγµ/~ shall be inserted for each vertex. We just have computed in
fourth order

Γµ = γµ + Γ(2)µ +O(q5) (26.53c)= γµF1 + [γν , γµ] (kγ)ν~
4mc F2 . (26.69)

γµ is multiplied by F1(k2
γ ≈ 0) = 1/Z1. Thus we can eliminate the factor

limM→∞ ln(M2/m2) from our formulas due to

q0
Z1

renormalization−−−−−−−−−−→ q (26.70)

with q0 being the charge before and q being the charge after renormalization.
In the previous section we performed in (26.46) the charge renormalization
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Z2 · q0

renormalization−−−−−−−−−−→ q

Z2
(26.45)= 1 + αq

2π

(1
2 lim
U→∞

ln
(U2

m2

)
+ 7

4 − ln
(m2

m2
γ

))
,

to eliminate the large parameter U , which is showing up in the electron’s
self-energy graph. (To make the parameters discernible, which have been
inserted for regularization, we have renamed here the M of (26.45) to U .)
We compute the product of Z2 and (26.68):

Z2
Z1

=
[
1 + αq

2π

(1
2 lim
U→∞

ln
(U2

m2

)
+ 7

4 − ln
(m2

m2
γ

))]
·

·
[
1− α

2π

(1
2 lim
M→∞

ln
(M2

m2

)
− 5

2 + ln
(m2

m2
ϕ

))]
=

= 1 +O(α3) because of limU→∞ ln(U/m) + 7/4
limM→∞ ln(M/m)− 5/2 = 1 (26.71)

The neglected term is O(α3), because our computations of Z2 and Z1
already are O(α2). The two IR-divergent terms have been ignored because
of (24.101). Thus the two renormalizations of charge, which we have
performed because of the fermion self-energy and because of the vertex
correction, mutually compensate, and the ratio of renormalized and bare
charge is determined by vacuum polarization alone:

√
Z3 ·

Z2
Z1
· q0 =

√
Z3 · q0

renormalization−−−−−−−−−−→ q (26.72)

Due to the renormalization (26.70) (and the neglect of the IR-divergent
term) F1(k2

γ ≈ 0) assumes the simple value

F1(k2
γ ≈ 0) = 1 +O(α3) . (26.73a)

Different from F1, the form-factor F2 neither contains the regularization-
parameter M , nor an IR-divergent term. We compute F2 as well for the
case of forward scattering:
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F2(k2
γ ≈ 0) = α

2π

1∫
0

dz
1−z∫
0

dy 2z
(1− z) = α

2π +O(α3) (26.73b)

Now we can compute the electron’s Landé-factor:

g =(26.54b) 2
(
F1(k2

γ ≈ 0) + F2(k2
γ ≈ 0)

)
=

= 2
(
1 + α

2π
)

= 2 · 1.001 161 4 +O(α3) (26.74)

The value found experimentally [55] is

g = 2 · 1.001 159 652 180 73(28) .

The last two digits are to be interpreted as 73± 28. Obviously our compu-
tation is quite good, but still not good enough. Higher-order perturbation
computations are needed, to check the correctness of the theory by compar-
ison with the measured data.
After F1(k2

γ ≈ 0) has been renormalized, there are no further diverging
factors ln(M/m) and no further IR-divergences in Γ(2)µ, because Γ(2)µ can
be expanded in a Taylor series around k2

γ ≈ 0 for any k2
γ-value of measurable

size:

Γ(2)µ =
∞∑
n=0

(k2
γ)nWn = Γ(2)µ

0 +
∞∑
n=1

(k2
γ)nWn = Γ(2)µ

0 + Γ(2)µ
rest (26.75)

The term with M has disappeared from Γ(2)µ
Rest due to subtraction. It is

embodied only in Γ(2)µ
0 . And k2

γ is measurably different from zero in Γ(2)µ
Rest.

Thus there won’t be any IR-divergence. All “problematic” terms have been
concentrated in Γ(2)µ

0 — to be more precise: in F1(k2
γ ≈ 0) — , and have

either been eliminated due to renormalization, or have been ignored with
reference to (24.101).

26.4 Ward-Takahashi Identity

In the previous sections we derived the two normalization factors
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Z2 = (26.45) and 1/Z1 = (26.68) , (26.76a)

and detected the relation

Z2
Z1

=(26.71) 1 +O(α2) . (26.76b)

In (26.71) we have indicated O(α3), because there we considered the muon
current as part of our computation. But in this section we will confine the
evaluation to the vertex correction and to the self-energy of fermions, which
we have both computed in the previous sections up to (and including) order
O(q2) = O(α).

The relation (26.76b) actually is but a special case of a relation between
the vertex function

− iqΓ
ν(k1, k3)
~

(26.48c)
=̂

1k 3k

γk

≡

1k 3k

γk

︸         ︷︷         ︸
Γ(0)ν

+ 3! ·

1k 3k

γk

︸             ︷︷             ︸
Γ(2)ν

+

+ 5! ·

1k 3k

γk

+ 5! ·

1k 3k

γk

+ 5! · . . .

︸                                                     ︷︷                                                     ︸
Γ(4)ν

+ . . . (26.77)

and the fermion self-energy

S̃(W )(k) (26.26)= i

/k −m0
c
~ − iΣ

, (26.78)

S̃(k) Σ(k) S̃(k)
(26.24)

=̂ 2! · + 4! · +

+ 4! · + 4! · . . . + 6! · + . . . .

That relation has been detected by Ward2 and has been generalized by
2 John Clive Ward (1924 – 2000)
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Takahashi3. To improve clarity, here those parts of the graphs, which are
representing −iqΓν/~ resp. Σ, have been highlighted by green color. The
green part of the first diagram in the last equation is Σ(2)(k), the green
parts of the two next diagrams belong to Σ(4)(k), and the green part of the
last diagram belongs to Σ(6)(k).
Takahashi [56] proved in 1957 the relation

(k3 − k1)µΓµ(k3, k1) = i

S̃(W )(k3)
− i

S̃(W )(k1)
, (26.79a)

which is also (but not only) valid, if the fermions coming in and going out
at the vertex with k1 and k3 are not on mass-shell, but are inner lines of a
more extensive graph.
We insert the fermion propagator S̃(W )(k) = (26.78) into the relation

(26.79a):
(k3 − k1)µΓµ(k3, k1) = /k3 − /k1 − iΣ(k3) + iΣ(k1)

Because of (k3 − k1)µΓ(0)µ(k3, k1) (26.77)= (k3 − k1)µγµ = /k3 − /k1 the relation
may be written in the form∑

n

(k3 − k1)µΓ(n)µ(k3, k1) = −i
∑
n

(
Σ(n)(k3)− Σ(n)(k1)

)
with n = 2, 4, 6, . . . ,∞ . (26.79b)

In the limit
k3 → k1 ⇐⇒ k2

γ = (k3 − k1)2 ≈ 0 ,

(26.79a) can be interpreted as a differential quotient:

lim
k3→k1

Γµ(k3, k1) = lim
k3→k1

i/S̃(W )(k3)− i/S̃(W )(k1)
(k3 − k1)µ

Γµ(kγ ≈ 0) = d
dkµ

i

S̃(W )(k)
(26.80a)

3 Takahashi Yasushi (1924 - 2013)
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Because of Γ(0)µ(kγ ≈ 0) (26.77)= γµ = d/k/dkµ, this can be written as

∑
n

Γ(n)µ(kγ ≈ 0) (26.26)= −i
∑
n

dΣ(n)(k)
dkµ

with n = 2, 4, 6, . . . ,∞ . (26.80b)

(26.80) is the form, in which Ward by 1950 published [57] the relation
between the vertex function Γ and the fermion propagator resp. the function
Σ of fermion self-energy. (26.80) can be visualized by means of Feynman-
graphs. In zeroth order

− iqΓ
(0)µ

~
= − iqγ

µ

~

(26.80a)= q

~

d
dkµ

1
S̃(0)(k)

= q

~

d
dkµ

1
S̃(k)

=̂

=̂
k k

kγ ≈ 0
= q

~

d
dkµ

(
k
)−1

.

In second order we find

− iqΓ
(2)µ(kγ ≈ 0)
~

(26.80b)= q

~

dΣ(2)(k)
dkµ

=̂

=̂ k k

kγ ≈ 0

kϕ

= q

~

d
dkµ

k k
k − kϕ

kϕ

.

In fourth order we illustrate only one of several graphs belonging to Σ(4):
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q

~

dΣ(4)(k)
dkµ

(26.80b)= − iqΓ
(4)µ(kγ ≈ 0)
~

=̂

=̂ q

~

d
dkµ

(
+ . . .

)
= +

+ + + . . .

Thus the derivative of Σ with respect to kµ does mean, that into one fermion
propagator of Σ each a vertex with a photon line kγ ≈ 0 shall be inserted,
and then a summation over all graphs shall be performed. Takahashi’s
relation (26.79) can be illustrated by graphs as well. For example we get in
second order

q

~

(
Σ(2)(k3)− Σ(2)(k1)

) (26.79b)= − iqΓ
(2)µ(k3, k1)
~

· (k3 − k1)µ =̂

=̂ q

~

( k3 k3
k3 − kϕ

kϕ

− k1 k1
k1 − kϕ

kϕ )
=

=
k1 k3

kγ = k3 − k1

kϕ

· (k3 − k1)µ .

We will not prove the relation (26.79). Instead we will apply it to prove
(26.76b). Inserting the Taylor expansion

Σ(k) (26.27)= Σ(2)
∣∣∣∣
/k=m0c/~︸             ︷︷             ︸
A

+(/k −m0c/~)
∂Σ(2)

∂/k

∣∣∣∣
/k=m0c/~︸                ︷︷                ︸
B

+O(q4)

into

Γµ(kγ ≈ 0)− γµ =(26.80b) −i dΣ(2)(k)
dkµ

+O(q4)
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Γµ(kγ ≈ 0) = γµ(1− iB) +O(q4) ,

we find by means of

Γµ(kγ ≈ 0) =(26.53c)
γµF1(k2

γ ≈ 0) (26.68)= γµ

Z1

Z2 =(26.29) 1 + iB
(26.28)= 1

1− iB +O(q4)

the same result as in (26.76b):

Γµ(k2
γ ≈ 0) = γµ

Z1
= γµ

Z2
+O(q4) (26.81)

26.5 Fermion Loops

The fourth entry in the listing (25.1) of the five possibly divergent QED
graphs is a loop of three fermion lines. We now are going to prove, that any
diagram containing this structure may be discarded from all computations
from the outset.

A

B

C = (−1)3 ·
A

B

C (26.82)

If a matrix element can be contracted to the graph displayed left, then it
can be contracted as well to the graph shown on the right side. Thereby
it doesn’t matter whether (some of) the items symbolized by A,B,C are
further parts of the graph, or whether (some of) the three photon lines are
external lines. The right graph differs from the left graph by nothing than
the reversed arrows on the fermion lines. These both graphs must (besides
other contractions) be added coherently to the overall result. We will prove
in the sequel that the right graph differs from the left graph by a factor
(−1)3. Thus the sum of these both graphs is zero. Generally the
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Theorem: The value of a graph, which is containing a loop
of n fermion lines and zero boson lines, changes by the factor
(−1)n if the arrows of the fermion-lines are reversed.

(26.83)

holds, which is known as “Furry’s theorem”. Therefore all graphs which are
containing a pure fermion loop consisting of an odd number of lines may be
discarded upfront from all computations. To prove this theorem we note,
that in the computation of a loop, which is consisting of n fermion lines and
zero boson lines, according to the rules of the boxes 24.1 and 26.1 besides
other the factors

. . .
ieγα

~
· i(γ

σk1σ +mc/~)
k2

1 −m2c2/~2 + iε′
. . .

ieγν

~
· i(γτknτ +mc/~)
k2
n −m2c2/~2 + iε′

. . .︸                                                                                        ︷︷                                                                                        ︸
n vertexfactors ·n propagators

will show up. The factors in the denominator commute, but not the factors
in the numerator. Besides not interesting constants, the numerators have
the form

γαab(γσbck1σ + 1bcmc/~) . . . γνvw(γτwaknτ + 1wamc/~) =

= tr
{
γα(γσk1σ +mc/~) . . . γν(γτknτ +mc/~)

}
. (26.84a)

In the first line the spinor-indices have been indicated explicitly. The
sequence of factors is determined by the rearrangement-operator US =
(23.21). As we are considering a closed loop of fermion lines with no defined
starting point, the last and the first spinor index of the product must be
identical, i. e. the trace of the product must be computed.
If the arrows on the fermion lines are reversed, then we get the trace

tr
{

(γτknτ +mc/~)γν . . . (γσk1σ +mc/~)γα
}
, (26.84b)

in which the sequence of factors is reversed. To compare this expression
with (26.84a), we insert behind each factor in (26.84b) a factor

1 = D-1
C DC ≡ (γ0γ2)-1γ0γ2 .
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Remark: DC is the representation of charge conjugation on the basis of
spinors, which we have investigated in section 11.2.3. For the following
proof it is irrelevant whether or not charge conjugation is a symmetry of
the evaluated theory, because it goes without saying that we may at any
time insert into any product of any theory the factors 1 = (γ0γ2)-1γ0γ2.
DC does neither change the Lorentz-vectors kj nor the constants m c

~ . But
the γ-matrices are transformed by DC according to

−D-1
C γ

ν∼DC

(11.23)= γν =⇒ D-1
C γ

νDC = −γν∼ .

Here ∼ is indicating the transposed matrix. The factors may be cyclically
permuted under the trace. Therefore

(26.84b) = tr
{

(γτknτ +mc/~)D-1
C DCγ

νD-1
C DC . . .

. . . (γσk1σ +mc/~)D-1
C DCγ

αD-1
C DC

}
=

= tr
{

(DCγ
τD-1

C knτ +mc/~)DCγ
νD-1

C . . .

. . . (DCγ
σD-1

C k1σ +mc/~)DCγ
αD-1

C

}
=

=
(
(−1)4

)n
(−1)n tr

{
(γτ∼knτ +mc/~)γν∼ . . . (γσ∼k1σ +mc/~)γα∼

}
=

= (−1)n tr
{(
γα(γσk1σ +mc/~) . . . γν(γτknτ +mc/~)

)∼}
=

= (−1)n · (26.84a) because of tr{A∼} = tr{A} . (26.85)

This proves theorem (26.83).

26.6 Photon-Photon Scattering

This is the last of the possibly diverging QED diagrams listed in
table (25.1). By counting superficially the wavenumber-powers, a logarithmic
divergence is to be expected. But actually the computation, which can
be found in [58], gives a converging result for the scattering amplitude of
photon-photon scattering. That’s typical for diagrams with several external
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photon lines. Already in the computation of vacuum polarization we found
only a logarithmic divergence instead of the suspected quadratic divergence.
The explanation is: The superficial estimation of the degree of divergence
is based on the assumption, that any field has four mutually independent
components. But this is not true in case of the photon field, due to it’s
gauge invariance. Therefore the actual degree of divergence is often lower
than expected for graphs with many external photon lines. As we focus in
this chapter on diverging diagrams and their renormalization, we will not
compute photon-photon scattering, but refer to the cited literature.
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27 Flavor-Isospin

27.1 The Isospin of Nucleons

Both the proton and the neutron can be described as Dirac fields. If we ignore
minor details, these fields only differ in their electromagnetic properties and
slightly in their masses, while they are behaving almost identically with
regard to nuclear forces. Therefore it is assumed in the isospin-model, that
both nucleons would be identical particles if the electromagnetic interaction
could be switched off. The idea was born in analogy to the Zeeman-effect:
Some energy levels of atoms, which differ only by the projections of their
spins onto a certain axis of position space, can be split due to a magnetic
field applied from outside, but are degenerate without the external magnetic
field. In analogy, the isospin model assumes that the doublet of nucleons is
split due to electromagnetic forces, but would be degenerate — i. e. the two
nucleons would have identical masses — if the electromagnetic forces would
not exist.
A Zeeman-doublet is caused by an electron state with spin S = ~/2,

whose projection onto the axis of the external magnetic field (which usually
is chosen to be the x3 axis) can be S3 = +~/2 or S3 = −~/2. In analogy
an isospin I = 1/2 is assigned to the nucleon. Note that the isospin
usually is defined as a dimension-less number, while the dimension of spin
is angular momentum. By definition the state with I3 = +1/2 is assigned
to the proton, and the state with I3 = −1/2 is assigned to the neutron.
The isospin-space is an abstract space, which must not be confused with
time-position space. The metric of isospin-space is euclidean (but not
Minkowski-metric), and consequently there is no need to discern covariant
and contravariant vectors. The state functions of nucleons can be written
as products of a two-component iso-spinor, and a rest which is independent
of isospin, and identical for proton and neutron:
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ψproton =
(

1
0

)
· restnucleon ψneutron =

(
0
1

)
· restnucleon (27.1)

This notation of the state functions of nucleons has been introduced by
Heisenberg in 1932 [59]. In the sequel we will not explicitly indicate the
factors “rest” any more.
The third of the Pauli-matrices

σ1 =
(

0 1
1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0
0 −1

)
(27.2)

is — besides the factor 1/2 — equal to the I3-operator of the nucleons. We
will use for the Pauli-matrices, if they are acting as operators in isospin-
space, the notation τ j ≡ σj , to avoid confusion of isospin and spin. The
eigenvalue-equations of the operator I3 are

I3 ψproton ≡
τ3

2

(
1
0

)
= +1

2

(
1
0

)
= +1

2 ψproton (27.3a)

I3 ψneutron ≡
τ3

2

(
0
1

)
= −1

2

(
0
1

)
= −1

2 ψneutron . (27.3b)

As usual, we are using identical notation for operators and their eigenvalues,
e. g. I3 = τ3/2 is an operator, and I3 = ±1/2 are it’s eigenvalues. The
ladder-operators I1 ± iI2 = 1

2(τ1 ± iτ2) convert protons to neutrons, and
vice versa:

1
2(τ1 + iτ2)ψneutron =

(
0 1
0 0

)(
0
1

)
= ψproton (27.3c)

1
2(τ1 − iτ2)ψproton =

(
0 0
1 0

)(
1
0

)
= ψneutron (27.3d)
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27.2 Global Phase-Transformations

In section 4.4 we applied in equation (4.77) to the Dirac field the global
phase transformation

ψ′(x) =U ψ(x) = e+ i
~
Kq ψ(x)

ψ
′(x) =ψ(x)U † = e−

i
~
Kq ψ(x)

}
with K, q ∈ R . (27.4)

This transformation shifts the phase of the field ψ(x) in all points x of space-
time by the same angle Kq/~. The dimension of the generator q of this
transformation is charge, and the dimension of the parameter K is action/
charge.
Being a bilinear function of ψ and ψ, the Lagrangian

L = ψ(i~cγρdρ −mc2)ψ = ψU †(i~cγρdρ −mc2)Uψ = L′ (27.5)

— and consequently also the field-equation — of the free Dirac field is
invariant under the global phase transformation. According to Noether’s
theorem this invariance is correlating with a conserved current density,
whose components we computed as

jρ =(4.16)
C
∑
r

∂L
∂(dρφr)

kq φr with

φr = ψ or ψ
k ≡ lim

n→∞
K/n , n ∈ N .

Defining C ≡ 1/(i~k) we eventually found the components of the conserved
current density:

jρ = 1
i~k

(
∂L

∂(dρψ)kqψ − ψ
∂L

∂(dρψ)
kq

)
(4.87)= qψcγρψ (27.6)

With the generator q being constant, the set of transformations

U
(27.4)= exp

{ i
~
Kq
}

, K, q ∈ R (27.7)

with arbitrary K is a one-dimensional fundamental representation of the
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abstract group U(1), see the listing of the systematic nomenclature of matrix
groups on page 124 .
Now we are going to evaluate the global phase-transformations of the

nucleon-state-functions (27.1). We have proved in section 6.1, that any
element of the matrix group SU(2) — which furthermore is the fundamental
representation of the abstract group SU(2) — can be written in the form

U(Θ) (6.17)= exp
{ i
~

Θk
~σk

2
}
. (27.8)

As explained in section 4.1, the three factors ~σk/2 are the generators of
this representation, while the three real parameters Θk are specifying the
respective elements of the group. The comparison of this equation with the
global U(1)-phase-transformation (27.7) is suggesting to define the operator

gI = g
(τ1

2 ,
τ2

2 ,
τ3

2
)

(27.9)

as three-dimensional isospin-charge-operator, in which the real one-dimen-
sional factor g is a coupling constant with dimension isospin-charge. The
isospin-charge-operator is the generator of the global phase transformation

ψ′ = Uψ = exp
{ i
~
K̃g
}
ψ ≡ exp

{ i
~
KjgI

j
}
ψ (27.10a)

with K̃ ≡ KjI
j = Kj

τ j

2 , Kj ∈ R , (27.10b)

in which the sum over j is running from 1 to 3. ψ = (27.1) is the state
function of the nucleons. It has two isospin components. The dimension of
the real parameter-vector K is action/(isospin-charge). The 2× 2-matrices
in the exponent are interpreted due to the series expansion of the exponential
function:

Uψ(x) = exp
{ i
~
KjgI

j
}
ψ =

∞∑
n=0

1
n!
( i
~
gKjI

j
)n
ψ (27.11)

In each term, ψ is multiplied by the 2× 2-matrix (KjI
j)n = K̃n. By
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U = exp
{ i
~
KjgI

j
}
ψ = lim

n→∞

(
1 + i

~
g
Kj

n︸ ︷︷ ︸
≡ kj

Ij
)n

with n ∈ N

the infinitesimal phase transformation can be derived:

UINF = 1 + i

~
gkjI

j (27.12)

As the phase transformation is unitary, U † = U−1, the Lagrangian

L = ψ(i~cγρdρ −mc2)ψ (27.13)

of the nucleons is obviously invariant under the global phase transformation

L′ = ψU †(i~cγρdρ −mc2)Uψ = L . (27.14)

Consequently there exists according to Noether’s theorem a conserved
current density with the four space-time components

jρ =(27.6)
C

(
∂L

∂(dρψ) gKlI
lψ − ψgKlI

l ∂L
∂(dρψ)

)
. (27.15)

As the three components Kl are mutually independent, the constant may
be chosen as CKl ≡ δjl/(i~) with j = 1, 2, 3, and there are three conserved
current densities with space-time components

j(j)ρ = gψcγρIjψ with j = 1, 2, 3 . (27.16)

γρ is a 4× 4-matrix in spinor space. ψ is a four-component column spinor,
ψ is a four-component row spinor. Ij is a 2× 2-matrix in isospin-space. ψ
is a two-component column-isospinor, ψ is a two-component row-isospinor.
The factors have been arrange such, that in jρ all spinor-indices and all
isospin-indices are contracted.
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27.3 Local Phase-Transformations

Is the system of nucleons as well invariant under local SU(2)-phase-transfor-
mations? This question has been evaluated in 1954 by Yang and Mills [60].
In the local phase transformation

ψ′(x) = U(x)ψ(x) = exp
{ i
~
K̃(x) g

}
ψ(x)

= exp
{ i
~
Kj(x) gIj

}
ψ(x) , (27.17)

Kj may be chosen different at different space-time points x. We merely
require the three fields Kj(x) to be everywhere continuous and differentiable.
We apply a local phase transformation to the Lagrangian:

L′ = ψU †(i~cγρdρ −mc2)Uψ
= ψU †i~cγρUdρψ − ψU †mc2Uψ + ψU †i~cγρ(dρU)ψ
= L+ ψU †i~cγρ(dρU)ψ = L − ψcγρg(dρKj)Ijψ (27.18)

The Lagrangian is not invariant under locale phase transformations. This
result corresponds to the result (4.96) of the local U(1)-phase-transformation.
In case of U(1) symmetry we could enforce invariance under local phase

transformations due to replacing the normal differential operator dρ by the
covariant differential operator

Dρ(x)
(4.102)
≡ dρ + i

~
qAρ(x) , (27.19)

and upgrading the local phase-transformation to the U(1) gauge-transfor-
mation (4.109):

ψ(x) U(x)−→ ψ′(x) = U(x)ψ(x) = ψ(x) exp
{ i
~
K(x) q

}
(27.20a)

Aρ(x) U(x)−→ A′ρ(x) = Aρ(x) + i~

q
(dρU)U † = Aρ(x)− dρK(x) (27.20b)
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We now will transfer this method of securing invariance under local
phase transformations to the group SU(2). For that purpose we define the
covariant differential operator

Dρ(x) ≡ dρ + i

~
gW̃ρ(x) (27.21a)

W̃ρ(x) ≡Wjρ(x) Ij = Wjρ(x) τ
j

2 . (27.21b)

The three charges gIj are replacing the charge q of (27.19), and the three
gauge-fields Wj(x) are replacing in the gauge-group SU(2) the gauge-field
A(x) of the gauge-group U(1). W̃ (x) is a vector field with four space-time
components. As the nucleon state-function ψ, onto which W̃ (x) is acting,
has two isospin-components, we define each single space-time component
W̃ρ(x) as a 2×2 isospin-matrix. This makes our ansatz as generic as possible.
The four space-time components Wjρ(x) of each of the three gauge-fields
Wj(x) are one-component numbers with dimension momentum/(isospin-
charge). Often W̃ (x) is called gauge-field as well.
By definition, a gauge transformation is acting onto W̃ (x) like this:

W̃ ′ρ = UW̃ρU
†︸      ︷︷      ︸

WjρU
τ j

2 U
†

+ i~

g
(dρU)U † (27.22)

Different from the simple form (27.20b) in case of U(1) gauge-symmetry,
the phase-transformations U do not commute with their generators τ j/2.
Therefore we can not explicitly compute the derivative of U with respect
to xρ, because for that purpose we would need to expand U in the series
(27.11), and we would not be able to factorize an exponential function from
the derivative of that series.
W̃ ′ρ has been defined like this to secure the following transformation of

the covariant differential operator under gauge-transformations:
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D′ρ ψ′ = D′ρ Uψ = dρUψ + i

~
g
(
UW̃ρU

† + i~

g
(dρU)U †︸                           ︷︷                           ︸

W̃ ′ρ

)
Uψ =

= (dρU)ψ + Udρψ + i

~
gUW̃ρψ − (dρU)ψ =

= U Dρ ψ =⇒ D′ρ = U Dρ U
† (27.23)

This is corresponding to the transformation (4.100) of the covariant differ-
ential operator of the U(1) gauge-group. Due to this transformation the
Lagrangian is invariant under gauge transformations, provided the normal
differential operator dρ is replaced by the covariant differential operator Dρ:

L′ = ψU †(i~cγρ D′ρ−mc2)Uψ = ψ(i~cγρU †D′ρ U −mc2)ψ =
= ψ(i~cγρ Dρ−mc2)ψ = L (27.24)

While the derivative dρU in (27.22) can not be evaluated explicitly for
arbitrary phase transformations U , it can be computed for the infinitesimal
transformation UINF = (27.12):

W̃ ′ρ =(27.22) (1 + i

~
gkkI

k)W̃ρ(1−
i

~
gklI

l†) + i~

g
(dρ

i

~
gkkI

k)(1− i

~
gklI

l†)

(27.25)

The Pauli-matrices (27.2) are self-adjoint, i. e. I l† = I l = τ l/2. Neglecting
terms O(k2), to which also kldρkk belongs, we find

W̃ ′ρ = W̃ρ + i

~
g
[
kk
τk

2 , W̃ρ

]
− dρkj

τ j

2 . (27.26)

Considering (27.21b), therefore

W ′jρ
τ j

2 = Wjρ
τ j

2 − dρkj
τ j

2 + i

~
gkkWlρ

[τk
2 ,

τ l

2
]

=

= Wjρ
τ j

2 − dρkj
τ j

2 −
1
~
g εkljkkWlρ

τ j

2 (27.27)
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holds for the components Wjρ of the three gauge fields. In the last step the
well-known commutator [σj

2 ,
σk

2
] (6.24)= iεjkl

σl

2 (27.28)

has been applied, in which εjkl is the totally antisymmetric Levi-Cività
tensor. In the language of group theory, the factors εjkl are the structure-
constants of the group SU(2). The common factor τ j/2 in (27.27) can be
canceled:

W ′jρ = Wjρ − dρkj −
g

~
εkljkkWlρ (27.29a)

The combination of this infinitesimal transformation resp. of the finite
transformation in the isospin-matrix-form

W̃ ′ρ
(27.22)= UW̃ρU

† + i~

g
(dρU)U † (27.29b)

with the local phase transformation

ψ′(x) = U(x)ψ(x) (27.17)= exp
{ i
~
gKj(x)τ

j

2
}
ψ(x) (27.29c)

of the field ψ is the SU(2) gauge-transformation. It is instructive to compare
it with the U(1) gauge-transformation (27.20). An additional term is
showing up in (27.29a) resp. in (27.29b), because the generators of the
phase transformations do not commute, and thus the structure constants
of the group SU(2) are different from zero — in contrast to the structure
constants of the group U(1). Furthermore in local phase transformations
of nucleons we are dealing with three parameter fields Kj(x) and three
gauge fields Wj(x), because the group of these transformations is identical
to the matrix group SU(2), which is based on three generators (that is
charges) gIj = gτ j/2. Without proof we state the general rule: The matrix
group SU(n) with arbitrary n ≥ 2 has n2 − 1 generators. Consequently the
postulate of local gauge invariance of n-dimensional charged fields is leading
to n2 − 1 gauge fields.
When we evaluated the U(1) gauge-transformations in section 4.5 it
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turned out that the field-equations of the gauge-field A(x) are almost
completely fixed by the postulate of gauge-invariance. We found this
combined Lagrangian of the Dirac-field and the U(1) gauge-field:

L =(4.120)
ψ
(
i~cγρ(dρ + i

~
qAρ)−mc2

)
ψ − 1

4µ0
FστF

στ

Fστ ≡ dσAτ − dτAσ (27.30)

Now we are going to extend the Lagrangian (27.24) of the nucleon field such,
that we get dynamic field-equations for the three gauge-fields Wj as well.
Clearly we must take care that the gauge-invariance will not be damaged
by that extension. We assert that the following Lagrangian is the gauge-
invariant generalization of (27.30) to the gauge-group SU(2):

L ≡ ψ(i~cγρ Dρ−mc2)ψ − 1
2 tr{F̃στ F̃ στ} (27.31a)

F̃στ ≡ Dσ W̃τ −Dτ W̃σ ≡ Fjστ
τ j

2 ≡ (DσWjτ −Dτ Wjσ)τ
j

2 (27.31b)

The field-strength tensor is now defined with covariant derivatives. In case of
the gauge-group U(1) it doesn’t matter whether the normal or the covariant
derivative is applied, because of

Fστ = Dσ Aτ −Dτ Aσ
(27.19)= dσAτ − dτAσ + i

~
q [Aσ, Aτ ]︸       ︷︷       ︸

0

. (27.32)

In case of the gauge-group SU(2), however, the application of the covariant
derivative is compulsory to make the Lagrangian L gauge-invariant. In
appendix A.25

F̃ ′στ
(A.183)= UF̃στU

† (27.33)

is proved. Together with (27.24), this immediately implies the gauge-
invariance of L, because (as the trace is invariant under cyclic permutation
of the factors)
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tr{F̃ ′στ F̃ ′στ} = tr{UF̃στU †UF̃ στU †} =
= tr{U †UF̃στU †UF̃ στ} = tr{F̃στ F̃ στ} .

The trace may as well be written in the form

tr{F̃στ F̃ στ} = FjστF
στ
k tr

{τ j
2
τk

2
}

=

= 1
4FjστF

στ
k tr

{
( 1 0

0 1 )δjk + iεjklτ l
}

= 1
4FjστF

στ
j · 2 . (27.34)

The terms with different j and k here summed up to zero. Thereby the
Lagrangian (27.31) gets the form

L = ψ(i~cγρ Dρ−mc2)ψ − 1
4FjστF

στ
j , (27.35)

in which the similarity to the U(1)-Lagrangian (27.30) becomes very clear.
In both cases the product of the field-strength tensors is multiplied by −1/4.
Only the factor µ0 is missing here, and the sum is now over j = 1, 2, 3 .
The three gauge-fields Wj(x) are not observed experimentally. Thus

the isospin-charges ascribed to the nucleons are — different from electrical
charges — not the sources of gauge-fields, which mediate interactions
between the particles. Still the efforts, which we (respectively Yang and
Mills) have invested into the exploration of the SU(2) gauge-interaction,
were not in vain. All our results can be used (with slight modifications) in
quantum chromodynamics, which is a SU(3) gauge-interaction. And we will
make use of the group SU(2) for the description of weak interactions.
In the “standard model” of elementary particles, isospin-charges are not

assigned to nucleons or other hadrons, but to quarks, which are assumed
to be their constituents. While the up-quark (about 4MeV/c2) and the
down-quark (about 7MeV/c2) have approximately the same mass, isospin-
symmetry (which often is called flavor-symmety) is significantly broken in
case of the other quarks (strange about 150MeV/c2, charm about 1GeV/c2,
bottom about 4GeV/c2, top about 175GeV/c2). Thus flavor-symmetry,
which is based on isospin-charges, can define some useful schematic order
at least for the hadrons built from light quarks, but is hardly applicable to
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characterize hadrons built from heavy quarks.

In contrast, the symmetry of quarks which is based on their color-charges,
turned out to be a strictly conserved symmetry. We will evaluate that
symmetry in the next chapter.
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28 Quantum Chromodynamics

28.1 Quarks and Gluons

Quantum chromodynamics is based on the assumption, that all hadrons
are made up by quarks and gluons. Quarks are fermions with an electrical
charge, a color charge, and a weak charge. Gluons are boson gauge fields,
and their sources are the color charges. Some important properties of quarks
and gluons are listed in table 28.1. The color charges separated by commas
are to be understood as alternatives, i. e. each quark flavor exists with
three different color charges, and there are eight gluons with different color
charges. The color charges are named r = red, g = green, b = blue, r̄ =
anti-red, ḡ = anti-green, b̄ = anti-blue. It is understood that these names
are not related to the colors of everyday language. The anti-color charges
are the charges of antiquarks, and e is the electrical charge of the positron.

In (27.1) we described the proton and the neutron as an isospin-doublet.
In the same manner we can for example describe the three up-quarks with

flavor spin electr. charge color charge mass
down 1/2 −e/3 r , g , b ≈ 7.5MeV/c2

up 1/2 +2e/3 r , g , b ≈ 4.2MeV/c2

strange 1/2 −e/3 r , g , b ≈ 150MeV/c2

charme 1/2 +2e/3 r , g , b ≈ 1.1GeV/c2

bottom 1/2 −e/3 r , g , b ≈ 4.2GeV/c2

top 1/2 +2e/3 r , g , b ≈ 175GeV/c2

rḡ , rb̄ , gr̄ ,

gluon 1 0 gb̄ , br̄ , bḡ , 0
(gḡ − rr̄)/

√
2 ,

(gḡ + rr̄ − 2bb̄)/
√

6

Tab. 28.1 : Properties of quarks and gluons
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different color charges as a color-triplet:

ψup,red =
( 1

0
0

)
· restup ψup,green =

( 0
1
0

)
· restup

ψup,blue =
( 0

0
1

)
· restup (28.1)

Thus each of the six quarks becomes a basis of a three-dimensional funda-
mental representation of the group SU(3). Mesons (which are made up from
one quark and one antiquark ) and baryons (which are made up from three
quarks), are described in QCD by

ψmeson = 1√
3
ψA,αψB̄,ᾱ (28.2a)

ψbaryon = 1√
6
εαβγ ψA,αψB,βψC,γ . (28.2b)

Factors with pairs of identical color indices α, β, γ are to be summed-up over
red, green, blue. This rule applies as well, if one color index is indicating a
color and the other color index is indicating the anticolor:

(28.2a) = 1√
3

(ψA,redψB̄, ¯red + ψA,greenψB̄, ¯green + ψA,blueψB̄, ¯blue)

Due to the totally antisymmetric Levi-Cività tensor εαβγ , baryon state-
functions are antisymmetric (i. e. compliant to the Pauli-principle) even if
the three quark-flavors A,B,C are identical and the rest of the function
(not explicitly indicated here) is symmetrical. A well-known example for
this case is the ∆++-resonance

ψ∆++ = 1√
6
εαβγ ψup,αψup,βψup,γ .

The state-functions (28.2) are color-singlets, i. e. they are invariant under
arbitrary transformations of the coordinates of the three-dimensional color
space. As a most important principle of QCD it turns out, that the state
functions of all fields which are observable in isolation must be color-singlets.
All elements of a fundamental representation of the group SU(n) with
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n ≥ 2 can be written in the form

U = exp
{ i
~
Kj g

λj

2
}

= lim
r→∞

(
1 + i

~
g
Kj

r︸ ︷︷ ︸
≡ kj

λj

2

)r
(28.3a)

=⇒ UINF = 1 + i

~
gkj

λj

2 . (28.3b)

Here r ∈ N is a natural number, and indices j showing up doubly must
be summed-up from 1 to n2 − 1. The n2 − 1 factors gλj/2 are the repre-
sentation’s generators. g is a real coupling constant with dimension color-
charge. The factors λj are dimension-less hermitean n× n-matrices. The
dimension of the factors Kj (resp. kj in the infinitesimal transformation) is
action/color-charge.

We constructed the SU(2) generators by means of the 2× 2-dimensional
Pauli-matrices (27.2). For the construction of the SU(3) generators, Gell-
Mann [61] proposed these 3× 3-dimensional matrices:

λ1 =

0 1 0
1 0 0
0 0 0

 λ2 =

0 −i 0
i 0 0
0 0 0

 λ3 =

1 0 0
0 −1 0
0 0 0


λ4 =

0 0 1
0 0 0
1 0 0

 λ5 =

0 0 −i
0 0 0
i 0 0

 λ6 =

0 0 0
0 0 1
0 1 0


λ7 =

0 0 0
0 0 −i
0 i 0

 λ8 =

1/
√

3 0 0
0 1/

√
3 0

0 0 −2/
√

3

 (28.4)

The commutator of the generators is

[λi
2 ,

λj

2
]

= if ijk
λk

2 . (28.5)

As in all groups SU(n), the structure constants f ijk are real and totally
antisymmetric, i. e. their signs are changing upon any permutation of two
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indices. The SU(3) structure constants can be computed from (28.4) and
(28.5), or simply be read out the article [61] of Gell-Mann:

ijk 123 147 156 246 257 345 367 458 678
f ijk 1 1/2 −1/2 1/2 1/2 1/2 −1/2

√
3/2

√
3/2

All structure constants, which are neither listed here nor can be constructed
by permutations of the indices of these f ijk, are zero.

As for the generator-matrices of any SU(n), also for the generator-matrices
of SU(3)

tr{λj} = 0 tr{λjλk} = 2δjk . (28.6)

To match these relations, Gell-Mann chose the curious form for the matrix λ8,
while the seven other matrices are “modified copies” of the Pauli-matrices.

The Lagrangian of the free (not interacting) quark with flavor A is

LA = ψA(i~cγρdρ −mAc
2)ψA . (28.7)

The state-function ψA is a color-charge triplet, according to definition (28.1).
As the phase transformation (28.3) is unitary, U † = U−1, this Lagrangian
obviously is invariant under the global phase transformation

L′A = ψA,αU
†
αβ(i~cγρdρ −mAc

2)UβγψA,γ = LA . (28.8)

The color-indices α . . . have been explicitly indicated here. In most of our
formulas, like e. g. (28.7) we drop these indices. Automatic summation is
understood over the three colors in case of double color-index α, summation
from zero to three in case of double space-time-indices ρ, and summation
from one to eight in case of double operator-indices j. According to Noether’s
theorem, the current density with the four space-time-components

jρj =(27.16)
gψA,αcγ

ρ
λjαβ
2 ψA,β with j = 1 . . . 8 (28.9)

is conserved. Thus each of the eight color-charges gλj/2 is conserved.
Now we will consider the local phase transformation
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ψ′A(x) = U(x)ψA(x) = exp
{ i
~
K̃(x) g

}
ψA(x) = exp

{ i
~
Kj(x) gλ

j

2
}
ψA(x)
(28.10)

in which the eight parameters Kj can be chosen different at each space-time
point x. We merely require that the eight fields Kj(x) shall be continuous
and differentiable at each space-time point. We apply the local phase
transformation to the Lagrangian (28.7):

L′A =(27.18) LA − ψAcγρg(dρKj)
λj

2 ψA (28.11)

The Lagrangian is not invariant under local phase transformations. As usual
we enforce the invariance by replacing the normal differential operator dρ
according to (27.21) by the covariant differential operator

Dρ(x) ≡ dρ + i

~
gG̃ρ(x) (28.12a)

G̃ρ(x) ≡ Gjρ(x) λ
j

2 . (28.12b)

In quantum chromodynamics, the eight charges gλj/2 are replacing the
charge q in the corresponding equation (27.19) of quantum electrodynamics.
And the eight gauge fields Gj(x) are in the gauge-group SU(3) replacing
the gauge field A(x) of the gauge-group U(1). The dimension of the gluon
fields is

[Gj ] = momentum
color-charge . (28.12c)

Dρ, G̃ρ, and λj are matrices with 3×3 color components. A single component
of the covariant differential operator is

Dρ,αβ(x) = 1αβdρ + i

~
gG̃ρ,αβ(x) = 1αβdρ + i

~
gGjρ(x)

λjαβ
2 . (28.12d)

We define this change of G̃(x) under a gauge-transformation:
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G̃′ρ
(27.22)= UG̃ρU

† + i~

g
(dρU)U † = GjρU

λj

2 U
† + i~

g
(dρU)U † (28.13)

Consequently this is the change of the covariant differential operator resp.
of one of it’s single color components under a gauge-transformation:

D′ρ =(27.23)
U Dρ U

† (28.14a)

D′ρ,αδ = Uαβ Dρ,βγ U
†
γδ (28.14b)

Due to this transformation characteristic, the Lagrangian is invariant under
gauge transformations, provided the normal differential operator dρ is
replaced by the covariant differential operator Dρ:

L′A = ψA,αU
†
αβ(i~cγρ D′ρ,βγ −1βγmAc

2)UγδψA,δ =
= ψA,α(i~cγρ Dρ,αδ −1αδmAc

2)ψA,δ = LA (28.15)

In case of an infinitesimal local phase transformation (28.3b), the gauge-
field’s transformation can be indicated explicitly:

G′jρ
(27.29a)= Gjρ − dρkj −

g

~
fkljkkGlρ (28.16a)

The combination of this infinitesimal transformation resp. of the finite
transformation in the matrix-form

G̃′ρ
(28.13)= UG̃ρU

† + i~

g
(dρU)U † (28.16b)

with the local phase transformation

ψ′A(x) = U(x)ψA(x) (28.10)= exp
{ i
~
gKj(x)λ

j

2
}
ψA(x) (28.16c)

is the SU(3) gauge-transformation. The Lagrangian’s invariance under this
gauge transformation is the basis of quantum chromodynamics.
The combined Lagrangian of the quark field and the gauge fields can
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immediately be concluded from (27.31b):

≡LA ψA(i~cγρ Dρ−mAc
2)ψA −

1
2 Sp{F̃στ F̃ στ} (28.17a)

F̃στ ≡ Dσ G̃τ −Dτ G̃σ ≡ Fjστ
λj

2 ≡ (Dσ Gjτ −Dτ Gjσ)λ
j

2 (28.17b)

Inserting the covariant differential operator (28.12), the field-strength tensor
can be written like this:

Fjστ
λj

2 = dσGjτ
λj

2 − dτGjσ
λj

2 + i

~
g
(
GkσGjτ

λk

2
λj

2 −GkτGjσ
λk

2
λj

2
)

We rename the contracted indices j in the first term of the second line to l,
and in the second term of the second line we rename the contracted indices
k to l and j to k:

Fjστ
λj

2 = dσGjτ
λj

2 − dτGjσ
λj

2 + i

~
gGkσGlτ

(λk
2
λl

2 −
λl

2
λk

2
)

Fjστ =(28.5) dσGjτ − dτGjσ −
1
~
gf jklGkσGlτ (28.18)

The relation

F̃ ′στ
(A.183)= UF̃στU

† , (28.19)

which is proved in appendix A.25, holds as well in case of SU(3). As
furthermore factors may be permuted cyclically under the trace,

tr{F̃ ′στ F̃ ′στ} = tr{UF̃στU †UF̃ στU †}
= tr{U †UF̃στU †UF̃ στ} = tr{F̃στ F̃ στ}

together with (28.15) is securing the gauge-invariance of the QCD La-
grangian LA = (28.17).
Alternatively the trace may be written in the form
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tr{F̃στ F̃ στ} = FjστF
στ
k tr

{λj
2
λk

2
} (28.6)= 1

4FjστF
στ
j · 2 . (28.20)

Thereby the Lagrangian (28.17) becomes

LA = ψA(i~cγρ Dρ−mAc
2)ψA −

1
4FjστF

στ
j . (28.21)

Now the similarity with the U(1)-Lagrangian (27.30) is quite obvious. In
both cases the product of the field-strength tensors is multiplied by −1/4.
Only the factor µ0 here has disappeared, and the sum is running over the
generator-indices j = 1 . . . 8.

28.2 Confinement and asymptotic Freedom

We have seen, that QCD is constructed quite similar to QED. In particular,
gluons are mass-less, exactly like photons. Therefore we would expect an
infinite range of the interaction between quarks. But it’s well-known that
this is not the case. The range of the strong interaction is about 10−15m.
This fundamental difference between the electromagnetic and the strong
interaction is caused by the fact, that U(1) is an Abelian group, while SU(3)
is a non-Abelian group. The consequences of this difference become visible,
once the covariant derivative (28.12) and the field-strength tensors (28.18)
are explicitly inserted into the QCD Lagrangian:

LA = ψA

(
i~cγρ(dρ + i

~
gGjρ

λj

2 )−mAc
2
)
ψA−

− 1
4
(
dσGjτ − dτGjσ −

1
~
gf jklGkσGlτ

)
·

·
(
dσGτj − dτGσj −

1
~
gf jklGσkG

τ
l

)
=
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= ψA(i~cγρdρ −mAc
2)ψA︸                              ︷︷                              ︸

¬

−ψAcγρgGjρ
λj

2 ψA︸                     ︷︷                     ︸


−

− 1
4(dσGjτ − dτGjσ)(dσGτj − dτGσj )︸                                              ︷︷                                              ︸

®

+

+ 1
2~ gf

jklGkσGlτ (dσGτj − dτGσj )︸                                         ︷︷                                         ︸
¯

− 1
4~2 g

2f jklf jmnGkσGlτG
σ
mG

τ
n︸                                      ︷︷                                      ︸

°
(28.22)

In QCD there exists — different from QED — not only a coupling between
the Dirac field and it’s gauge field, but there also exist self-interactions of
the gauge fields:

 ¯ °

The term ¬ is describing the free (not interacting) quark fields, and the
term ® is describing the eight free, not interacting gluon fields. The term ,
which is proportional to the coupling constant g, is describing the coupling
between the quark fields and the gluon fields. As the SU(3) structure
constants f jkl — different from the U(1) structure constants — are different
from zero, the new terms ¯ and °, which did not exist in QED, are showing
up in QCD. They are describing the self-interactions of the gluon fields. ¯ is
called 3G-coupling, because the product of 3 field-amplitudes is contained in
each term. Accordingly ° is called 4G-coupling. Like the coupling between
quark fields and gluon fields, 3G-coupling is proportional to g, while 4G-
coupling is proportional to g2.

The character of the strong interaction is completely changed due to the
self-interactions of gluons. If for example the cross section for the scattering
of an electron by a muon is computed in QED, in perturbation computation
∼ e4 besides others the graph



28.1 Quarks and Gluons 651

±

is encountered. In section 26.1 we have evaluated the virtual fermion loop,
which is called vacuum polarization. It brings about a shielding effect, and
thus a running coupling constant, which we have estimated as

α(k2
γ) ≡ e2

4πε0~c
(26.22b)
≈ α(0)

1− α(0)
3π ln

{−k2
γ~

2

m2c2

} . (28.23)

k2
γ is the virtual photon’s wavenumber square. We know from the evaluations

in section 24.3.7, that k2
γ < 0 in t-channel scattering. α(0) ≈ 1/137 is the

coupling constant in case of very weak scattering. The approximation
(28.23) is only correct, if the modulus of the second term in the denominator
is much smaller than 1.

When computing in QCD the scattering of a quark by an other quark in
perturbation computation ∼ g4, one encounters besides others these graphs:

² ³
´

The graph ² of QCD is clearly equivalent to the graph ± of QED. The virtual
fermion loop in ² must however be made from quarks, because leptons
don’t couple to gluons. We extract from the literature [29, Abschnitt 2.5.2]
the result for the graphs ²,³, and ´, which is corresponding to (28.23):

αs(k2) ≡ g2

4π~c ≈
αs(Λ2)

1− αs(Λ2)
12π (2nA − 33) ln

{−k2

Λ2

} (28.24)

This approximation is only correct, if the modulus of the second term
in the denominator is much smaller than 1. αs is the coupling constant
of strong interaction. −k2 > 0 is the wavenumber square transferred in
scattering. Λ2 is a reference value, which must be determined experimentally.
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One finds Λ ≈ 0.2GeV/(~c). And nA is the number of quark flavors of
which the virtual quark-loop in ² can be built. The new term −33 in the
denominator is resulting from the graphs ³ and ´. It’s sign is different from
the sign of nA, and it is dominating, because there are only six quark flavors.
Therefore αs(k2) is decreasing for increasing |k2|, while α(k2

γ) is increasing
for increasing |k2

γ |. Experimentally determined values of the electromagnetic
and the strong running coupling constants have been indicated in (21.20).
The distance r between scattering quarks is (by order of magnitude)
≈ 1/

√
−k2. At small distance r, αs resp. g are small as well. In that case a

perturbation computation, which is considering only one or few orders of g,
will lead to reasonable results. In this range the methods of perturbation
theory, which are known from QED, can be applied. The relation g(|k2|)→ 0
at |k2| → ∞ is called asymptotic freedom.
Things are quite different in case |k2| → 0. If the distance r in-between

quarks, which are bound in a hadron, is becoming

r & 10−15m ≈̂ 0.2GeV/(~c) ≈ Λ &
√
|k2| , (28.25)

then the attraction between these quarks becomes so large, that the energy
content of the gluon fields is sufficient for pair-creation of additional quarks.
Therefore the high-energy scattering of two protons does not produce single
quarks, but several color-singlets of the type (28.2). The impenetrable
enclosure of quarks into color-singlets is called confinement. As αs isn’t any
more small versus 1 in the range (28.25), the usual methods of perturbation
computation are not applicable any more. This makes all computations
extremely difficult.



653

29 Electroweak Interaction

QCD and electro-weak interaction are the two pillars of the “standard
model of elementary particles”. For two reasons, the electro-weak theory is
significantly more complicated than QCD: First, it is based on the composite
symmetry group SU(2)⊗U(1), while QCD is based on the simple symmetry
group SU(3). Second, the gauge bosons of SU(2) ⊗ U(1) are in addition
coupled to a Higgs field, whose symmetry is spontaneously broken. The
meaning of these notions will be explained in section 29.3.

The complicated construction of electroweak theory could not be avoided,
because it must cope with several requirements which at first sight seem
irreconcilable:
(1) It shall be a gauge theory, i. e. it’s Lagrangian shall be invariant under

local phase transformations, and the forces acting between fermion fields
shall be described as gauge-fields.

(2) The relative strengths S of the interactions must be represented correctly:
Sweak : Sem : Sstrong ≈ 10−5 : 10−2 : 1

(3) The ranges R of the interactions must be represented correctly:
Rweak ≈ 10−18m ; Rem =∞ ; Rstrong ≈ 10−15m

While it goes without saying, that the theory must comply with the ex-
perimental observations mentioned in (2) and (3), the requirement (1) has
the character of a guessed guideline, which eventually turned out to be
successful. Actually that was a surprise, because (1) seems initially to be
an additional, almost unsolvable problem for the following reason:

QED and QCD are gauge theories with mass-less gauge fields (the photons
and the gluons). As photons are mass-less, the range Rem = ∞ of the
electromagnetic interaction is infinite. While gluons as well are mass-less,
the range Rstrong ≈ 10−15m of the strong interaction is finite. That’s caused
by the self-interactions of gluon fields. The strength of these self-interactions
is proportional to the strong coupling constant g in the 3-gluon-vertex, and



654 29 Elektroweak Interaction

it is proportional to the square g2 of the strong coupling constant in the
4-gluon-vertex, see the strong Lagrangian L = (28.22) on page 650.

If the weak interaction shall as well be described by a gauge theory, then
it should consequently as well be a non-Abelian gauge theory, because then
it’s range will be finite. And it’s coupling constant should be approximately
one-thousand times larger than the strong coupling constant, to adjust the
interaction range according to (3). But that’s incompatible with (2): The
weak interaction shall not be 10+3 times stronger, but it shall be weaker
than the strong interaction by a factor 10−5.
Obviously the range and the strength of the weak interaction must be

somehow decoupled in the theory. We have clarified already for the example
of Yukawa-theory in chapter 23, how that can be done: The range of an
interaction will be R, if it is mediated by massive bosons with rest-energy

Mc2 (23.7)
≈ ~c

R
≈ ~c

10−18m ≈ 200GeV . (29.1)

Actually the rest masses of the bosons, which eventually were detected
as the medium of weak interactions, are about 80GeV/c2 and 91GeV/c2.
But this solution comes with a new problem: Yukawa-theory isn’t a gauge
theory, because the gauge fields of a gauge theory must be mass-less. This
fact is easily proved:

In the Lagrangian of any field, the mass of the field always is a factor in the
product of the field’s amplitude and the adjoint field’s amplitude. Consider
for example the QCD Lagrangian L = (28.22): In the term mAc

2ψAψA
the masses of the various quark flavors A are showing up. Or consider
the Lagrangian L = (10.10) of the Klein-Gordon field with the mass-term
m2c4ψ+ψ.

Assuming massive gauge-fields, we accordingly should for example insert
terms like mWjc

2WjµW
µ
j into the QCD Lagrangian L = (28.22). Under

a gauge transformation these terms would be transformed according to
(28.13). Thereby terms like ig(dρU)U †/~ would show up, which could not
be compensated by appropriate transformation-products of quark-fields,
because these have already been completely compensated by those gaugefield-
terms which existed already before the mass-terms were inserted. Thus
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a non-zero rest mass of the gauge fields would destroy the theory’s gauge
invariance.

Eventually a construction (often called GSW-model, because it was mainly
detected by Glashow1, Salam2, and Weinberg3) has been found, in which
the requirements (1),(2),(3) became compatible: The model’s starting point
is a non-Abelian gauge theory with mass-less gauge bosons. Then the model
is postulating the existence of a further, scalar field, whose symmetry is
spontaneously broken. The gauge bosons couple to that additional scalar
field, and thereby receive an effective mass. In the sequel we will explicate
this construction step by step.

29.1 The Basis of the Representation

12 fermions (plus their 12 antiparticles) are known, which can interact
weakly, namely the 6 leptons and the 6 quarks

νe, e
−, νµ, µ

−, ντ , τ
− ; d′, u, s′, c, b′, t . (29.2)

The primes′ at three of the quarks are indicating, that they are not iden-
tical to the three quarks d, s, b appearing in QCD. Instead the quark d′

is consisting mainly of d, but it also contains small admixtures of s and
b. Correspondent explanations hold for s′ and for b′. The mixture-angles
are combined to the Cabibbo-Kobayashi-Maskawa matrix, which must be
determined experimentally.
In the GSW-model, left- and right-handed fields are carefully discerned.

In the early years of the GSW-model it was assumed that there existed
exclusively left-handed neutrinos (spin and direction of propagation are
antiparallel) and right-handed antineutrinos (spin and direction of propaga-
tion are parallel). Consequently it was assumed that neutrinos are mass-
less, for the following reason: If neutrinos had a finite mass, then we could
transform ourselves into a reference system which is overtaking the neutrino,
thus converting a left-handed neutrino into a right-handed one, and vice

1 Sheldon Lee Glashow, ∗ 1932
2 Abdus Salam, 1926 - 1996
3 Steven Weinberg, ∗ 1933
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versa. By today it is established experimentally (due to the observation of
“neutrino-oscillations”), that neutrinos must have a finite mass. That mass
is so small, however, that it could not yet be directly measured. Still we will
present the GSW-model with the additional assumption, that neutrinos have
a finite mass, and that therefore right-handed neutrinos and left-handed
antineutrinos exist.
Just as in (27.1) the state-functions of protons and neutrons have been

combined to isospin-doublets, the left-handed components of the 12 fermions
are combined to six left-handed “weak isospin-doublets”. For example, the
left-handed state-functions of the electron-neutrino and the electron are
built in the form

ψνe,L =
(

1
0

)
· restνee−,L (29.3a)

ψe−,L =
(

0
1

)
· restνee−,L (29.3b)

shorthand notation:
(
νe
e−

)
L

≡ ψνee−,L . (29.3c)

In this manner the six left-handed weak isospin-doublets(
νe
e−

)
L

,

(
νµ
µ−

)
L

,

(
ντ
τ−

)
L

;
(
u
d′

)
L

,

(
c
s′

)
L

,

(
t
b′

)
L

, (29.4)

and the corresponding six right-handed weak isospin-doublets of their an-
tiparticles are built. It is understood, that weak isospin is something different
from flavor-isospin, which we considered in chapter 27. Formally, however,
the construction is identical in both cases. Each of the doublets (29.4) is
the basis of a fundamental representation of the group SU(2), just like the
proton-neutron doublet (27.1). We use the notation T for the operator of
weak isospin. As usual, it’s three components are constructed by means of
the Pauli-matrices:

T j ≡ τ j

2 , j = 1, 2, 3 , τ j ≡ σj = (27.2) (29.5)



29.1 The Basis of the Representation 657
The weak isospin of all six doublets is T = 1/2. The weak isospin-charges
of the doublets are

g2
τ j

2 , j = 1, 2, 3 . (29.6)

Just as in case of flavor-isospin, the six functions(
νe
0

)
L

,

(
νµ
0

)
L

,

(
ντ
0

)
L

;
(
u
0

)
L

,

(
c
0

)
L

,

(
t
0

)
L

are eigenfunctions of the T 3-operator with eigenvalue +1/2, while the six
functions (

0
e−

)
L

,

(
0
µ−

)
L

,

(
0
τ−

)
L

;
(

0
d′

)
L

,

(
0
s′

)
L

,

(
0
b′

)
L

are eigenfunctions of the T 3-operator with eigenvalue −1/2. As usual, we are
using identical notation for operators and their eigenvalues, e. g. T 3 = τ3/2
is an operator, and T 3 = ±1/2 are it’s eigenvalues.
The right-handed state-functions of the fermions (29.2) are forming 12

singlets:

e−R, νeR, µ
−
R, νµR, τ

−
R , ντR ; d′R, uR, s′R, cR, b′R, tR (29.7)

Each of these singlets, and each of their antifields, is considered in the GSW-
model a basis of a fundamental representation of the group U(1), whose
generator is the weak hypercharge g1Y/2. The weak isospin of all of these
singlets is by definition T = 0, and consequently T3 = 0.
The weak hypercharge g1Y/2 is defined by the relation

Y ≡ 2q
e
− τ3 resp. Y ≡ 2q

e
− 2T 3 . (29.8)

The left equation is the operator-form of the relation, the right one the
relation’s eigenvalue-form. q is the electrical charge, e is the electrical charge
of the positron. Therefore the weak hypercharge of the three right-handed
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neutrinos is Y = 0, and the weak hypercharge of the three right-handed
electrically charged leptons is Y = −2. The weak hypercharge of uR, cR,
and tR is Y = +4/3, while the weak hypercharge of d′R, s′R, and b′R is
Y = −2/3.
The weak doublets as well carry weak hypercharges. The two equations

(29.8) shall be interpreted as matrix-equations, where appropriate. For
example, application of the operators onto the electron-doublet results into

Y

(
νe
e−

)
L

≡
(
Y 0
0 Y

)(
νe
e−

)
L

≡
(

2q
e − 1 0

0 2q
e + 1

)(
νe
e−

)
L

=

=
(
−1 0
0 −1

)(
νe
e−

)
L

= −1 ·
(
νe
e−

)
L

.

The three lepton-doublets in (29.4) have weak hypercharge Y = −1, and the
three quark-doublets have weak hypercharge Y = +1/3. We will continue to
write matrix equations in most cases in shorthand notation, like (29.8). The
correct interpretation of such equations is confided to the reader’s attention.

29.2 Electroweak Gauge-Fields

It’s a fundamental assumption of the GSW-model, that the Lagrangian of
the 6 weak interacting doublets (29.4) and the 12 weak interacting singlets
(29.7) shall be invariant under local phase transformations. That’s possible
only if the normal differential operator dµ is replaced by the covariant
differential operator

Dµ(x) ≡ dµ + i

~

g1
2 Y B0

µ(x) + i

~
g2W

j
µ(x) τ

j

2 . (29.9)

Here the respective charges g1Y/2 and g2τ
j/2 of that object shall be inserted,

onto which this operator is acting. Two examples:

Dµ e
−
R = dµe−R + i

~

g1
2 (−2)B0

µ(x) e−R (29.10a)
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Dµ

(
νe
e−

)
L

= dµ

(
νe
e−

)
L

+ i

~

g1
2 (−1)B0

µ(x)
(
νe
e−

)
L

+ i

~
g2W

j
µ(x) τ

j

2

(
νe
e−

)
L

(29.10b)

The weak hypercharge g1Y/2 is replacing the electrical charge q, and it’s
gauge-field B0(x) is replacing the gauge-field A(x) in the corresponding
definition (27.19) of QED. And the weak isospin-charges g2τ

j/2 and their
gauge-fields W j(x) are replacing the charges gτ j/2 and gauge-fields W j(x)
in the corresponding definition (27.21) of flavor-isospin gauge theory. The
flavor-isospin gauge theory never “became effective”, because it’s gauge
bosons are not observed. Therefore it should not cause confusion, if we —
in accord with most of the published literature — are using many notations
in GSW-theory, which already have been used in the flavor-isospin gauge
theory of Yang and Mills.
The GSW-model not only is postulating, that the bases of electroweak

theory are not built with the three quarks d, s, b (which are appearing in
strong interaction), but with their mixtures d′, s′, b′; it also is postulating
that the gauge fields acting in electroweak reactions are mixtures built from
the fields B0 and W j . First we mix the three fields W j (in case of W 3 the
“mixture” actually is merely a re-naming):W+

µ

W 0
µ

W−µ

 ≡ 1√
2

1 +i 0
0 0

√
2

1 −i 0


W 1

µ

W 2
µ

W 3
µ

 (29.11)

The triplet of the gauge fields (W+,W 0,W−) becomes the basis of a three-
dimensional representation of the group SU(2) with weak isospin T = 1,
while the gauge field B0 becomes the basis of a one-dimensional represen-
tation of the group U(1), whose generator is the weak hypercharge g1Y/2.
Different from the gauge fields W , which can mutually interact due to their
weak isospin, the gauge field B0 carries neither weak hypercharge nor weak
isospin. To preserve gauge-invariance, all four gauge-fields are mass-less.
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field T T 3 Y q/e = Y/2 + T 3 mass
W+ 1 +1 0 +1 0
W 0 1 0 0 0 0
W− 1 −1 0 −1 0
B0 0 0 0 0 0

(29.12)

To incorporate QED into the GSW-model, now those two gauge fields, which
carry no electrical charges, are mixed:(

Aµ
Z0
µ

)
≡
(

cos θW sin θW
− sin θW cos θW

)(
B0
µ

W 0
µ

)
(29.13)

A(x) is the electromagnetic gauge field of QED. The angle θW of the
orthogonal rotation (29.13) is called Weinberg-angle. According to the
GSW-model, not the fields W 1,W 2,W 3, B0 but the fields W+,W−, Z0, A
are the physical, observable gauge fields of the electroweak interaction.
We define the ladder-operators

τ+ ≡ 1
2
(
τ1 + iτ2

)
τ− ≡ 1

2
(
τ1 − iτ2

)
(29.14)

and compute
√

2(W+
µ τ
− +W−µ τ

+) =

= 1
2
(
W 1
µτ

1 + i(−W 1
µτ

2 +W 2
µτ

1) +W 2
µτ

2 +

+W 1
µτ

1 + i(+W 1
µτ

2 −W 2
µτ

1) +W 2
µτ

2
)

=

= W 1
µτ

1 +W 2
µτ

2 . (29.15)

Using this result, and using Y (29.8)= 2q/e − τ3, the covariant differential
operator of the GSW-model becomes

Dµ
(29.9)= dµ + i

~

g1
2 (2q/e− τ3)(Aµ cos θW − Z0

µ sin θW ) +

+ i

~

( g2√
2

(W+
µ τ
− +W−µ τ

+) + g2(Aµ sin θW + Z0
µ cos θW ) τ

3

2
)

=



29.2 Electroweak Gauge-Fields 661

= dµ + i

~
√
g2

1 + g2
2

(g1g2
2

2q
e
−g1g2

2 τ3 + g1g2
2 τ3︸                        ︷︷                        ︸

0

)
Aµ +

+ i

~
√
g2

1 + g2
2

(
− g2

1
2

2q
e

+ g2
1
2 τ3 + g2

2
2 τ3

)
Z0
µ + i

~

g2√
2

(W+
µ τ
− +W−µ τ

+) .

(29.16)

The gauge field A(x) must show up in the covariant differential operator
only as a term iqA/~, if the model shall be compatible with QED. Therefore
the positrons’s electrical charge e and the weak coupling constants g1 snd
g2 resp. the Weinberg-angle θW are constrained by the following condition:

e = g1g2√
g2

1 + g2
2

= g1 cos θW = g2 sin θW (29.17)

As the values of the two coupling constants are not fixed from the outset,
the value of the Weinberg angle as well can not be computed from this
relation. Instead it is one of the parameters of the model, which must be
determined experimentally. From observations, the value sin2 θW ≈ 0.22
has been extracted.
By insertion of condition (29.17), the covariant differential operator be-

comes

Dµ = dµ + i

~
qAµ + i

~

g2√
2

(W+
µ τ
− +W−µ τ

+) +

+ i

~
√
g2

1 + g2
2

(
− g2

1q

e
+ g2

1 + g2
2

2 τ3
)
Z0
µ .

(29.18)

The term with Aµ, and the QED Feynman-diagrams resulting from it, are
well-known to us from chapters 24 and 26.

From (29.17) and (29.18) it’s obvious, that electrical and weak charges
have the same dimension, and that the electrical and the weak gauge fields
have the same dimension:
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[q] = [e] = [g1] = [g2] = electroweak charge (29.19a)

[Aµ] = [W+
µ ] = [W−µ ] = [Z0

µ] = momentum
electroweak charge (29.19b)

The terms with the gauge-fields W+ and W− are acting exclusively onto
the fermions of the left-handed weak doublets (29.4) (resp. of the right-
handed doublets of their antiparticles), because only these fermions carry
weak isospin-charge. These terms are resulting into diagrams like

dL

uL

νeL

e−L

W− or
uL

dL

ν̄eR

e+
R

W+
,

which for example are encountered in the β−- or β+-decays of atomic nuclei.
Such diagrams are called “charged currents”, because the weak gauge-fields
W+ and W− carry electric charges.
From the last term of the covariant differential operator, uncharged

currents like
uL

uL

νeR

νeR

Z0 uL

uL

e−R

e−R

Z0 νµL

νµL

e−R

e−R

Z0

are resulting. As the gauge bosons W+,W−, Z0 carry weak isospin-charges,
they also can interact mutually.
The model, as far as we have described it up to now, is representing all

phenomena of the electromagnetic and the weak interactions qualitatively
correct. Quantitatively, however, it is a correct description only of the
electromagnetic interaction. If we want to describe also the weak interaction
quantitatively correct, we must assign masses to the three gauge-fields
W+,W−, Z0. How that can be done without destruction of gauge invariance,
will be discussed in the next section.

29.3 The Higgs-Mechanism

The vacuum-state |0〉 is defined by the condition

|0〉 ⇐⇒ ak |0〉 = 〈0| b†k = 0 ∀k . (29.20a)
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Hence the vacuum state and the state of lowest energy of the field are
identical. Usually the expectation value of a field is zero in the vacuum
state. Example: The vacuum expectation value of a free, quantized Klein-
Gordon field is

〈0|φ(x) |0〉 =(15.15a)∑
k

1√
2~ωkΩ

(
〈0| ak |0〉 exp{−ikx}+

+ 〈0| b†k |0〉 exp{+ikx}
)

= 0 . (29.20b)

But this is not necessarily the case for all fields. In this section we will
encounter a field with

|〈0|φ(x) |0〉| = f , 0 . (29.20c)

This may happen, if the state |0〉 of lowest energy does not possess the
complete symmetry of the Lagrangian. This case is called “spontaneously
broken symmetry”.
The classical example for a spontaneously broken symmetry is the ferro-

magnet: Below the Curie-temperature Tc it’s macroscopic magnetization
M spontaneously assumes a certain direction in space, even though it’s
Lagrangian is isotropic. The ferromagnet’s free energy G can be described
by

G

M

T>Tc

T<Tc

G = αM2 + βM4


α > 0 if T > Tc

α < 0 if T < Tc

β > 0 always .
(29.21)

The Lagrangian of the Klein-Gordon field is

L (10.10)= c2~2(dµφ†)dµφ︸                ︷︷                ︸
T

−m2c4φ†φ︸        ︷︷        ︸
U

. (29.22)

In this expression, T is the density of kinetic energy, and U is the density of
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potential energy, see (3.24). Guided by the example (29.21), we now define
the Lagrangian of a scalar field with spontaneously broken symmetry:

L ≡ c2~2(Dµ φ)†Dµ φ−
(
αφ†φ+ β(φ†φ)2

)
(29.23)

α ≡ −m
2c4

2 < 0 β ≡ +m2c4

4f2 > 0

[m] = mass [f ] =
√

1
energy · volume

As this Lagrangian shall be gauge-invariant, instead of dµ the covariant
differential operator Dµ = (29.18) has been inserted. φ(x) shall be a complex
scalar field:

φ =
√

1
2 (φ1 + iφ2) = |φ| eiρ , φ1, φ2, ρ ∈ R

φ†φ = |φ|2 = 1
2 (φ2

1 + φ2
2)

[φ] =(10.12)
√

1
energy · volume (29.24)

The factor
√

1/2 has been included into this definition, because we later
will interpret the real components φj as elementary fields, and therefore give
them from start on the correct normalization. We compute the minimum
of the potential energy:

d
d |φ|

(
φ†φ+ β

α
(φ†φ)2

)
= 2|φ| − 4

2f2 |φ|
3 = 0

=⇒ U has extrema at |φ| = 0 and |φ| = f . (29.25)

The potential, which in figure 29.1 on the next page is indicated only for
φ1 = 0 resp. for the polar angles ρ = π/2 and ρ = 3π/2, has at arbitrary
values of ρ a form which resembles the bottom of a wine-bottle. Sometimes
the form is also compared to a sombrero. All points |φ| exp{iρ} with |φ| = f
and arbitrary ρ, which are indicated by the dashed circle, are equivalent
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U

φ1

φ2

f
√

2
ρ

Fig. 29.1 : The potential U as
function of the fields
φ1 and φ2 .

minima, which are defining states |0〉 of lowest energy according to condition
(29.20c). Therefore 〈0|φ(x) |0〉 = f exp{iρ} , 0 holds for the field φ. The
field φ will assume in the state of lowest energy spontaneously a certain polar
angle ρ, and thus break the symmetry of the Lagrangian (29.23) (which is
independent of ρ), just as the magnetization of a ferromagnet assumes at
T < Tc spontaneously a certain direction.
φ = (φ1 + iφ2)/

√
2 is replaced in the GSW-model by the weak isospin-

doublet

φ(x) ≡
√

1
2

(
φ3(x) + iφ4(x)
φ1(x) + iφ2(x)

)
with φ1, φ2, φ3, φ4 ∈ R . (29.26)

To this doublet the weak isospin T = 1/2 is assigned, with

T 3
(
φ3(x) + iφ4(x)

0

)
= +1

2

(
φ3(x) + iφ4(x)

0

)
(29.27a)

T 3
(

0
φ1(x) + iφ2(x)

)
= −1

2

(
0

φ1(x) + iφ2(x)

)
. (29.27b)

But no electric charge is assigned to φ. Therefore it’s weak hypercharge is

Y

(
φ3(x) + iφ4(x)
φ1(x) + iφ2(x)

)
(29.8)=

(
−1 0
0 +1

)(
φ3(x) + iφ4(x)
φ1(x) + iφ2(x)

)
. (29.28)

Same as T 3, the hypercharge is well-defined only (i. e. φ is an eigenvector of
the operator Y only) if the upper or the lower component of the isospinor
is zero.
In figure 29.1 we now would have to display U as a function in a four-di-
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mensional space spanned by the four real fields φ1, φ2, φ3, φ4. The minimum
is a circle in with equation

φ2
1 + φ2

2 + φ2
3 + φ2

4 = 2f2 . (29.29)

The field φ(x) will assume in the state φ0(x) of lowest energy spontaneously
a certain point on that four-dimensional circle. Without loss of generality
we may shift this point onto the φ1-axis, such that

φ0(x) =(29.26)
√

1
2

(
0 + i0

f
√

2 + i0

)
=
(

0
f

)
. (29.30)

This is always possible, because in any case the coordinates of the four-
dimensional plane can be rotated such (i. e. linear combinations of the four
fields φ1 . . . φ4 can be formed such) that (29.30) results.

We define four fields φ̃i(x) as excitations of φ(x) from the field’s state of
lowest energy φ0(x) :

φ(x) ≡ φ0(x) + 1√
2

(
φ̃3(x) + iφ̃4(x)
φ̃1(x) + iφ̃2(x)

)
= 1√

2

(
φ̃3(x) + iφ̃4(x)

f
√

2 + φ̃1(x) + iφ̃2(x)

)
with φ̃1, φ̃2, φ̃3, φ̃4, f ∈ R (29.31)

These are inserted into the Lagrangian (29.23):

L =(29.23)
c2~2(Dµ φ

†) Dµ φ+ m2c4

2 φ†φ− m2c4

4f2 (φ†φ)2 (29.32a)

=(29.26) 4∑
i=1

c2~2

2 (Dµ φi)†Dµ φi + m2c4

4

4∑
i=1

φiφi −
m2c4

16f2

( 4∑
i=1

φiφi
)2

(29.32b)

=(29.31) 4∑
i=1

c2~2

2 (Dµ φ̃i)†Dµ φ̃i + m2c4

4
( 4∑
i=1

φ̃iφ̃i +
√

8fφ̃1 + 2f2
)
−

− m2c4

16f2

( 4∑
i=1

φ̃iφ̃i +
√

8fφ̃1 + 2f2
)2
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=
4∑
i=1

c2~2

2 (Dµ φ̃i)†Dµ φ̃i −
m2c4

2 (φ̃1)2 − m2c4

16f2

( 4∑
i=1

φ̃iφ̃i
)2
−

− m2c4

f
√

8
φ̃1

4∑
i=1

φ̃iφ̃i + m2c4f2

4 (29.32c)

It’s plausible to consider the φi respectively φ̃i in (29.32b) as the true
elementary fields, and the weak isospinor φ(x) just as a combination of
elementary fields, like e. g. ( νee− )L is just a weak isospinor built from the
elementary fields νe,L and e−L .
Bilinear field dependence with a negative coefficient is the hallmark of

mass terms in a Lagrangian. The only term of that type is −m2c4(φ̃1)2/2.
Thus φ̃1 is the only massive field in in (29.32c). It’s mass is m, as can be
concluded from the Lagrangian (10.33) of the real Klein-Gordon field. The
two next terms can not be interpreted as mass terms, because they are not
quadratic in the field-amplitudes. They are describing self-interactions of
the fields. Remember that we encountered similar self-interaction terms
when we investigated ψ3- and ψ4-theory in chapter 20. Thus the Lagrangian
(29.32c) is describing a massive real boson field φ̃1 and three mass-less real
boson fields φ̃2, φ̃3, φ̃4. The three massless bosons are called “Goldstone-
bosons”.
Note that we kept the † (which is marking the adjoint) at the factors

(Dµ φ̃i)†, because only the fields φi resp. φ̃i are real, while the gauge fields
are complex.
The weak isospinor φ(x) = (29.31) can be written in two forms:

φ(x) ≡ 1√
2

(
φ̃3(x) + iφ̃4(x)

f
√

2 + φ̃1(x) + iφ̃2(x)

)
≡

≡ 1√
2

exp
{
iρj(x)τ

j

2
}( 0

f
√

2 + χ(x)

)
(29.33)

φ̃1, φ̃2, φ̃3, φ̃4, ρj , f, χ ∈ R , j = 1, 2, 3

This is true, because the weak isospinor with length f
√

2 + χ(x), which is
orientated in negative T 3-direction, can be rotated by means of the rotation-



668 29 Elektroweak Interaction

operator exp{iρj(x) τ j/2} into any desired direction of weak isospin-space.
In both notations, the weak isospinor φ(x) has four degrees of freedom,
which can be parametrized either by φ̃1, φ̃2, φ̃3, φ̃4 or by ρ1, ρ2, ρ3, χ.

The cardinal point of the Higgs-mechanism is the postulate, that the
Lagrangian (29.32) firstly shall be invariant under local U(1) phase-transfor-
mations exp{iK(x) g1Y/2}, whose generator is the weak hypercharge g1Y/2,
and secondly shall be invariant under local rotations exp{iKj(x) g2τ

j/2}
in weak isospin-space, whose generators are the three weak isospin-charges
g2τ

j/2. For this reason, we have replaced the simple derivatives dµ by the
covariant derivatives Dµ = (29.9) resp. Dµ = (29.18).
In electrodynamics, the freedom to choose an arbitrary gauge can for

example be used, to eliminate by means of the Coulomb-gauge the unphysical
degrees of freedom of longitudinal and time-like polarizations of the photon-
field. In the same manner we now make use of the invariance of the field
φ(x) under local rotations in weak isospin-space to choose the gauge

exp{iKj(x) g2τ
j/2} ≡ exp{−iρj(x) τ j/2} . (29.34)

This gauge is called “unitarity gauge”, or sometimes “unitary gauge”. In
this gauge the field assumes the form

φ(x) (29.33)= 1√
2

(
0

f
√

2 + χ(x)

)
with f, χ ∈ R . (29.35)

As only the doublet’s bottom component is different from zero, the spinor
is in the gauge (29.34) an eigenvector of the hypercharge operator with
eigenvalue Y (29.28)= + 1, and hence because of q/e = Y/2 + T 3 = 0 it also is
an eigenvector of τ3/2 with eigenvalue T 3 = −1/2.

Comparing (29.33) with (29.35), we see that the three massless Goldstone-
bosons φ̃2, φ̃3, φ̃4 have disappeared. This means: Like the Coulomb-gauge
revealed that longitudinal polarization degrees of freedom are unphysical
in case of photons, now the gauge transformation (29.34) has revealed that
the three Goldstone-bosons are unphysical degrees of freedom. But degrees
of freedom impossibly can simply disappear. In the sequel we will recover
the three missing degrees of freedom as additional degrees of freedom of
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the gauge fields, i. e. the spontaneous break of symmetry has shifted three
degrees of freedom from the Goldstone-bosons to the gauge bosons.
By choice of the gauge (29.34), the Lagrangian (29.32c) assumes the

simple form

L = LHiggs + LHGB (29.36a)

LHiggs = c2~2

2 (dµχ)†dµχ− m2c4

2 χ2 − m2c4

f
√

8
χ3 − m2c4

16f2 χ
4 +

+ m2c4f2

4 (29.36b)

LHGB ≡
c2~2

2
(
(Dµ φ)†Dµ φ− (dµφ)†dµφ

)
. (29.36c)

LHiggs is the Lagrangian of the “bare” Higgs field, which is not interacting
with other fields. But due to the χ3- and χ4-terms it is interacting with
itself. The Higgs-field χ(x) is a real boson field with mass m .
The part LHGB of the Lagrangian is describing the interaction of the

Higgs field with the weak gauge bosons W+,W−, Z0. The Higgs field can
interact with those bosons due to it’s weak isospin-charge and it’s weak
hypercharge. As the Higgs field doesn’t carry an electric charge, it does not
couple to the gauge boson A.

To make the Lagrangian invariant under local phase transformations, we
replaced the normal differential operator dµ by the covariant differential
operator

Dµ(x) (29.9)= dµ + i

~

g1
2 Y B0

µ(x) + i

~
g2W

j
µ(x) τ

j

2 . (29.37)

Here we revert to the covariant differential operator in it’s original notation
instead of the converted form (29.18), because the following computations
will be more transparent if the Pauli-matrices τ j are explicitly visible. Of
course the final result is independent of the applied notation. We compute
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2(Dµ φ)†Dµ φ = (dµχ)dµχ+
(
0 dµχ

) i
~

(g1
2 Y (B0µ −B0µ) +

+ g2(W jµ −W jµ) τ
j

2
)( 0

f
√

2 + χ

)
+
(
0 f

√
2 + χ

) 1
~2

(
g2

1
4 Y 2B0

µB
0µ + g1g2

4 Y (B0
µW

jµ +B0µW j
µ)τ j +

+ g2
2
4 W

j
µW

kµτ jτk
)( 0

f
√

2 + χ

)
. (29.38)

Here τ j† = τ j , W j†
µ = W j

µ and B0†
µ = B0

µ has been observed. Thus the
factor ∼ (0 dµχ) disappears. In the last factor we may set ( 0

f
√

2+χ ) ≈ ( 0
f
√

2 )
in good approximation, if the field differs only slightly from φ0. Using the
anticommutator of the Pauli-matrices {τ j , τk}/2 = δkj , using ( 0 f )τ1( 0

f ) =
( 0 f )τ2( 0

f ) = 0 , and using 2( 0 f )τ3( 0
f ) = −2f2 and Y = 1, we find

LHGB = f2c2

4
(

+ g2
1B

0
µB

0µ − g1g2B
0
µW

3µ − g1g2W
3
µ B

0µ + g2
2W

j
µW

jµ
)

= f2c2

4
(
− g1B

0
µ + g2W

3
µ

)(
− g1B

0µ + g2W
3µ
)

+

+ f2c2g2
2

4 (W 1
µW

1µ +W 2
µW

2µ) . (29.39)

Now we insert

2(W+
µ )†W+µ + 2(W−µ )†W−µ (29.11)=

= (W 1
µ + iW 2

µ)†(W 1µ + iW 2µ) + (W 1
µ − iW 2

µ)†(W 1µ − iW 2µ)
= W 1

µW
1µ + iW 1

µW
2µ − iW 2

µW
1µ +W 2

µW
2µ +

+W 1
µW

1µ − iW 1
µW

2µ + iW 2
µW

1µ +W 2
µW

2µ

= 2(W 1
µW

1µ +W 2
µW

2µ) (29.40)

and
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Z0
µ =(29.13) −B0

µ sin θW +W 0
µ cos θW

(29.17),(29.11)=
−g1B

0
µ + g2W

3
µ√

g2
1 + g2

2

(29.41)

and factors

1 = ζ2
+/ζ

2
+ = ζ2

−/ζ
2
− = ζ2

0/ζ
2
0 = ζ2

H/ζ
2
H

into LHGB:

LHGB =
g2

2f
2ζ2

+
4c2ζ2

H
c4 ζ

2
H
ζ2

+
W+
µ W

+µ +
g2

2f
2ζ2
−

4c2ζ2
H
c4 ζ

2
H
ζ2
−
W−µ W

−µ +

+ (g2
1 + g2

2)f2ζ2
0

4c2ζ2
H

c4 ζ
2
H
ζ2

0
Z0
µZ

0µ (29.42)

The factors ζ+, ζ−, ζ0, and ζH are normalization factors, which are fixed by
the integrals over the normalization volume Ω:

1 = 1
ζ2

+

∫
Ω

d3xW+
µ W

+µ = 1
ζ2
−

∫
Ω

d3xW−µ W
−µ =

= 1
ζ2

0

∫
Ω

d3xZ0
µZ

0µ = 1
ζ2
H

∫
Ω

d3xχ2 (29.43)

Therefore the dimensions of the normalization factors must cancel the
dimensions of the fields:

[ζ+] = [ζ−] = [ζ0] = [W±] = [Z0] (29.19)= momentum
charge (29.44a)

[ζH] = [φ] (10.12)= [χ] = [f ] (29.24),(29.23)= 1√
energy · volume

(29.44b)

From the analysis of the dimensions, we see that now mass terms of the
gauge bosons have appeared in (29.42):

[g2f ζ+
c ζH

]
=
[g2f ζ−
c ζH

]
=
[ √g2

1 + g2
2 f ζ0

c ζH

]
= mass (29.44c)
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Note that the space-like components of the mass-terms have indeed the
right, negative sign. For example: Z0

µZ
0µ = Z0

0Z
00 −Z0

jZ
0j with j = 1, 2, 3.

Consequently these are the properties of the four gauge-bosons in GSW-
theory:

field T T 3 Y q/e = Y/2 + T 3 mass
W+ 1 +1 0 +1 g2fζ+/(2c ζH)
W− 1 −1 0 −1 g2fζ−/(2c ζH)
Z0 n.d. 0 0 0

√
g2

1 + g2
2 fζ0/(2c ζH)

A n.d. 0 0 0 0

(29.45)

n.d. means “not defined”, because Z0 and A are mixtures of the fields B0

and W 3 = W 0, which don’t have identical isospin T , while the component
T 3 of both fields is zero, see table (29.12).
The mass-terms of the weak gauge-bosons have been brought about by

coupling to the field (29.33). The originally 4 degrees of freedom of that field
have been reduced to only one in the form (29.35) due to the spontaneous
break of symmetry. The 3 degrees of freedom, which there have disappeared,
now turn up again as additional polarisation-degrees of freedom of the weak
gauge-bosons. As long as these bosons were mass-less, they had — just
like the photon — only two transversal polarization-degrees of freedom.
Thanks to the mass-terms in (29.42) they now in addition can be polarized
longitudinally.
Although the weak isospin doublet φ(x) is not identical with the Higgs-

field χ(x), as is obvious from (29.35), the name Higgs-field is often applied
synonymously to both χ(x) and φ(x) in the literature. The experimentally
observable Higgs-boson with massm according to (29.36b) however is clearly
and uniquely the quantum of the field χ(x).
The GSW-model of electroweak interactions is such an intricate con-

struction, that probably nobody would take it serious, unless it had been
impressively verified by experimental observations in the recent decades.
In the year 1973 the neutral weak currents, which are mediated by the
Z0-boson, could first time be demonstrated experimentally. The direct
experimental verification of the three bosons W+, W− (mass approximately
80GeV/c2), and Z0 (mass approximately 91GeV/c2) followed in 1983. And
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in 2012, after many years of intensive search, the experimentalists eventually
announced the observation of the Higgs-boson χ with mass m ≈ 125GeV/c2.
Obviously not the theorists are to blame for the theory’s complicated struc-
ture, but Nature herself, who is not considerate of our preference for simple
theories.

29.4 ES-tensor of the Higgs field

The Higgs field χ(x) with Lagrangian LHiggs = (29.36b) is a real scalar field,
like the real Klein-Gordon field. Hence this is the Higgs field’s ES-tensor:

classical Higgs field:

T ρσ =(10.36) ∂LHiggs
∂(dρχ) d

σχ− gρσLHiggs (29.46a)

quantized Higgs field:

T ρσ =(15.18) ∂LHiggs
∂(dρχ) d

σχ− gρσLHiggs − Y (29.46b)

Y ≡ the sum of all terms in (29.46a) which do not
depend on the particle-number operators a†k ak

With Y not only the unphysical adders due to the commutators [a†k , ak] = 1
are removed, but as well the unphysical energy density caused by the last
term in (29.36b). Due to measurements of myon decay, the coupling constant
g2 could be determined. Thereby the parameter

f = 246GeV(~c)−3/2 (29.47)

could be computed from the W± mass term (29.45). With this value we get

m2c4f2

4 = (125GeV)2(246GeV)2

4(~c)3 ≈ 2 · 10 34 J
m3 . (29.48)

Comparing this value with the energy density of intergalactic vacuum as
concluded from astronomical observations [42]
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T vacuum
00 ≈ 5.4 · 10−10 J/m3 , (29.49)

we find the ratio

theory
observation = (29.48)

(29.49) ≈ 3.7 · 10 43 . (29.50)

This catastrophic mismatch confirms, that the removal of Y in (29.46b)
indeed is a sensible measure.

29.5 Fermion Mass

Until now we described all free (i. e. not interacting) elementary fields with
spin 1/2, i. e. all leptons and all quarks, by a Lagrangian of the form

L0
(8.24)= ψ (i~cγνdν −mc2)ψ , (29.51)

from which the Dirac equation

(i~cγµdµ −mc2)ψ (8.5)= 0 (29.52)

can be derived. ψ(x) is a four-component spinor field. Inserting explicitly
the γ-matrices (8.15), the Dirac equation is

(i~c
(

0 1

1 0

)
d0 + i~c

(
0 σk

−σk 0

)
dk −mc2)ψ =

=
(

−mc2 i~c(d0 + σkdk)
i~c(d0 − σkdk) −mc2

)
ψ = 0 , (29.53)

with σk being the 2× 2-component Pauli matrices. If the rest energy mc2

is zero or negligible, then the four-component Dirac equation decouples into
the Weyl equations (8.115):

i~c(d0 − σkdk)
(
L1
L2

)
= 0 , i~c(d0 + σkdk)

(
R1
R2

)
= 0 (29.54)
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( L1
L2

) is a two-component left-handed Weyl-spinor, and (R1
R2

) is a two-com-
ponent right-handed Weyl-spinor.
Now in the GSW-model of electroweak interaction, as outlined in the

previous sections, the fermion fields are strictly divided into the left-handed
weak isospin doublets (29.4) and the right-handed singlets (29.7). A free-
field Lagrangian like (29.51) is not compatible with the GSW-model, because
the mass term mixes the left- and right-handed components of the Dirac
spinor ψ(x).
If we want to achieve a fermion theory, which is compatible with the

GSW-model, then the free fermion fields must be mass-less:

L0 = ψ i~cγνdν ψ (29.55)

The masses of the fermions then can be introduced by interaction with the
Higgs field. As the Higgs field is no gauge field, it is not introduced due
to a covariant differential operator. Instead an interaction term can be
introduced e. g. for the up- and down-quarks like this:

Lint = −λd

[(
ψu
ψd

)
L

 0
f + χ√

2


︸           ︷︷           ︸

(29.35)

ψdR + ψdR

 0
f + χ√

2

†(ψu
ψd

)
L

]
−

− λu

[(
ψd
ψu

)
L

 0
f + χ√

2

 ψuR + ψuR

 0
f + χ√

2

†(ψd
ψu

)
L

]
= −(f + χ√

2
)
(
λd ψdLψdR + λd ψdRψdL +

+ λu ψuLψuR + λu ψuRψuL
)

(29.56a)

0 < λd ∈ R , 0 < λu ∈ R

λd and λu are new coupling constants. Because of

[L] = energy
volume , [ψψ] = 1

volume , [χ] = [f ] = 1√
energy · volume

,
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these coupling constants must have the dimension

[λ] = energy3/2 · volume1/2 . (29.56b)

Due to λdf > 0 and λuf > 0 being positive constants, the terms ∼ f in Lint
indeed are mass terms, assigning masses md = λdf/c

2 and mu = λuf/c
2 to

the quarks. In contrast, the terms ∼ χψψ in Lint are no mass terms but
interaction terms, as they do not depend bilinearly on the fields.
This is the corresponding expression for the electron and the electron-

neutrino:

Lint = −λe

[(
ψνe
ψe

)
L

 0
f + χ√

2

 ψeR + ψeR

 0
f + χ√

2

†(ψνe
ψe

)
L

]
−

− λνe

[(
ψe
ψνe

)
L

 0
f + χ√

2

 ψνeR + ψνeR

 0
f + χ√

2

†(ψe
ψνe

)
L

]
= −(f + χ√

2
)
(
λe ψeLψeR + λe ψeRψeL +

+ λνe ψνeLψνeR + λνe ψνeRψνeL
)

(29.57)

As the masses of the experimentally observed fermions differ widely, different
coupling constants λ are needed for each fermion flavor. All of them must
be determined experimentally, as the Standard Model does not give us any
clue of their value nor any reason why not all fermions couple to the Higgs
field with equal strength.
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Appendix

A.1 Derivation of Equation (6.65)

We substitute the indices r, r′ by

m ≡ r − j − 1 and m′ ≡ r′ − j − 1 . (A.1)

Furthermore we will write all summations explicitly (i.e. we suspend the
summation convention) from now on until (including) equation (A.6).

φ
(j)
m′
′ (6.64)=

j∑
m=−j

D
(j)
m′mφ

(j)
m

(6.56a)=
j∑

m=−j
D

(j)
m′mN

(j)
m uj−mvj+m

(6.62)= N
(j)
m′ (au+ bv)j−m′(−b∗u+ a∗v)j+m′ (A.2)

The summation is running over m only, but not over m′. Using the binomial
theorem, one finds:

j∑
m=−j

D
(j)
m′m

N
(j)
m

N
(j)
m′

uj−mvj+m = (au+ bv)j−m′(−b∗u+ a∗v)j+m′

=
j−m′∑
k=0

(j −m′)!
k!(j −m′ − k)! (au)j−m′−k(bv)k·

·
j+m′∑
l=0

(j +m′)!
l!(j +m′ − l)! (−b

∗u)j+m′−l(a∗v)l

=
j−m′∑
k=0

j+m′∑
l=0

(j −m′)!
k!(j −m′ − k)!

(j +m′)!
l!(j +m′ − l)! ·

· aj−m′−kbk(−b∗)j+m′−la∗lu2j−k−lvk+l (A.3)
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The products upvq with different powers of p, q are linearly independent from
another. Therefore the left and the right side of the equation must equal for
each summand, if j −m = 2j − k − l and j +m = k + l. Both conditions
are fulfilled, if m = −j + k + l. Therefore we introduce a new parameter m
on the equation’s right side due to the substitution l ≡ j − k +m:

j∑
m=−j

D
(j)
m′m

N
(j)
m

N
(j)
m′

uj−mvj+m

=
j−m′∑
k=0

k+m′∑
m=k−j

(j −m′)!
k!(j −m′ − k)!

(j +m′)!
(j − k +m)!(m′ + k −m)! ·

· aj−m′−kbk(−b∗)m′+k−ma∗j−k+muj−mvj+m (A.4)

The faculty of integers is by definition

z! ≡ 1 · 2 · 3 · . . . · (z − 1) · z if z > 0
z! ≡ 1 if z = 0
z! ≡ ±∞ if z < 0

 z ∈ Z . (A.5)

Using this definition, the limits of the summation over m may be shifted to
±j. Furthermore — because the summation over m now does not depend
on k any more — the sequence of the both summations may be changed:

j∑
m=−j

D
(j)
m′m

N
(j)
m

N
(j)
m′

uj−mvj+m

=
j∑

m=−j

j−m′∑
k=0

(j −m′)!
k!(j −m′ − k)!

(j +m′)!
(j − k +m)!(m′ + k −m)! ·

· aj−m′−kbk(−b∗)m′+k−ma∗j−k+muj−mvj+m (A.6)

This is correct, because all of the additional terms with m < k − j and
with m > k +m′ are zero, as there are the factors (j − k +m)! = ±∞ resp.
(m′ + k −m)! = ±∞ in their denominators.

As same powers of upvq must equal, one gets:
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D
(j)
m′m =

j−m′∑
k=0

(j −m′)!
k!(j −m′ − k)!

(j +m′)!
(j − k +m)!(m′ + k −m)! ·

·
N

(j)
m′

N
(j)
m

· aj−m′−kbk(−b∗)m′+k−ma∗j−k+m (A.7)

Inserting the normalization factors (6.56b), the final result becomes:

D
(j)
m′m=

j−m′∑
k=0

√
(j −m′)!(j +m′)!(j +m)!(j −m)!

k!(j −m′ − k)!(j − k +m)!(m′ + k −m)! ·

· aj−m′−kbk(−b∗)m′+k−ma∗j−k+m
(A.8)

Now we switch back to the previous indices

r = j + 1 +m , r′ = j + 1 +m′ , (A.9)

and find equation (6.65):

D
(j)
r′r=

2j+1−r′∑
k=0

√
(2j + 1− r′)!(r′ − 1)!(r − 1)!(2j + 1− r)!

k!(2j + 1− r′ − k)!(−k + r − 1)!(r′ + k − r)! ·

· a2j+1−r′−kbk(−b∗)r′+k−ra∗−k+r−1

A.2 Auxiliary Calculation for (6.67)

D
(0)
00 =

0∑
k=0

√
0!0!0!0!

k!(−k)!(−k)!k! · a
−kbk(−b∗)ka∗−k = 1 (A.10)

D
( 1

2 )
− 1

2−
1
2

=
1∑

k=0

√
1!0!0!1!

k!(1− k)!(−k)!k! · a
1−kbk(−b∗)ka∗−k = a (A.11a)

D
( 1

2 )
− 1

2
1
2

=
1∑

k=0

√
1!0!1!0!

k!(1− k)!(1− k)!(k − 1)! · a
1−kbk(−b∗)k−1a∗1−k = b

(A.11b)
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D
( 1

2 )
1
2−

1
2

=
0∑

k=0

√
0!1!0!1!

k!(−k)!(−k)!(1 + k)! · a
−kbk(−b∗)1+ka∗−k = −b∗ (A.11c)

D
( 1

2 )
1
2

1
2

=
0∑

k=0

√
0!1!1!0!

k!(−k)!(1− k)!k! · a
−kbk(−b∗)ka∗1−k = a∗ (A.11d)

D
(1)
−1−1 =

2∑
k=0

√
2!0!0!2!

k!(2− k)!(−k)!k! ·

· a2−kbk(−b∗)ka∗−k = a2 (A.12a)

D
(1)
−10 =

2∑
k=0

√
2!0!1!1!

k!(2− k)!(1− k)!(−1 + k)! ·

· a2−kbk(−b∗)−1+ka∗1−k =
√

2ab (A.12b)

D
(1)
−11 =

2∑
k=0

√
2!0!2!0!

k!(2− k)!(2− k)!(k − 2)! ·

· a2−kbk(−b∗)k−2a∗2−k = b2 (A.12c)

D
(1)
0−1 =

1∑
k=0

√
1!1!0!2!

k!(1− k)!(−k)!(k + 1)! ·

· a1−kbk(−b∗)k+1a∗−k = −
√

2ab∗ (A.12d)

D
(1)
00 =

1∑
k=0

√
1!1!1!1!

k!(1− k)!(1− k)!k! ·

· a1−kbk(−b∗)ka∗1−k = aa∗ − bb∗ (A.12e)

D
(1)
01 =

1∑
k=0

√
1!1!2!0!

k!(1− k)!(2− k)!(k − 1)! ·

· a1−kbk(−b∗)k−1a∗2−k =
√

2ba∗ (A.12f)

D
(1)
1−1 =

0∑
k=0

√
0!2!0!2!

k!(−k)!(−k)!(2 + k)! ·

· a−kbk(−b∗)2+ka∗−k = b∗2 (A.12g)
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D
(1)
10 =

0∑
k=0

√
0!2!1!1!

k!(−k)!(1− k)!(1 + k)! ·

· a−kbk(−b∗)1+ka∗1−k = −
√

2b∗a∗ (A.12h)

D
(1)
11 =

0∑
k=0

√
0!2!2!0!

k!(−k)!(2− k)!k! ·

· a−kbk(−b∗)ka∗2−k = a∗2 (A.12i)

D
( 3

2 )
− 3

2−
3
2

=
3∑

k=0

√
3!0!0!3!

k!(3− k)!(−k)!k! ·

· a3−kbk(−b∗)ka∗−k = a3 (A.13a)

D
( 3

2 )
− 3

2−
1
2

=
3∑

k=0

√
3!0!1!2!

k!(3− k)!(1− k)!(−1 + k)! ·

· a3−kbk(−b∗)−1+ka∗1−k =
√

3a2b (A.13b)

D
( 3

2 )
− 3

2
1
2

=
3∑

k=0

√
3!0!2!1!

k!(3− k)!(2− k)!(−2 + k)! ·

· a3−kbk(−b∗)−2+ka∗2−k =
√

3ab2 (A.13c)

D
( 3

2 )
− 3

2
3
2

=
3∑

k=0

√
3!0!3!0!

k!(3− k)!(3− k)!(−3 + k)! ·

· a3−kbk(−b∗)−3+ka∗3−k = b3 (A.13d)

D
( 3

2 )
− 1

2−
3
2

=
2∑

k=0

√
2!1!0!3!

k!(2− k)!(−k)!(k + 1)! ·

· a2−kbk(−b∗)k+1a∗−k = −
√

3a2b∗ (A.13e)

D
( 3

2 )
− 1

2−
1
2

=
2∑

k=0

√
2!1!1!2!

k!(2− k)!(1− k)!k! ·

· a2−kbk(−b∗)ka∗1−k = a2a∗ − 2abb∗ (A.13f)
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D
( 3

2 )
− 1

2
1
2

=
2∑

k=0

√
2!1!2!1!

k!(2− k)!(2− k)!(k − 1)! ·

· a2−kbk(−b∗)k−1a∗2−k = 2aba∗ − b2b∗ (A.13g)

D
( 3

2 )
− 1

2
3
2

=
2∑

k=0

√
2!1!3!0!

k!(2− k)!(3− k)!(k − 2)! ·

· a2−kbk(−b∗)k−2a∗3−k =
√

3b2a∗ (A.13h)

D
( 3

2 )
1
2−

3
2

=
1∑

k=0

√
1!2!0!3!

k!(1− k)!(−k)!(2 + k)! ·

· a1−kbk(−b∗)2+ka∗−k =
√

3ab∗2 (A.13i)

D
( 3

2 )
1
2−

1
2

=
1∑

k=0

√
1!2!1!2!

k!(1− k)!(1− k)!(1 + k)! ·

· a1−kbk(−b∗)1+ka∗1−k = −2ab∗a∗ + bb∗2 (A.13j)

D
( 3

2 )
1
2

1
2

=
1∑

k=0

√
1!2!2!1!

k!(1− k)!(2− k)!k! ·

· a1−kbk(−b∗)ka∗2−k = aa∗2 − 2bb∗a∗ (A.13k)

D
( 3

2 )
1
2

3
2

=
1∑

k=0

√
1!2!3!0!

k!(1− k)!(3− k)!(k − 1)! ·

· a1−kbk(−b∗)k−1a∗3−k =
√

3ba∗2 (A.13l)

D
( 3

2 )
3
2−

3
2

=
0∑

k=0

√
0!3!0!3!

k!(−k)!(−k)!(3 + k)! ·

· a−kbk(−b∗)3+ka∗−k = −b∗3 (A.13m)

D
( 3

2 )
3
2−

1
2

=
0∑

k=0

√
0!3!1!2!

k!(−k)!(1− k)!(2 + k)! ·

· a−kbk(−b∗)2+ka∗1−k =
√

3b∗2a∗ (A.13n)
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D
( 3

2 )
3
2

1
2

=
0∑

k=0

√
0!3!2!1!

k!(−k)!(2− k)!(1 + k)! ·

· a−kbk(−b∗)1+ka∗2−k = −
√

3b∗a∗2 (A.13o)

D
( 3

2 )
3
2

3
2

=
0∑

k=0

√
0!3!3!0!

k!(−k)!(3− k)!k! · a
−kbk(−b∗)ka∗3−k = a∗3 (A.13p)

A.3 The Number of Free Parameters of SL(2,C)

The elements of the group SL(2,C) are 2×2-matrices with complex elements:(
aeiα beiβ

ceiγ deiδ

)
with a, b, c, d, α, β, γ, δ ∈ R (A.14)

The 8 real parametes of these matrices are restricted by the conditions for
the determinant:

det
(
aeiα beiβ

ceiγ deiδ

)
= adei(α+δ) − bcei(β+γ) = 1

=⇒
{ ad cos(α+ δ)− bc cos(β + γ) = 1
ad sin(α+ δ)− bc sin(β + γ) = 0 (A.15)

We want to compute, how many real parameters are needed to determine
uniquely a generic element of SL(2,C). For that purpose we consider four
cases:

1st Case: a = 0 , b, c, d , 0
The condition for the determinant is

−bcei(β+γ) (A.15)= 1

=⇒
{ c= −b−1e−i(β+γ)

γ = −β + π/2± π/2 . (A.16)

In this case, the most general form of an element in SL(2,C) is
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0 beiβ

−b−1ei(−β+π/2±π/2) deiδ

)
(A.17)

There are 4 free parameters plus a double-valued phase. Obviously there
is the same number of free parameters, whenever exactly one of the four
parameters a, b, c, d is zero, no matter which one.

2nd Case: a, b, c, d , 0 , cos(α+ δ) = 0
The condition is

−bc cos(β + γ) (A.15)= 1 (A.18)

±ad− bc sin(β + γ) (A.15)= 0

=⇒



c= 1
−b cos(β + γ)

d= ± a−1b
1

−b cos(β + γ) sin(β + γ)

= ei(
π
2±

π
2 )a−1 sin(β + γ)

cos(β + γ) .

(A.19)

Because of δ = −α± π/2, the most general form of an element in SL(2,C)
in this case is (

aeiα beiβ

−b−1 1
cos(β+γ)e

iγ a−1 sin(β+γ)
cos(β+γ)e

i(−α+π
2±π)

)
. (A.20)

There are 5 free parameters, plus a double-valued phase. In the case
cos(β + γ) = 0, there obviously are the same number of free parameters.

3rd Case: a, b, c, d , 0 , sin(α+ δ) = 0
In this case, there must be sin(β+γ) = 0 as well. Therefore δ = −α+ π

2 ±
π
2

and γ = −β + π
2 ±

π
2 must hold, and consequently

adei(
π
2±

π
2 ) − bcei(

π
2±

π
2 ) (A.15)= 1

=⇒ d = (1 + bcei(
π
2±

π
2 ))a−1e−i(

π
2±

π
2 ) (A.21)
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Note, that the two undetermined phases are resulting from two independent
sources: The one is resulting from γ = −β + π

2 ±
π
2 , the other from δ =

−α + π
2 ±

π
2 . Only phase-factors, which are resulting from the identical

source, may be charged against one another. The most general form of an
element in SL(2,C) in this case is(

aeiα beiβ

cei(−β+π
2±

π
2 ) (1 + bcei(

π
2±

π
2 ))a−1ei(−α)

)
. (A.22)

There are 5 free parameters, and a double-valued phase. While the double-
valued phase is showing up in two elements, it is actually in both terms
resulting from γ = −β+ π

2 ±
π
2 , and thus is merely one single indeterminacy.

4th Case: a, b, c, d , 0 ,
cos(α+ δ), sin(α+ δ), cos(β + γ), sin(β + γ) , 0
From the condition for the determinant follows

d
(A.15)= 1 + bc cos(β + γ)

a cos(α+ δ) (A.23)

c
(A.15)=

a1+bc cos(β+γ)
a cos(α+δ) sin(α+ δ)

b sin(β + γ) (A.24)

Thus one finds

c = 1 + bc cos(β + γ) sin(α+ δ)
cos(α+ δ)b sin(β + γ)

=
(

cos(α+ δ)b sin(β + γ)− b cos(β + γ) sin(α+ δ)
)−1

(A.25)

d = 1 + b · (A.25) · cos(β + γ)
a cos(α+ δ) (A.26)

The most general form of an element in SL(2,C) in this case is(
aeiα beiβ

(A.25)eiγ (A.26)eiδ

)
. (A.27)
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There are 6 free parameters, i.e. more than in the cases considered before.
Therefore a generic element in SL(2,C) is uniquely determined by exactly
six real parameters.

A.4 Auxiliary Calculation for (6.15)

We compute the most general form of a matrix U ∈ SU(2), considering the
boundary conditions (6.13) and (6.14). We consider two cases for a.

1st Case: a = 0

detU (6.13)= − bc = +1 =⇒ b , 0 , c = −1
b

(A.28)

bd∗
(6.14b)= 0 =⇒ d = 0 (A.29)

bb∗
(6.14a)= 1 =⇒ b = exp{iφ} with φ ∈ R (A.30)

Thus the most general form of a matrix U ∈ SU(2) in case of a = 0 is

U =
(

0 exp{iφ}
− exp{−iφ} 0

)
with φ ∈ R . (A.31)

2nd Case: a , 0

c =(6.14c) −db
∗

a∗

d =(6.13) 1 + bc

a
= 1
a
− b

a

db∗

a∗

d
(
1 + bb∗

aa∗

)
=(6.14a) d

aa∗
= 1
a

=⇒ d = a∗ (A.32)
=⇒ c = −b∗ (A.33)

Thus the most general form of a matrix U ∈ SU(2) is
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U =
(
a b
−b∗ a∗

)
with aa∗ + bb∗

(6.14a)= 1 , (A.34)

as this form does hold both in case a , 0 and in case a = 0, see (A.31).

A.5 Auxiliary Computations for the derivation of (6.38)
and (6.40)

We define the unitary transformation

T ≡


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1

 . (A.35)

T indeed is unitary, because it’s adjoint (= transposed complex-conjugate)
transformation T † is identical to it’s inverse:

TT † =


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1




0 1 0 0√
1
2 0

√
1
2 0

−
√

1
2 0

√
1
2 0

0 0 0 1



TT † =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 =⇒ T † = T -1 (A.36)

Considering aa∗ + bb∗
(6.15)= 1, the general form of the matrices

∼
W is
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∼
W = TWT -1 (6.35)=


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1

 ·

·


aa ab ba bb
−ab∗ aa∗ −bb∗ ba∗

−b∗a −b∗b a∗a a∗b
b∗b∗ −b∗a∗ −a∗b∗ a∗a∗




0 1 0 0√
1
2 0

√
1
2 0

−
√

1
2 0

√
1
2 0

0 0 0 1



=


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1

 ·

·


ab
√

1
2 − ba

√
1
2 aa ab

√
1
2 + ba

√
1
2 bb

aa∗
√

1
2 + bb∗

√
1
2 −ab∗ aa∗

√
1
2 − bb

∗
√

1
2 ba∗

−b∗b
√

1
2 − a

∗a
√

1
2 −b∗a −b∗b

√
1
2 + a∗a

√
1
2 a∗b

−b∗a∗
√

1
2 + a∗b∗

√
1
2 b∗b∗ −b∗a∗

√
1
2 − a

∗b∗
√

1
2 a∗a∗



=


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1




0 aa ab
√

2 bb√
1
2 −ab∗ (aa∗ − bb∗)

√
1
2 ba∗

−
√

1
2 −b∗a (aa∗ − bb∗)

√
1
2 a∗b

0 b∗b∗ −a∗b∗
√

2 a∗a∗



=


1 0 0 0
0 aa ab

√
2 bb

0 −ab∗
√

2 aa∗ − bb∗ a∗b
√

2
0 b∗b∗ −a∗b∗

√
2 a∗a∗

 . (A.37)

The spinors
∼
χ, which constitute the basis of this representation, are of

the form
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∼
χ =(6.37) Tχ (A.35)=


0

√
1
2 −

√
1
2 0

1 0 0 0
0

√
1
2

√
1
2 0

0 0 0 1



χ11
χ12
χ21
χ22



=


√

1
2(χ12 − χ21)

χ11√
1
2(χ12 + χ21)

χ22

 (6.32)=


√

1
2(φ1ψ2 − φ2ψ1)

φ1ψ1√
1
2(φ1ψ2 + φ2ψ1)

φ2ψ2

 . (A.38)

A.6 Derivation of (8.41) from (8.40)

[γν , Sστ ] (8.40)= Bστν
µγ

µ (A.39)

Using the definition

Bστν
µ

(5.33)
≡ i~(gσνgτ µ − gτ νgσµ) (A.40)

of the generators of the Lorentz transformations, this becomes

[γν , Sστ ] = i~1
4(4gσνγτ − 4gτνγσ) . (A.41)

We split the both terms on the right-hand side into two parts of same size
each, and add zero in the form of four further terms:

[γν , Sστ ] = i~1
4(2gσνγτ − γσγνγτ − 2gτνγσ + γτγνγσ

− 2gτνγσ + γσγνγτ + 2gσνγτ − γτγνγσ)

Using

γµγν + γνγµ
(8.9)= 2gµν1 , (A.42)

pairs of neighbored terms on the right-hand side can be combined:
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[γν , Sστ ] = i~1
4(γνγσγτ − γνγτγσ − γσγτγν + γτγσγν)

= i~1
4(γν [γσ, γτ ]− [γσ, γτ ]γν)

=
[
γν ,

i~

4 [γσ, γτ ]
]

(A.43)

A.7 Proof of Theorem (8.43)

We will repeatedly use (8.9) and gαβ(2.5)= gβα:

[Sαβ, Sηδ] = −~
2

16
(
(γαγβ − γβγα)(γηγδ − γδγη)

− (γηγδ − γδγη)(γαγβ − γβγα)
)

= −~
2

16
(
γα(2gβη1− γηγβ)γδ − γα(2gβδ1− γδγβ)γη

− γβ(2gαη1− γηγα)γδ + γβ(2gαδ1− γδγα)γη

− γη(2gδα1− γαγδ)γβ + γη(2gδβ1− γβγδ)γα

+ γδ(2gηα1− γαγη)γβ − γδ(2gηβ1− γβγη)γα
)

= −~
2

16
(
2gβηγαγδ − γαγηγβγδ − 2gβδγαγη + γαγδγβγη

− 2gαηγβγδ + γβγηγαγδ + 2gαδγβγη − γβγδγαγη

− 2gδαγηγβ + (2gηα1− γαγη)(2gδβ1− γβγδ)
+ 2gδβγηγα − (2gηβ1− γβγη)(2gδα1− γαγδ)
+ 2gηαγδγβ − (2gδα1− γαγδ)(2gηβ1− γβγη)

− 2gηβγδγα + (2gδβ1− γβγδ)(2gηα1− γαγη)
)
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= −~
2

16
(
2gβηγαγδ − 2gβδγαγη − 2gαηγβγδ + 2gαδγβγη

− 2gδαγηγβ + 4gηαgδβ1− 2gηαγβγδ − 2gδβ(2gαη1− γηγα)
+ 2gδβγηγα − 4gηβgδα1+ 2gηβγαγδ + 2gδα(2gβη1− γηγβ)
+ 2gηαγδγβ − 4gδαgηβ1+ 2gδαγβγη + 2gηβ(2gαδ1− γδγα)

− 2gηβγδγα + 4gδβgηα1− 2gδβγαγη − 2gηα(2gβδ1− γδγβ)
)

= −~
2

16
(
4gβη(γαγδ − γδγα)− 4gβδ(γαγη − γηγα)

− 4gαη(γβγδ − γδγβ) + 4gαδ(γβγη − γηγβ)
)

= i~(gβηSαδ − gβδSαη − gαηSβδ + gαδSβη) (A.44)

A.8 Why is the dimension of Dirac-matrices even?

This auxiliary computation is related to the derivation of the Dirac-matrices
in section 8.1. We will demonstrate, that the dimension of the γ-matrices
must be even. γ0 and iγj are hermitean. Any hermitean matrix can be
transformed by an appropriate unitary transformation U into diagonal shape.
In that shape, the eigenvalues (which are real for a hermitean matrix) then
are written in the diagonal, while all off-diagonal elements are zero. We
then have

U0γ
0U−1

0︸        ︷︷        ︸
diagonal

U0γ
0U−1

0︸        ︷︷        ︸
diagonal

(8.9)= U01U
−1
0 = 1 (A.45)

Ujiγ
jU−1

j︸         ︷︷         ︸
diagonal

Ujiγ
jU−1

j︸         ︷︷         ︸
diagonal

(8.9)= Uj1U
−1
j = 1 , (A.46)

as an exception, no summation over j here !

Thus all eigenvalues of the matrices γ0 and iγj are ±1. The trace of the
γ-matrices, i.e. the sum of their diagonal elements, is equal to the sum of
their eigenvalues, because the trace is invariant under cyclic permutation of
the arguments:
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tr(U0γ
0U−1

0 ) = tr(U−1
0 U0γ

0) = tr(γ0) (A.47)
tr(UjiγjU−1

j ) = tr(U−1
j Ujiγ

j) = itr(γj) (A.48)
as an exception, no summation over j here !

The trace of the γj is zero because of

tr(γj) = tr(γ0γ0︸  ︷︷  ︸
1

γj) = tr(γ0γjγ0) (8.9)= −tr(γ0γ0γj) = −tr(γj) = 0 .

(A.49a)

The trace of γ0 is zero because of

tr(γ0) = tr(−γjγj︸    ︷︷    ︸
1

γ0) = tr(−γjγ0γj) =

(8.9)= −tr(−γjγjγ0) = −tr(γ0) = 0 . (A.49b)
as an exception, no summation over j here !

Thus we can conclude: All eigenvalues of γ0 and iγj are ±1, and the sum
of the eigenvalues is zero. Therefore the number of eigenvalues +1 and the
number of eigenvalues −1 must be identical. Hence the γν must have even
dimension 2, 4, 6, . . .

A.9 Auxiliary Computations for (8.67) and (8.68)

We consider a pure boost, which is parameterized by the multiplet (Θ,η)=
(0,η). Because of σ1σ1 = σ2σ2 = σ3σ3 = 1 and of η ≡ |η|, one gets
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D = exp
{
− ηj

2

(
σj 0
0 −σj

)}
=

=
(
1 0
0 1

) ∞∑
n=0,2,4,...

1
n!
(η

2
)n
− ηj
η

(
σj 0
0 −σj

) ∞∑
n=1,3,5,...

1
n!
(η

2
)n

=

1 cosh
(
η
2

)
− ηj

η σ
j sinh

(
η
2

)
0

0 1 cosh
(
η
2

)
+ ηj

η σ
j sinh

(
η
2

)
 . (A.50)

Instead of specifying D as a function of the three components of the rapidity
η, the transformation may as well be specified as a function of the field’s
three momentum components p in the moving coordinate frame. The
velocity of the moving coordinate frame is v (measured in the rest system).
The rapidity η is related to this velocity by

tanh η = v

c
≡ β (A.51)

cosh η = 1√
1− tanh2 η

= 1√
1− β2 ≡ γ (A.52)

sinh η = cosh η tanh η = γβ . (A.53)

The relativistic energy E and the relativistic momentum p of the field ψ
are related to the rest mass m and the relativistic mass γm by

E = γmc2 , p = −γmv = −γβmc . (A.54)

Note the minus sign: The boost is a passive one. In the moving coordinates,
the field’s velocity is −v. For the same reason, the unit vector in direction
of the coordinate systems’s movement has — if measured in the field’s rest
system — the components ηj/η. The unit vector in direction of the moving
field has — if measured in the moving coordinate system — the components
pj/p = −ηj/η, where p is the field’s momentum, measured in the moving
coordinate system. These relations are inserted into the hyperbolic functions
of η/2:
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cosh η2 =
√

1
2(cosh η + 1) =

√
1
2(γ + 1) =

√
1
2
E +mc2

mc2 =

= E +mc2√
2mc2(E +mc2)

(A.55)

sinh η2 =
√

1
2(cosh η − 1) =

√
1
2(γ − 1) =

√
1
2
E −mc2

mc2 =

=
√
E2 −m2c4√

2mc2(E +mc2)
= cp√

2mc2(E +mc2)
(A.56)

Insertion into (A.50) gives the result

D =
√

1
2mc2(E +mc2) ·

(
(E +mc2)1+ cpjσ

j 0
0 (E +mc2)1− cpjσj

)
.

(A.57)

A.10 Derivation of equations (8.76)

Using the definitions

N ≡
√

1
2(E +mc2) (A.58a)

A+ ≡ E +mc2 + cp3 (A.58b)
B ≡ cp1 + icp2 (A.58c)
A− ≡ E +mc2 − cp3 , (A.58d)

E ≡ ~ωk , pj ≡ ~kj

the spinors (8.75) are:
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1uk = N


A+
B
A−
−B

 , 2uk = N


B∗

A−
−B∗
A+

 , 1vk = N


A+
B
−A−
B



2vk = N


B∗

A−
B∗

−A+

 ,

1uk† = N
(
A+ B∗ A− −B∗

)
2uk† = N

(
B A− −B A+

)
1vk† = N

(
A+ B∗ −A− B∗

)
2vk† = N

(
B A− B −A+

)

1u−k = N


A−
−B
A+
B

 , 2u−k = N


−B∗
A+
B∗

A−

 , 1v−k = N


A−
−B
−A+
−B



2v−k = N


−B∗
A+
−B∗
−A−

 ,

1u−k† = N
(
A− −B∗ A+ B∗

)
2u−k† = N

(
−B A+ B A−

)
1v−k† = N

(
A− −B∗ −A+ −B∗

)
2v−k† = N

(
−B A+ −B −A−

) (A.59)

We compute some sums of products of spinor components:

1uk†1
1uk1 + 2uk†1

2uk1 + 1v−k†1
1v−k1 + 2v−k†1

2v−k1 =
= N2(A+A+ +BB∗ +A−A− +BB∗) = 2~ωk

1uk†1
2uk1 + 2uk†1

1uk1 + 1v−k†1
2v−k1 + 2v−k†1

1v−k1 =
= N2(A+B

∗ +BA+ −A−B∗ −BA−) , 0
1uk†1

1uk2 + 2uk†1
2uk2 + 1v−k†1

1v−k2 + 2v−k†1
2v−k2 =

= N2(A+B +BA− −A−B −BA+) = 0
1uk†1

2uk2 + 2uk†1
1uk2 + 1v−k†1

2v−k2 + 2v−k†1
1v−k2 =

= N2(A+A− +BB +A−A+ +BB) , 0
1uk†1

1uk3 + 2uk†1
2uk3 + 1v−k†1

1v−k3 + 2v−k†1
2v−k3 =

= N2(A+A− −BB∗ −A−A+ +BB∗) = 0
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1uk†1
2uk3 + 2uk†1

1uk3 + 1v−k†1
2v−k3 + 2v−k†1

1v−k3 =
= N2(−A+B

∗ +BA− −A−B∗ +BA+) = 0
1uk†1

1uk4 + 2uk†1
2uk4 + 1v−k†1

1v−k4 + 2v−k†1
2v−k4 =

= N2(−A+B +BA+ −A−B +BA−) = 0
1uk†1

2uk4 + 2uk†1
1uk4 + 1vk†1

2vk4 + 2v−k†1
1v−k4 =

= N2(A+A+ −BB −A+A+ +BB) = 0
1uk†2

1uk1 + 2uk†2
2uk1 + 1v−k†2

1v−k1 + 2v−k†2
2v−k1 =

= N2(B∗A+ +A−B
∗ −B∗A− −A+B

∗) = 0
1uk†2

2uk1 + 2uk†2
1uk1 + 1v−k†2

2v−k1 + 2v−k†2
1v−k1 =

= N2(B∗B∗ +A−A+ +BB∗ +A+A−) , 0
1uk†2

1uk2 + 2uk†2
2uk2 + 1v−k†2

1v−k2 + 2v−k†2
2v−k2 =

= N2(B∗B +A−A− +B∗B +A+A+) = 2~ωk
1uk†2

2uk2 + 2uk†2
1uk2 + 1v−k†2

2v−k2 + 2v−k†2
1v−k2 =

= N2(B∗A− +A−B −B∗A+ −A+B) , 0
1uk†2

1uk3 + 2uk†2
2uk3 + 1v−k†2

1v−k3 + 2v−k†2
2v−k3 =

= N2(B∗A− −A−B∗ +B∗A+ −A+B
∗) = 0

1uk†2
2uk3 + 2uk†2

1uk3 + 1v−k†2
2v−k3 + 2v−k†2

1v−k3 =
= N2(−B∗B∗ +A−A− +B∗B∗ −A+A+) , 0

1uk†2
1uk4 + 2uk†2

2uk4 + 1v−k†2
1v−k4 + 2v−k†2

2v−k4 =
= N2(−B∗B +A−A+ +B∗B −A+A−) = 0

1uk†2
2uk4 + 2uk†2

1uk4 + 1v−k†2
2v−k4 + 2v−k†2

1v−k4 =
= N2(B∗A+ −A−B +BA− −A+B) , 0

1uk†3
1uk1 + 2uk†3

2uk1 + 1v−k†3
1v−k1 + 2v−k†3

2v−k1 =
= N2(A−A+ −BB∗ −A+A− +BB∗) = 0

1uk†3
2uk1 + 2uk†3

1uk1 + 1v−k†3
2v−k1 + 2v−k†3

1v−k1 =
= N2(A−B∗ −BA+ +A+B

∗ −BA−) = 0
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1uk†3

1uk2 + 2uk†3
2uk2 + 1v−k†3

1v−k2 + 2v−k†3
2v−k2 =

= N2(A−B −BA− +A+B −BA+) = 0
1uk†3

2uk2 + 2uk†3
1uk2 + 1v−k†3

2v−k2 + 2v−k†3
1v−k2 =

= N2(A−A− −BB −A+A+ +BB) , 0
1uk†3

1uk3 + 2uk†3
2uk3 + 1v−k†3

1v−k3 + 2v−k†3
2v−k3 =

= N2(A−A− +BB∗ +A+A+ +BB∗) = 2~ωk
1uk†3

2uk3 + 2uk†3
1uk3 + 1v−k†3

2v−k3 + 2v−k†3
1v−k3 =

= N2(−A−B∗ −BA− +A+B
∗ +BA+) , 0

1uk†3
1uk4 + 2uk†3

2uk4 + 1v−k†3
1v−k4 + 2v−k†3

2v−k4 =
= N2(−A−B −BA+ +A+B +BA−) = 0

1uk†3
2uk4 + 2uk†3

1uk4 + 1v−k†3
2v−k4 + 2v−k†3

1v−k4 =
= N2(A−A+ +BB +A+A− +BB) , 0

1uk†4
1uk1 + 2uk†4

2uk1 + 1v−k†4
1v−k1 + 2v−k†4

2v−k1 =
= N2(−B∗A+ +A+B

∗ −B∗A− +A−B
∗) = 0

1uk†4
2uk1 + 2uk†4

1uk1 + 1v−k†4
2v−k1 + 2vk†4

1vk1 =
= N2(−B∗B∗ +A+A+ +B∗B∗ −A+A+) = 0

1uk†4
1uk2 + 2uk†4

2uk2 + 1v−k†4
1v−k2 + 2v−k†4

2v−k2 =
= N2(−B∗B +A+A− +B∗B −A−A+) = 0

1uk†4
2uk2 + 2uk†4

1uk2 + 1v−k†4
2v−k2 + 2vk†4

1vk2 =
= N2(−B∗A− +A+B −B∗A−A+B) , 0

1uk†4
1uk3 + 2uk†4

2uk3 + 1v−k†4
1v−k3 + 2v−k†4

2v−k3 =
= N2(−B∗A− −A+B

∗ +B∗A+ +A−B
∗) = 0

1uk†4
2uk3 + 2uk†4

1uk3 + 1v−k†4
2v−k3 + 2v−k†4

1v−k3 =
= N2(B∗B∗ +A+A− +B∗B∗ +A−A+) , 0

1uk†4
1uk4 + 2uk†4

2uk4 + 1v−k†4
1v−k4 + 2v−k†4

2v−k4 =
= N2(B∗B +A+A+ +B∗B +A−A−) = 2~ωk
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1uk†4
2uk4 + 2uk†4

1uk4 + 1v−k†4
2v−k4 + 2v−k†4

1v−k4 =
= N2(−B∗A+ −A+B +B∗A− +A−B) , 0 (A.60)

Obviously the general result is

2∑
r=1

2∑
s=1

(
ruk†a

sukb + rvk†a
svkb + ru−k†a

su−kb + rv−k†a
sv−kb

)
δrs =

= 2 · δab 2~ωk (A.61a)
2∑
r=1

2∑
s=1

(
ruk†a

sukb + rvk†a
svkb + ru−k†a

su−kb + rv−k†a
sv−kb

)
=

= anything. (A.61b)

In particular one gets the sum

2∑
r=1

(
ruka

ruk †b + rv-ka rv-k †b

)
=

= N2(A+A+ +A−A− +B∗B +B∗B) δab =

= 2(E +mc2)2 + 2c2p2
3 + 2c2p2

1 + 2c2p2
2

2(E +mc2) δab =

= 4E(E +mc2)
2(E +mc2) δab = 2E δab . (A.61c)

Furthermore one gets the spinor products

1uk†1uk = N2
(
A+ B∗ A− −B∗

)
A+
B
A−
−B


= N2(A2

+ +B∗B +A2
− +B∗B) = 2E (A.62a)

2uk†2uk = N2(BB∗ +A2
− +BB∗ +A2

+) = 2E (A.62b)
1vk†1vk = N2(A2

+ +B∗B +A2
− +B∗B) = 2E (A.62c)

2vk†2vk = N2(BB∗ +A2
− +BB∗ +A2

+) = 2E (A.62d)
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1uk†2uk = N2(A+B

∗ +B∗A− −A−B∗ −B∗A+) = 0 (A.62e)
2uk†1uk = N2(BA+ +A−B −BA− −A+B) = 0 (A.62f)
1vk†2vk = N2(A+B

∗ +B∗A− −A−B∗ −B∗A+) = 0 (A.62g)
2vk†1vk = N2(BA+ +A−B −BA− −A+B) = 0 (A.62h)

1uk†1vk = N2(A2
+ +B∗B −A2

− −B∗B) =
= 2(E +mc2)cp3 (A.63a)

1vk†1uk = N2(A2
+ +B∗B −A2

− −B∗B) = 1uk†1vk (A.63b)
2uk†2vk = N2(BB∗ +A2

− −BB∗ −A2
+) = −1uk†1vk (A.63c)

2vk†2uk = N2(BB∗ +A2
− −BB∗ −A2

+) = −1uk†1vk (A.63d)
1uk†2vk = N2(A+B

∗ +B∗A− +A−B
∗ +BA+) = 2cp1 (A.63e)

2vk†1uk = N2(BA+ +A−B +BA− +A+B) = cp1 + icp2 (A.63f)
2uk†1vk = N2(BA+ +A−B −BA− +A+B) =

= (E +mc2 + cp3)(cp1 + icp2)
(E +mc2) (A.63g)

1vk†2uk = N2(A+B
∗ +B∗A− −A−B∗ +B∗A+) =

= (2uk†1vk)∗ (A.63h)
1u†-k1vk = N2(A−A+ −B∗B −A+A− +B∗B) = 0 (A.63i)
1u†-k2vk = N2(A−B∗ −B∗A− +A+B

∗ −B∗A+) = 0 (A.63j)
2u†-k1vk = N2(−BA+ +A+B −BA− +A−B) = 0 (A.63k)
2u†-k2vk = N2(−BB∗ +A+A− +BB∗ −A−A+) = 0 (A.63l)
1v†-k1uk = N2(A−A+ −B∗B −A+A− +B∗B) = 0 (A.63m)
1v†-k2uk = N2(A−B∗ −B∗A− +A+B

∗ −B∗A+) = 0 (A.63n)
2v†-k1uk = N2(−BA+ +A+B −BA− +A−B) = 0 (A.63o)
2v†-k2uk = N2(−BB∗ +A+A− +BB∗ −A−A+) = 0 (A.63p)
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1uk1uk† = N2


A+A+ A+B

∗ A+A− −A+B
∗

BA+ BB∗ BA− −BB∗
A−A+ A−B

∗ A−A− −A−B∗
−BA+ −BB∗ −BA− BB∗

 (A.63q)

1uk2uk† = N2


A+B A+A− −A+B A+A+
BB BA− −BB BA+
A−B A−A− −A−B A−A+
−BB −BA− BB −BA+

 (A.63r)

2uk1uk† = N2


B∗A+ B∗B∗ B∗A− −B∗B∗
A−A+ A−B

∗ A−A− −A−B∗
−B∗A+ −B∗B∗ −B∗A− B∗B∗

A+A+ A+B
∗ A+A− −A+B

∗

 (A.63s)

2uk2uk† = N2


B∗B B∗A− −B∗B B∗A+
A−B A−A− −A−B A−A+
−B∗B −B∗A− B∗B −B∗A+
A+B A+A− −A+B A+A+

 (A.63t)

A.11 Derivation of equation (8.77)

We have
rūk = ruk† γ0 . (A.64)

The matrix γ0 = (8.15a) permutes the first component of ruk† with the
third one, and the second with the fourth one. Therefore we find, using the
definitions (A.58) and the equations (A.59) of appendix A.10:

1uk = N


A+
B
A−
−B

 , 2uk = N


B∗

A−
−B∗
A+

 , 1vk = N


A+
B
−A−
B
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2vk = N


B∗

A−
B∗

−A+

 ,

1ūk = N
(
A− −B∗ A+ B∗

)
2ūk = N

(
−B A+ B A−

)
1̄vk = N

(
−A− B∗ A+ B∗

)
2̄vk = N

(
B −A+ B A−

) (A.65)

Using this result, and using

X1 ≡ N2(A+A− −B∗B) = mc2

X2 ≡ N2(A+A+ +B∗B) = E + cp3
mc2

X3 ≡ N2(A+B
∗ +B∗A−) = cp1 − icp2

mc2

X4 ≡ N2(BA+ +A−B) = cp1 + icp2
mc2

X5 ≡ N2(BB∗ +A−A−) = E − cp3
mc2 ,

one gets the matrix-sum

2∑
r=1

ruk rūk =


X1 0 X2 X3
0 X1 X4 X5
X5 −X3 X1 0
−X4 X2 0 X1

 (A.66a)

=


mc2 0 E + cp3 cp1 − icp2

0 mc2 cp1 + icp2 E − cp3
E − cp3 −cp1 + icp2 mc2 0
−cp1 − icp2 E + cp3 0 mc2

 .

The matrix-sum

2∑
r=1

rvk rv̄k =


−X1 0 X2 X3

0 −X1 X4 X5
X5 −X3 −X1 0
−X4 X2 0 −X1

 (A.66b)
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differs from (A.66a) only by the sign of the diagonal elements. Now we
compute

cγµpµ ± 1mc2 (8.15)=

=


±mc2 0 E + cp3 cp1 − icp2

0 ±mc2 cp1 + icp2 E − cp3
E − cp3 −cp1 + icp2 ±mc2 0
−cp1 − icp2 E + cp3 0 ±mc2

 ,

and find
2∑
r=1

ruk rūk = cγµpµ +mc2 (A.67a)

2∑
r=1

rvk rv̄k = cγµpµ −mc2 . (A.67b)

A.12 Symmetrical ES-Tensors

If the energydensity-stress-tensor is symmetrical, i. e. if T ρσ = T σρ, then
the equation of continuity

dνMνρσ (4.73)= 0 with ρσ = 10, 20, 30, 23, 31, 12 , (A.68)

which is describing the conservation of the six angular-momentum densities,
assumes (after multiplication by c) the simple form

cdνMνρσ = dν(xρT νσ − xσT νρ)
= gν

ρT νσ + xρdνT νσ − gνσT νρ − xσdνT νρ

= T ρσ − T σρ︸           ︷︷           ︸
0

+xρ dνT νσ︸    ︷︷    ︸
0

−xσ dνT νρ︸    ︷︷    ︸
0

= 0 . (A.69)

(A.68) does hold as well for non-interacting vector- or spinor-fields. But in
their momentum density
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Mνρσ (5.100),(6.101)= xρT νσ/c− xσT νρ/c+ Sνρσ (A.70)

there must show up additional spin-densities S, which are compensating
due to

cdνMνρσ = T ρσ − T σρ + cdνSνρσ︸                           ︷︷                           ︸
0

+xρ dνT νσ︸    ︷︷    ︸
0

−xσ dνT νρ︸    ︷︷    ︸
0

= 0 (A.71)

the missing symmetry of the energydensity-stress-tensors T .
We now want to construct as well for vector- and spinor-fields energy-

stress-tensors
∼
T ρσ ≡ T ρσ + dνXνρσ with

∼
T σρ =

∼
T ρσ , (A.72)

which shall — in contrast to T — be symmetrical, but at the same time shall
result into the identical conserved quantities as T . From this requirement,
a condition for the tensor X can be derived:

dρT ρσ = dρ
∼
T ρσ = dρT ρσ + dρdνXνρσ = 0

=⇒ dρdνXνρσ = 0 = dνdρXρνσ = dρdνXρνσ

=⇒ dρdν
(
Xνρσ −Xρνσ

)
= 0

=⇒ Xρνσ = −Xνρσ (A.73a)

T and
∼
T result into the same densities of energy and momentum, if the

tensor X is skew-symmetric in it’s both first indices ρ and ν, and if X is
analytical, i. e. if dνdρXνρσ = dρdνXνρσ.
A second equation for X can be found by inserting (A.72) into the

continuity-equation (A.69) of fields with symmetrical energy-stress-tensor,
and comparing the result with (A.71):

dνXνρσ − dνXνσρ = cdνSνρσ (A.73b)

This expression is changing it’s sign under the permutation of ρ and σ. Thus
S is anti-symmetric in it’s both last indices. But it can not be concluded
from (A.73b), that X is skew-symmetric in it’s both last indices. One merely
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can exclude, that X is symmetric in it’s both last indices, because then
dνSνρσ = 0 would hold.

As there are 6 permutations possible for 3 indices, the most general ansatz
is

Xνρσ

c
= aSνρσ + bSσνρ + cSρσν + dSρνσ + eSσρν + fSνσρ

= gSνρσ + hSσνρ + iSρσν (A.74)
with g ≡ a− f h ≡ b− e i ≡ c− d .

Here the skew-symmetry of S in it’s both last indices has been used. Because
of (A.73a),

(A.74) = −gSρνσ − hSσρν − iSνσρ

= +gSρσν + hSσνρ + iSνρσ =⇒ g = i .

Again the skew-symmetry of S in it’s both last indices has been used in the
second line. Now from condition (A.73b) follows

dν
(
gSνρσ + hSσνρ + gSρσν − gSνσρ − hSρνσ − gSσρν

)
=

= dν
(
2gSνρσ + (h+ g)Sσνρ + (g + h)Sρσν

)
= dνSνρσ

=⇒ g = 1
2 h = −g .

Therefore

Xνρσ = c

2
(
Sρσν − Sσνρ + Sνρσ

)
(A.75)

does meet both conditions (A.73), and
∼
T ρσ ≡ T ρσ + c

2 dν
(
Sρσν − Sσνρ + Sνρσ

)
(A.76)

is a symmetrical energy-momentum-tensor for arbitrary fields, whether they
have spin or not. 10 equations of continuity (1 for energy density, 3 for
momentum density, and 6 for angular-momentum density) follow from

∼
T ρσ:
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dρ
∼
T ρσ = dρT ρσ = 0 (A.77a)

dνMνρσ = dν
(
xρ
∼
T νσ/c− xσ

∼
T νρ/c

)
=

= dν
(
xρT νσ/c− xσT νρ/c+ Sνρσ

)
= 0 (A.77b)

We now will compute the symmetrized tensor
∼
T ρσ of the electromagnetic

field. The electromagnetic field’s spin density is

Sνρσ =(5.98) 1
i~c

∂L
∂(dνAα) B

ρσα
βA

β . (A.78a)

Bρσα
β =(5.33) i~(gραgσβ − gσαgρβ) (A.78b)

are the components of the generator of the Lorentz-transformations (5.35).
Inserting

∂L
∂(dρAα)

(4.123)= − 1
µ0
F ρα , (A.79)

one gets

Sνρσ = −1
cµ0

(
F νρAσ − F νσAρ

)
. (A.80)

Thus one finds the tensor

Xνρσ =(A.75) −1
2µ0

(
(F ρσAν − F ρνAσ)− (F σνAρ − F σρAν) +

+ (F νρAσ − F νσAρ)
)

= − 1
µ0

F νρAσ . (A.81)

As required, this tensor is skew-symmetric in the indices ν and ρ. Using
the field-equation

dνF νρ
(4.125)= 0 (A.82)
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of the homogeneous field, one finds the tensor

∼
T ρσ = T ρσ + dνXνρσ = 1

µ0
F νρdσAν − gρσL −

1
µ0

F νρdνAσ

= − 1
µ0

F ρνF σν − gρσL , (A.83)

which is symmetrical under permutation of ρ and σ.
Now we compute the symmetrized ES-tensor of the Dirac-field. The Dirac-

fields spin density is

Sνρσ =(6.99) 1
i~c

(
ψ Sρσ

∂L
∂(dνψ)

+ ∂L
∂(dνψ) S

ρσψ
) (8.24)= ψγνSρσψ . (A.84a)

Sρσ =(8.43) i~

4 [γρ, γσ] (A.84b)

are the components of the generator of the spinor transformationsD = (8.45).
Thus the tensor

Xνρσ =(A.75) i~c

8 ψKνρσψ

Kνρσ ≡ γργσγν − γργνγσ − γσγνγρ +
+ γσγργν + γνγργσ − γνγσγρ

is found. As required, K — and consequently X — is skew-symmetric in
the both first indices ν and ρ. Thus the divergence of Xνρσ becomes

dνXνρσ = i~c

8
(
(dνψ)Kνρσψ + ψKνρσdνψ

)
.

This expression can be simplified by means of the Dirac-equations

i~cdνψγν =(8.26b) −mc2 ψ

i~cγνdνψ =(8.26a) +mc2 ψ .

For that purpose we compute two versions of Kνρσ, in which by use of the
commutation relations
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γµγν + γνγµ
(8.9)= 2gµν

the γν are shifted in all products of three γ-matrices either to the very left
or to the very right.

Kνρσ = 2gσνγρ − 2gρνγσ + γνγργσ − 2gρνγσ + γνγργσ −
− 2gσνγρ + γνγσγρ + 2gρνγσ − 2gσνγρ + γνγσγρ +
+ γνγργσ − γνγσγρ

= +2γνγργσ − 2gρνγσ − 2gσνγρ + 2gσργν (A.85a)
Kνρσ = γργσγν − 2gνσγρ + γργσγν − 2gνργσ + γσγργν +

+ γσγργν + 2gνργσ − 2gνσγρ + γργσγν − 2gνσγρ +
+ 2gνργσ − γσγργν

= 2γργσγν − 6gνσγρ + 2gνργσ + 2gσργν (A.85b)

The skew-symmetry in the indices ν and ρ is no more obvious. Still is must
exist, unless a computational error creped in. Using the Dirac-equations,
the green marked terms in the divergence of X mutually compensate:

dνXνρσ = i~c

4
(
(dνψ)(γνγργσ − gρνγσ − gσνγρ + gσργν)ψ+

+ ψ(γργσγν − 3gνσγρ + gνργσ + gσργν)dνψ
)

This results into the energydensity-stress-tensor
∼
T ρσ = i~c ψγρdσψ − gρσ ψ(i~cγνdν −mc2)ψ

+ i~c

4
(
− (dρψ)γσψ − (dσψ)γρψ − 3ψγρdσψ + ψγσdρψ

)
= i~c

4
(
− (dρψ)γσψ − (dσψ)γρψ + ψγρdσψ + ψγσdρψ

)
−

− gρσ ψ(i~cγνdν −mc2)ψ︸                        ︷︷                        ︸
L

, (A.86)

which obviously is symmetrical under permutation of ρ and σ.
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A.13 The charge of the Klein-Gordon field

The conserved charge of the classical Klein-Gordon field is

Q
(10.32)=

∫
Ω

d3x
iq

~

(
πφ− φ∗π∗

)
. (A.87)

Replacing the classical field functions by the quantized field operators, we
get the charge operator

Q ≡
∫
Ω

d3x
iq

~
(πφ− φ†π†)︸                ︷︷                ︸

Q

. (A.88)

With the field operators (15.2) this becomes

Q = iq

~

∑
k,f

i~

2Ω

√
ωf
ωk

(
(a†f − b-f )(ak + b†-k) exp{+i(k − f)x}+

+ (a†k + b-k)(af − b†-f ) exp{+i(f − k)x}
)
. (A.89)

Integration over the normalization volume Ω results with (7.12) into

Q =
∫
Ω

d3xQ = iq

~

∑
k

i~

2
(
a†kak + a†kb

†
-k − b-kak − b-kb

†
-k +

+ a†kak − a
†
kb
†
-k + b-kak − b-kb†-k

)
. (A.90)

As the sum is symmetric over all positive and negative wave numbers k, in
two terms −k may be replaced by k:

Q = −q
∑
k

(a†kak − bkb
†
k) =

= −q
∑
k

(a†kak − b
†
kbk − [bk, b†k]︸    ︷︷    ︸

1

) (A.91)
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A.14 The charge of the Dirac field

Using γ0γ0 = 1 and ψ(x) = (16.1a) and ψ†(x) = (16.7), the operator of the
Dirac field’s conserved charge is

Q =(4.89)
∫
Ω

d3x q ψ†ψ =
∫
Ω

d3x
∑
f ,s,k,r

q

Ω2~√ωfωk(
sa†f

su†f exp{+ifx}+ sbf
sv†f exp{−ifx}

)
·

·
(
rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)
=
∫
Ω

d3x
∑
f ,s,k,r

q

Ω2~√ωfωk

(
sa†f

su†f rak
ruk exp{+i(f − k)x}

+ sa†f
su†f rb†k

rvk exp{+i(f + k)x}

+ sbf
sv†f rak

ruk exp{−i(f + k)x}

+ sbf
sv†f rb†k

rvk exp{−i(f − k)x}
)

=(16.3) ∑
s,k,r

q

2~ωk

(
sa†k

rak
su†k ruk + sa†-k

rb†k
su†-k rvk exp{i2k0x0}

+ sb-k rak sv†-k ruk exp{−i2k0x0}+ sbk
rb†k

sv†k rvk
)

=(8.76)∑
k,r

q
(
ra†k

rak + rbk
rb†k

)
=(16.5)∑

k,r

q
(
ra†k

rak − rb†k
rbk + { rb†k ,

rbk}︸         ︷︷         ︸
1

)
. (A.92)

A.15 Proof of the commutation relations (17.67)

We have



710 Appendix

[Ãµ(t,x), π̃τ (t,y)] =
∑
k,f

3∑
α,β=0

3∑
κ=0

(e(µ) · e(α)
k )(e(κ) · e(β)

f ) ·

· c i~2Ω

√
1

ωkωf

(
− f0gτκ + f τg0κ − g0τfκ

)(
− [c(α)

k , c
(β)
f ] exp{−i(kx+ fy)}

+ [c(α)
k , c

(β)†
f ] exp{−i(kx− fy)}

− [c(α)†
k , c

(β)
f ] exp{+i(kx− fy)}

+ [c(α)†
k , c

(β)†
f ] exp{+i(kx+ fy)}

)
. (A.93)

To check, whether the commutation relations (17.67) really follow from
(17.66), we insert them into (A.93):

[Ãµ(t,x), π̃τ (t,y)] =
∑
k

3∑
α,β=0

3∑
κ=0

(e(µ) · e(α)
k )(e(κ) · e(β)

k ) ·

· c i~2Ωωk

(
− k0gτκ + kτg0κ − g0τkκ

)
·

· (−gαβ)
(

exp{+ik(x− y)}+ exp{−ik(x− y)}
)

(A.94)

As the commutator must be computed with same time x0 = y0, the time
component has disappeared from the exponents. The sequence of summa-
tions over k in the second exponential function may be changed, using

e
(α)
-k = +e(α)

k for α = 0

e
(α)
-k = −e(α)

k for α = 1, 2, 3
ω-k = ωk . (A.95)

As the sign change of the factors e(α)
k and e(β)

k happens at the same time
due to (−gαβ), and thus compensates, one gets
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[Ãµ(t,x), π̃τ (t,y)] =
∑
k

3∑
α,β=0

3∑
κ=0

(e(µ) · e(α)
k )(e(κ) · e(β)

k ) ·

· c i~2Ωωk

(
−k0gτκ + kτg0κ − g0τkκ︸                               ︷︷                               ︸

Ya

−k0gτκ + (2gτ 0k
0 − kτ )g0κ − g0τ (2gκ0k

0 − kκ)︸                                                                 ︷︷                                                                 ︸
Yb

)
·

· (−gαβ) exp{+ik(x− y)}. (A.96)

We have

Ya + Yb = 2k0(−gτκ + gτ 0g
κ

0 − g0τg0κ)

= 2k0 ·


−1 for τ = 0 , κ = τ = 0

0 for τ = 0 , κ , τ = 0
+1 for τ , 0 , κ = τ , 0

0 for τ , 0 , κ , τ , 0
= −2k0gτκ (A.97)

Using this result, and using k0 = ωk/c,

[Ãµ(t,x), π̃τ (t,y)] = i~
1
Ω
∑
k

exp{+ik(x− y)}︸                              ︷︷                              ︸
δ(3)(x−y)

·

·
3∑

κ=0
(−gτκ)

3∑
α,β=0

(−gαβ)(e(µ) · e(α)
k )(e(τ) · e(β)

k )

︸                                                             ︷︷                                                             ︸
Yc

(A.98)

follows. For the evaluation of Yc, we expand the vectors e(µ) and e(τ) with
respect to the unit vectors e(α)

k :
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e(µ) =(K.10d) 3∑
γ=0

3∑
α=0

gγα(e(α)
k · e

(µ))e(γ)
k (A.99a)

e(τ) =(K.10d) 3∑
δ=0

3∑
β=0

gδβ(e(β)
k · e

(τ))e(δ)
k (A.99b)

Multiplying the respective sides of these two equations, one gets

e(µ) · e(τ)︸        ︷︷        ︸
(K.10e)

= gµτ

=
3∑

γ,α,δ,β=0
gγαgδβ(e(α)

k · e
(µ))(e(β)

k · e
(τ)) (e(γ)

k · e
(δ)
k )︸          ︷︷          ︸

(K.10e)
= gγδ

gµτ =
3∑

αβ=0
gαβ(e(α)

k · e
(µ))(e(β)

k · e
(τ)) . (A.100)

Note, that the indices in gµτ are resulting from the names of e(µ) and
e(τ). Therefore they are not automatically summed-up according to the
summation convention. For that reason, there is also no summation over τ
in

Yc
(A.98),(A.100)= +

3∑
κ=0

gτκ gµτ = gµ
τ . (A.101)

Therefore (A.98) is identical to (17.66). This proves (17.67).

A.16 Computation of the operators (16.16)

Our starting point is the Hamilton-density

H′ (8.104)= − i~c2 (d0ψ)γ0ψ + i~c

2 ψγ0d0ψ (A.102a)

and the physical momentum density

P ′j (8.105)= i~

2
_
ψγ0djψ − (dj

_
ψ) i~2 γ

0ψ (A.102b)
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of the classical (not quantized) Dirac field. These quantities have been
derived in section 8.6 from the alternative Lagrangian L′ = (8.99), which
is more symmetrical in the fields ψ and ψ than the Lagrangian L = (8.24)
used in other places.
Due to the field’s quantization, the classical amplitudes ψ and ψ are

replaced by the field operators

ψ(x) =
∑
k,r

1√
2~ωkΩ

(
rak

ruk exp{−ikx}+ rb†k
rvk exp{+ikx}

)
(A.103a)

ψ(x) =
∑
k,r

1√
2~ωkΩ

(
ra†k

rūk exp{+ikx}+ rbk
rv̄k exp{−ikx}

)
. (A.103b)

Consequently one finds the operator of energy density

H (8.104)= − i~c2
∑
k,f ,r,s

1
Ω2~√ωkωf

(
(
if0 sa†f

sūf exp{+ifx} − if0 sbf
sv̄f exp{−ifx}

)
γ0(

rak
ruk exp{−ikx}+ rb†k

rvk exp{+ikx}
)

−
(
sa†f

sūf exp{+ifx}+ sbf
sv̄f exp{−ifx}

)
γ0

(
− ik0 rak

ruk exp{−ikx}+ ik0 rb†k
rvk exp{+ikx}

))
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H = +~2
∑
k,f ,r,s

1
Ω2~√ωkωf

(
ωf

sa†f
rak

suf † ruk exp{+i(f − k)x}

+ ωf
sa†f

rb†k
suf † rvk exp{+i(f + k)x}

− ωf sbf rak svf † ruk exp{−i(f + k)x}

− ωf sbf rb†k
svf † rvk exp{−i(f − k)x}

+ ωk
sa†f

rak
suf † ruk exp{+i(f − k)x}

− ωk sa†f
rb†k

suf † rvk exp{+i(f + k)x}

+ ωk
sbf

rak
svf † ruk exp{−i(f + k)x}

− ωk sbf rb†k
svf † rvk exp{−i(f − k)x}

)
. (A.104)

Integrating over the total normalization volume Ω, using the form (16.3) of
the Kronecker symbol, and using ω−k = ωk, one finds the Hamilton operator

H =
∫
Ω

d3xH(x) = 1
4
∑
k,r,s

(
sa†k

rak
suk † ruk

+ sa†−k
rb†k

su−k † rvk exp{i2k0x0}
− sb−k

rak
sv−k † ruk exp{−i2k0x0}

− sbk
rb†k

svk † rvk + sa†k
rak

suk † ruk

− sa†−k
rb†k

su−k † rvk exp{i2k0x0}

+ sb−k
rak

sv−k † ruk exp{−i2k0x0} − sbk
rb†k

svk † rvk
)

= 1
2
∑
k,r,s

(
sa†k

rak
suk † ruk − sbk

rb†k
svk † rvk

)
. (A.105)

Using eventually

ruk† suk
(A.62)= rvk† svk

(A.62)= 2E δrs = 2~ωk δrs , (A.106)

one gets the Hamilton operator
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H =

∑
k,r

~ωk
(
ra†k

rak − rbk
rb†k

)
=
∑
k,r

~ωk
(
ra†k

rak + rb†k
rbk − { rbk , rb†k}

)
, (A.107)

which is identical to (16.13) in the case of discrete fields.
As operator of the physical momentum density one gets

P ′j = − ~2
∑
k,f ,r,s

1
2~Ω√ωkωf

(
− sa†f

suf†kj rak
ruk exp{+i(f − k)x}

+ sa†f
suf†kj rb†k

rvk exp{+i(f + k)x}

− sbf
svf†kj rak

ruk exp{−i(f + k)x}

+ sbf
svf†kj rb†k

rvk exp{−i(f − k)x}

− f j sa†f
suf† rak

ruk exp{+i(f − k)x}

− f j sa†f
suf† rb†k

rvk exp{+i(f + k)x}

+ f j sbf
svf† rak

ruk exp{−i(f + k)x}

+ f j sbf
svf† rb†k

rvk exp{−i(f − k)x}
)
. (A.108)

Integrating over the total normalization volume Ω, using the form (16.3)
of the Kronecker symbol, and using the relation ω−k = ωk, one gets the
momentum operator

P j =
∫
Ω

d3xPj(x) = −
∑
k,r,s

~kj

2~ωk

(
− sa†k

suk+ rak
ruk + sbk

svk+ rb†k
rvk
)
,

which eventually by means of (A.106) gets the shape



716 Appendix

P j =
∑
k,r

~kj( ra†k
rak − rbk

rb†k) , (A.109)

which is identical to (16.14) in case of discrete fields.

A.17 Computation of the Hamilton operator (17.69)

We want to demonstrate, that the Hamilton operator (17.69) results from
the Hamilton density (17.68) of the quantized field Ã(x).
The Lagrangian (17.59) can be written in a compacter form due to re-

naming of some contracted indices:

L̃ =(17.59) − 1
2µ0

(
(dτ Ãσ)dτ Ãσ − (dσÃτ )dτ Ãσ + (dτ Ãτ )dσÃσ

)
= + 1

2µ0
(dτ Ãσ)

(
− dτ Ãσ + dσÃτ − gτσdλÃλ

)
= 1

2µ0
(dτ Ãσ)dµÃν

(
− gτµgσν + gσµgτν − gτσgµν

)
(A.110)

Using Ã = (17.61), Ãσ
(K.10c)= e(σ) · Ã and π̃σ = (17.64), one finds the

Hamilton-density-operator
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H̃ =
3∑

σ=0

∑
f

3∑
β=0

3∑
κ=0

√
~

µ02ωfΩ(e(κ) · e(β)
f ) ·

· i
(
− f0gσκ + fσg0κ − g0σfκ

)
·

·
(
− c(β)

f exp{−ifx}+ c
(β)†
f exp{+ifx}

)
·

·
∑
k

3∑
α=0

i

√
µ0c2~ωk

2Ω (e(σ) · e(α)
k ) ·

·
(
− c(α)

k exp{−ikx}+ c
(α)†
k exp{+ikx}

)
−

− 1
2µ0

3∑
σ=0

∑
f

3∑
β=0

if τ
√
µ0c2~

2ωfΩ(e(σ) · e(β)
f ) ·

·
(
− c(β)

f exp{−ifx}+ c
(β)†
f exp{+ifx}

)
·

·
3∑

κ=0

∑
k

3∑
α=0

ikµ

√
µ0c2~

2ωkΩ(e(κ) · e(α)
k ) ·

·
(
− c(α)

k exp{−ikx}+ c
(α)†
k exp{+ikx}

)
·
(
− gτµgσκ + gσµgτκ − gτσgµκ

)
. (A.111)

More summation symbols than usual have been used here, because according
to the summation convention, only over space-time-indices and over spinor-
indices is automatically summed-up, but not over the names (σ) of the unit
vectors, which are marked by brackets.
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H̃ =
∑
f ,k

3∑
σ,β,κ,α=0

c~

2Ω

(
−
√
ωk
ωf

(e(κ) · e(β)
f )(e(σ) · e(α)

k )

(−f0gσκ + fσg0κ − g0σfκ) +

+ c

2

√
1

ωfωk
(e(σ) · e(β)

f )(e(κ) · e(α)
k ) ·

(−f τkτgσκ + fκkσ − fσkκ)
)
·

·
(
c

(β)
f c

(α)
k exp{−i(f + k)x} − c(β)

f c
(α)†
k exp{−i(f − k)x}

− c(β)†
f c

(α)
k exp{+i(f − k)x}+ c

(β)†
f c

(α)†
k exp{+i(f + k)x}

)
Integrating over the total normalization volume Ω, one finds the Hamilton-
operator

H̃ =
∫
Ω

d3x H̃ . (A.112)

To get the Kronecker-symbol according to (16.3) in this integration, we
switch the sequence of summation over k in two terms. Using ω-k = ωk,
one gets
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H̃ =
∑
k

3∑
σ,β,κ,α=0

c~

2

(
− (e(κ) · e(β)

k )(e(σ) · e(α)
k )(−k0gσκ + kσg0κ − g0σkκ) +

+ c

2
1
ωk

(e(σ) · e(β)
k )(e(κ) · e(α)

k )(− kτkτ︸  ︷︷  ︸
0

gσκ + kκkσ − kσkκ︸             ︷︷             ︸
0

)
)

(−c(β)
k c

(α)†
k − c(β)†

k c
(α)
k )

+
∑
k

3∑
σ,β,κ,α=0

c~

2

(
− (e(κ) · e(β)

k )(e(σ) · e(α)
-k )

(−k0gσκ + kσg0κ − g0σkκ) +

+ c

2
1
ωk

(e(σ) · e(β)
k )(e(κ) · e(α)

-k )
(
−kτ (2gτ 0k0 − kτ )︸                     ︷︷                     ︸

−2k0k0

gσκ +

+ kκ(2gσ0k0 − kσ)− kσ(2gκ0k0 − kκ)︸                                               ︷︷                                               ︸
2k0(kκgσ0−kσgκ0)

))

(c(β)
k c

(α)
-k exp{−i2k0x0}+ c

(β)†
k c

(α)†
-k exp{+i2k0x0}) . (A.113)

Now we use

e
(α)
-k = +e(α)

k if α = 0

e
(α)
-k = −e(α)

k if α , 0 (A.114)

and k0 = ωk/c. Furthermore we rotate the coordinate system such, that
it is congruent with the coordinate system which is aligned to k, i. e. we
choose

e(α) ≡ e(α)
k =⇒ (e(σ) · e(α)

k ) (K.10e)= gσα . (A.115)
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H̃ =
∑
k

3∑
σ,β,κ,α=0

c~

2

(
− gκβgσα(−k0gσκ + kσg0κ − g0σkκ)

)
(−c(β)

k c
(α)+
k − c(β)+

k c
(α)
k )

+
∑
k

3∑
σ,β,κ,α=0

c~

2

(
− gκβgσα(2gα0 − 1)(−k0gσκ + kσg0κ − g0σkκ) +

+ gσβgκα(2gα0 − 1)(−k0gσκ + kκgσ
0 − kσgκ0)

)
(c(β)
k c

(α)
-k exp{−i2k0x0}+ c

(β)†
k c

(α)†
-k exp{+i2k0x0})

=
∑
k

3∑
β,α=0

c~

2 (−k0gβα + kαg
0
β − kβg0

α)(+c(β)
k c

(α)†
k + c

(β)†
k c

(α)
k )

+
∑
k

3∑
β,α=0

c~

2 (2gα0 − 1)

(k0gβα − kαg0
β + kβg

0
α − k0gαβ + kαg0β − kβg0α)

(c(β)
k c

(α)
-k exp{−i2k0x0}+ c

(β)†
k c

(α)†
-k exp{+i2k0x0}) (A.116)

We split the summation over α and β:

H̃ = H̃α=β + H̃α=0,β + H̃α,0=β + H̃0,α,β,0 (A.117)

One finds
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H̃α=β =(A.116)∑
k

3∑
α=0

c~

2
(
− k0(2g0

α − 1) + kαg
0
α − kαg0

α

)
(c(α)
k c

(α)†
k + c

(α)†
k c

(α)
k )

+
∑
k

3∑
α=0

c~

2 (2gα0 − 1)
(
k0(2gα0 − 1)− kαg0

α + kαg
0
α

− k0(2gα0 − 1) + kαg0α − kαg0α
)

(c(α)
k c

(α)
-k exp{−i2k0x0}+ c

(α)†
k c

(α)†
-k exp{+i2k0x0})

=
∑
k

3∑
α=0

~ωk
2 (1− 2g0

α)(c(α)
k c

(α)†
k + c

(α)†
k c

(α)
k ) . (A.118)

H̃α=0,β =
∑
k

3∑
j=1

c~

2 (−k0gj0 + k0g
0
j − kjg0

0)

(+c(j)
k c

(0)†
k + c

(j)†
k c

(0)
k )

+
∑
k

3∑
j=1

c~

2 (2g0
0 − 1)

(k0gj0 − k0g
0
j + kjg

0
0 − k0g0j + k0g0j − kjg00)

(c(j)
k c

(0)
-k exp{−i2k0x0}+ c

(j)†
k c

(0)†
-k exp{+i2k0x0})

= −
∑
k

3∑
j=1

c~kj
2 (+c(j)

k c
(0)†
k + c

(j)†
k c

(0)
k )

+
∑
k

3∑
j=1

c~

2 (kj − kj)
(
c

(j)
k c

(0)
-k exp{−i2k0x0}+

+ c
(j)†
k c

(0)†
-k exp{+i2k0x0}) (A.119)
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H̃α,0=β =
∑
k

3∑
j=1

c~

2 (−k0g0j + kjg
0

0 − k0g
0
j)

(+c(0)
k c

(j)†
k + c

(0)†
k c

(j)
k )

+
∑
k

3∑
j=1

c~

2 (2gj0 − 1)

(k0g0j − kjg0
0 + k0g

0
j − k0gj0 + kjg00 − k0g0j)

(c(0)
k c

(j)
-k exp{−i2k0x0}+ c

(0)†
k c

(j)†
-k exp{+i2k0x0})

=
∑
k

3∑
j=1

c~kj
2 (c(0)

k c
(j)†
k + c

(0)†
k c

(j)
k )

−
∑
k

3∑
j=1

c~

2 (+kj − kj)
(
c

(0)
-k c

(j)
k exp{−i2k0x0}+

+ c
(0)†
-k c

(j)†
k exp{+i2k0x0}

)
(A.120)

As the summation is symmetrical over all positive and negative k, in the last
line −k and k could be permuted. As furthermore the Fourier-operators
commute according to (17.67) because of (j) , (0), we get

H̃α=0,β + H̃α,0=β = 0 . (A.121)

Furthermore

H̃0,α,β,0 =
∑
k

3∑
j,l=1

(1 + gjl)c~2 (−k0gjl + klg
0
j − kjg0

l)

(+c(j)
k c

(l)†
k + c

(j)†
k c

(l)
k )

+
∑
k

3∑
j,l=1

(1 + gjl)c~2 (2gl0 − 1)

(k0gjl − klg0
j + kjg

0
l − k0glj + klg0j − kjg0l)

(c(j)
k c

(l)
-k exp{−i2k0x0}+ c

(j)†
k c

(l)†
-k exp{+i2k0x0}) = 0 .
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Thus one finds the Hamilton operator

H̃ = H̃α=β︸   ︷︷   ︸
(A.118)

+ H̃α=0,β + H̃α,0=β︸                      ︷︷                      ︸
0

+ H̃0,α,β,0︸        ︷︷        ︸
0

=

=
∑
k

3∑
α=0

~ωk
2 (1− 2g0

α)(c(α)
k c

(α)†
k + c

(α)†
k c

(α)
k )

= −
∑
k

3∑
α=0

3∑
β=0

gαβ
~ωk

2 (c(α)
k c

(α)†
k − c(α)†

k c
(α)
k︸                       ︷︷                       ︸

1

+c(α)†
k c

(α)
k + c

(α)†
k c

(α)
k )

As in case of all elementary (i. e. continuous) quantum fields, we postulate
as law of nature, that the unphysical term which does not depend on the
particle-number operator c(α)†

k c
(α)
k must be removed, to achieve the correct

result:

H̃ = −
∑
k

3∑
α=0

3∑
β=0

gαβ~ωkc
(α)†
k c

(α)
k (A.122)

A.18 Computation of the momentum operator (17.71)

We want to demonstrate, that the momentum operator (17.71) follows from
the momentum density (17.68) of the quantized field Ã(x).
Using π̃τ (x) = (17.64), Ã(x) = (17.61), and Ãτ (x) = (17.65), one gets

P̃j = π̃τ (x) djÃτ (x)

= −
∑
f ,k

3∑
β,α=0

3∑
κ,τ=0

c~(−f0gτκ + f τg0κ − g0τfκ)kj

2Ω√ωfωk

(e(κ) · e(β)
f )(e(τ) · e(α)

k )(
c

(β)
f c

(α)
k exp{−i(f + k)x} − c(β)

f c
(α)†
k exp{−i(f − k)x}

− c(β)†
f c

(α)
k exp{i(f − k)x}+ c

(β)†
f c

(α)†
k exp{i(f + k)x}

)
. (A.123)
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Because there is not automatic summation over the names (κ) of the
unit vectors, the summation symbols have been written explicitly. The
momentum operator

P̃ j =
∫
Ω

d3x P̃j (A.124)

is the integral of P̃j over the total normalization volume Ω. To get in this
integration the Kronecker-symbol according to (16.3), we switch before the
integration in two terms the sequence of summation over k. Using ω-k = ωk
and e(α)

-k = e
(α)
k (2gα0 − 1) one gets

P̃ j = −
∑
k

3∑
β,α=0

3∑
κ,τ=0

c~(−k0gτκ + kτg0κ − g0τkκ)kj

2ωk

(e(κ) · e(β)
k )(e(τ) · e(α)

k )
(
− c(β)

k c
(α)†
k − c(β)†

k c
(α)
k

)
+
∑
k

3∑
β,α=0

3∑
κ,τ=0

c~(−k0gτκ + kτg0κ − g0τkκ)kj

2ωk

(e(κ) · e(β)
k )(e(τ) · e(α)

k )(2gα0 − 1)(
c

(β)
k c

(α)
-k exp{−i2k0x0}+ c

(β)†
k c

(α)†
-k exp{i2k0x0}

)
. (A.125)

We split P̃ j into the five terms

P̃ j = P̃ jα=β=0 + P̃ jα=β,0 + P̃ jα=0,β + P̃ jα,0=β + P̃ j0,α,β,0 .

In the sum P̃ jα=β=0, also τ = κ = 0 must hold because of the factors
(e(κ) · e(0)

k ) = gκ0:
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P̃ jα=β=0 =
∑
k

c~(−k0 + k0 − k0)kj

2ωk

(
c

(0)
k c

(0)†
k + c

(0)†
k c

(0)
k

)
+
∑
k

c~(−k0 + k0 − k0)kj

2ωk(
c

(0)
k c

(0)
-k exp{−i2k0x0}+ c

(0)†
k c

(0)†
-k exp{i2k0x0}

)
The second sum over k is zero, because for each term with +k there is
another term with −k, and these two terms differ by nothing than the sign
of kj . Using k0 = ωk/c, therefore

P̃ jα=β=0 = −
∑
k

~kj

2
(
c

(0)
k c

(0)†
k + c

(0)†
k c

(0)
k

)
. (A.126)

In the sum P̃ jα=β,0, also τ , 0 and κ , 0 must hold because of the factors
(e(κ) · e(β)

k ):

P̃ jα=β,0 = +
∑
k

3∑
α=1

3∑
κ,τ=1

c~k0gτκkj

2ωk

(e(κ) · e(α)
k )(e(τ) · e(α)

k )
(
− c(α)

k c
(α)†
k − c(α)†

k c
(α)
k

)
+
∑
k

3∑
α=0

3∑
κ,τ=0

c~k0gτκkj

2ωk
(e(κ) · e(α)

k )(e(τ) · e(α)
k )

(
c

(α)
k c

(α)
-k exp{−i2k0x0}+ c

(α)†
k c

(α)†
-k exp{i2k0x0}

)
In the second sum over k, the term with −k differs by nothing than the
sign of kj from the term with +k. Therefore in total the sum is zero. We
expand e(α)

k with respect to e(κ) and with respect to e(τ), and multiply the
both expansions. Because of α , 0, the result is

e
(α)
k · e

(α)
k

(K.10e)= −1 =
3∑

κ,τ=1
(e(κ) · e(α)

k )(e(τ) · e(α)
k ) e(κ) · e(τ)︸        ︷︷        ︸

gκτ

.
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Using k0 = ωk/c, we thus find

P̃ jα=β,0 = +
∑
k

3∑
α=1

~kj

2
(
c

(α)
k c

(α)†
k + c

(α)†
k c

(α)
k

)
. (A.127)

In the sum P̃ jα=0,β, also τ = 0 and κ , 0 must hold because of the factors
(e(κ) · e(β)

k ):

P̃ jα=0,β = +
∑
k

3∑
β=1

3∑
κ=1

c~kκkj

2ωk

(e(κ) · e(β)
k )

(
− c(β)

k c
(0)†
k − c(β)†

k c
(0)
k

)
−
∑
k

3∑
β=1

3∑
κ=1

c~kκkj

2ωk
(e(κ) · e(β)

k )

(
c

(β)
k c

(0)
-k exp{−i2k0x0}+ c

(β)†
k c

(0)†
-k exp{i2k0x0}

)
In the sum P̃ jα,0=β, also τ , 0 and κ = 0 must hold because of the factors
(e(κ) · e(β)

k ):

P̃ jα,0=β = −
∑
k

3∑
α=1

3∑
τ=1

c~kτkj

2ωk

(e(τ) · e(α)
k )

(
− c(0)

k c
(α)†
k − c(0)†

k c
(α)
k

)
−
∑
k

3∑
α=1

3∑
τ=1

c~kτkj

2ωk
(e(τ) · e(α)

k )
(
c

(0)
k c

(α)
-k exp{−i2k0x0}+ c

(0)†
k c

(α)†
-k exp{i2k0x0}

)
The Fourier-operators in this equation commute because of (17.67). As the
summation is running symmetrically over all positive and negative k, one
may furthermore permute k and −k in the second summand. Doing that,
there is a sign change due to e(α)

-k = −e(α)
k :
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P̃ jα,0=β = −
∑
k

3∑
α=1

3∑
τ=1

c~kτkj

2ωk

(e(τ) · e(α)
k )

(
− c(α)

k c
(0)†
k − c(α)†

k c
(0)
k

)
+
∑
k

3∑
α=1

3∑
τ=1

c~kτkj

2ωk
(e(τ) · e(α)

k )
(
c

(α)
k c

(0)
-k exp{−i2k0x0}+ c

(α)†
k c

(0)†
-k exp{i2k0x0}

)
Now it becomes obvious, that

P̃ jα=0,β + P̃ jα,0=β = 0 . (A.128)

Eventually we compute P̃ j0,α,β,0. In this term, also τ , 0 and κ , 0 must
hold because of the factors (e(κ) · e(β)

k ):

P̃ j0,α,β,0 = −
∑
k

3∑
β,α=1

3∑
κ,τ=1

(1− gαβ)c~(−k
0gτκ)kj

2ωk

(e(κ) · e(β)
k )(e(τ) · e(α)

k )
(
− c(β)

k c
(α)†
k − c(β)†

k c
(α)
k

)
−
∑
k

3∑
β,α=1

3∑
κ,τ=1

(1− gαβ)c~(−k
0gτκ)kj

2ωk

(e(κ) · e(β)
k )(e(τ) · e(α)

k )(
c

(β)
k c

(α)
-k exp{−i2k0x0}+ c

(β)†
k c

(α)†
-k exp{i2k0x0}

)
= 0 (A.129)

This term is zero, as becomes visible if the coordinate system spanned by
the unit vectors e(κ) is rotated such, that e(κ) = e

(κ)
k holds for the unit

vectors. There are only terms different from zero in case κ = β , τ = α.
There is a factor gτκ in each of the summands. Therefore a summand can
be different from zero only if β = α. But the summation is running over
β , α only due to the factor (1− gαβ). Therefore in P̃ j0,α,β,0 there is not
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any summand different from zero.
In total, we have found:

P̃ j = P̃ jα=β=0︸      ︷︷      ︸
(A.126)

+ P̃ jα=β,0︸     ︷︷     ︸
(A.127)

+ P̃ jα=0,β + P̃ jα,0=β︸                    ︷︷                    ︸
0

+ P̃ j0,α,β,0︸        ︷︷        ︸
0

=
∑
k

3∑
α=0

~kj

2
(
c

(α)
k c

(α)†
k + c

(α)†
k c

(α)
k

)
(1− 2gα0)

=
∑
k

3∑
α=0
~kj

(
c

(α)†
k c

(α)
k + 1

2 [c(α)
k , c

(α)†
k ]

)
(1− 2gα0)

= −
∑
k

3∑
α=0

3∑
β=0

gαβ~kj
(
c

(α)†
k c

(α)
k + 1

2 [c(α)
k , c

(α)†
k ]

)
(A.130)

As in case of all elementary (i. e. continuous) quantum fields, we postulate
as law of nature that the commutator, as it does not depend on the particle-
number operator c(α)†

k c
(α)
k , must be removed to achieve the correct result:

P̃ j = −
∑
k

3∑
α=0

3∑
β=0

gαβ~kjc
(α)†
k c

(α)
k (A.131)

A.19 Auxiliary computation for (14.22)

We want to prove, that

〈φ|S|ψ〉 (14.22)=
∫
Ω

d3xφ∗(x)Sψ(x) (A.132)

does hold for arbitrary operators S. In the most general case, S can be
a polynomial of numbers and differential operators. If S contains only
numbers, but no differential operators, then we have



Appendix 729
〈φ|S|ψ〉 =

∫
Ω

d3y

∫
Ω

d3x 〈φ|y〉︸  ︷︷  ︸
φ∗(y)

〈y|S|x〉︸      ︷︷      ︸
Sδ(3)(y−x)

〈x|ψ〉︸   ︷︷   ︸
ψ(x)

=
∫
Ω

d3xφ∗(x)S ψ(x) .

(A.133)

To find the matrix element of differential operators in the position represen-
tation, we make use of the fact that we already know the commutator of
one differential operator, i. e. the k-component of the momentum operator

pk = ~
i

d
dxk

(A.134)

with the j-component of the position operator xj :

xjpk − pkxj
(14.9)= i~δjk (A.135)

It’s easy to guess the corresponding matrix-element in the position repre-
sentation, if we firstly restrict to a one-dimensional evaluation:

〈y|xp− px|z〉 = i~〈y|z〉 = i~δ(y − z) (A.136)

x, y, z and p are all within the same space dimension. We just are using
different letters, to make the position operator x and it’s eigenvalues y and
z discernible.
The matrix element (A.136) can be written in the form

〈y|xp− px)|z〉 = ~
i

(y − z) d δ(y − z)
dy . (A.137)

This is true, because δ(y− z) is different from zero only at y = z, but not at
the boundaries of the normalization volume Ω, and thus partial integration
results into
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Ω1/3

dy (y − z) dδ(y − z)
dy = (A.138)

=
[
(y − z)δ(y − z)

]
Ω1/3︸                          ︷︷                          ︸

0

−
∫

Ω1/3

dy d(y − z)
dy︸        ︷︷        ︸
1

δ(y − z) .

Alternatively, the matrix element (A.136) can be computed as follows:

〈y|xp− px)|z〉 =
∫

Ω1/3

dw
(
〈y|x|w〉〈w|p|z〉 − 〈y|p|w〉〈w|x|z〉

)
=

=
∫

Ω1/3

dw
(
wδ(y − w)〈w|p|z〉 − 〈y|p|w〉zδ(w − z)

)
= (y − z)〈y|p|z〉

(A.139)

Comparing (A.137), (A.139) and (A.134), we get

〈y| d
dx |z〉 = d δ(y − z)

dy . (A.140)

For the (m+ 1)th power of the differential operator, we find due to partial
integration

〈y| dm+1

dxm+1 |z〉 =
∫

Ω1/3

dw 〈y| dm

dxm |w〉〈w|
d

dx |z〉 =

=
∫

Ω1/3

dw 〈y| dm

dxm |w〉
d δ(w − z)

dw =

=
[
〈y| dm

dxm |w〉 δ(w − z)
]

Ω1/3︸                                  ︷︷                                  ︸
0

−
∫

Ω1/3

dw δ(w − z) d
dw

(
〈y| dm

dxm |w〉
)

=

= −d
dz

(
〈y| dm

dxm |z〉
)
. (A.141)

Because the matrix element with m = 1 is already known from (A.140), the
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matrix elements of all powers of the differential operator can be computed
by means of this recursion formula:

〈y| d2

dx2 |z〉 = −d
dz

(d δ(y − z)
dy

)
= +d2 δ(y − z)

dy2

〈y| d3

dx3 |z〉 = −d
dz

(d2 δ(y − z)
dy2

)
= +d3 δ(y − z)

dy3

〈y| dm

dxm |z〉 = +dm δ(y − z)
dym (A.142)

This formula holds for the one-dimensional case. It’s plausible, that the
extension to the three-dimensional case is given by

〈y| dm

dxm |z〉 = +dm δ(y − z)
dym . (A.143)

Thus for S ≡ dm
dxm the matrix element in the position representation is

〈φ|S|ψ〉 =
∫
Ω

d3y

∫
Ω

d3x 〈φ|y〉︸  ︷︷  ︸
φ∗(y)

〈y| dm

dxm |x〉 〈x|ψ〉︸   ︷︷   ︸
ψ(x)

=
∫
Ω

d3y φ∗(y)
∫
Ω

d3x
dmδ(y − x)

dym ψ(x)

=
∫
Ω

d3y φ∗(y)
∫
Ω

d3x (−1)m dmδ(y − x)
dxm ψ(x) . (A.144)

Now we integrate m-times partially over x. Because the delta function or
the nth derivative of the delta function are contained in the primitive, it’s
value is zero at the boundaries of the integration volume Ω. Thus we get

(−1)m
∫
Ω

d3x
dmδ(y − x)

dxm ψ(x) =

= (−1)m(−1)m
∫
Ω

d3x δ(y − x) dm ψ(x)
dxm = +dm ψ(y)

dym .
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This is inserted into (A.144):

〈φ|S|ψ〉 = 〈φ| dm

dxm |ψ〉 =
∫
Ω

d3y φ∗(y)dm ψ(y)
dym =

=
∫
Ω

d3xφ∗(x)Sψ(x) (A.145)

This formula for the matrix element in the position representation holds for
arbitrary operators S, no matter which powers of numbers and/or differential
operators they contain.

A.20 The Laplace Operator

The Laplace operator is
a) in Cartesian coordinates

∆ = d2

dx2 + d2

dy2 + d2

dz2 , (A.146a)

b) in cylindrical coordinates

∆ = 1
ρ

d
dρ
(
ρ

d
dρ
)

+ 1
ρ2

d2

dϕ2 + d2

dz2 , (A.146b)

c) in spherical coordinates

∆ = d2

dr2 + 2
r

d
dr + 1

r2 sinϑ
d
dϑ
(

sinϑ d
dϑ
)

+ 1
r2 sin2 ϑ

d2

dϕ2 . (A.146c)

A.21 Derivation of Equation (23.28)

Using the definitions
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Ak+

 ≡ √
1

2(E +mc2)

 c~k1 + ic~k2
E +mc2 − c~k3
E +mc2 + c~k3

 (A.147)

with E = ~ωk > 0 , kj = −kj ,

we compute the spinors

1uf
(8.75a)=


Af+
Bf

Af−
−Bf

 2uf
(8.75b)=


Bf∗

Af−
−Bf∗

Af+

 (A.148a)

1vf
(8.75c)=


Af+
Bf

−Af−
Bf

 2vf
(8.75d)=


Bf∗

Af−
Bf∗

−Af+

 . (A.148b)

Furthermore we compute the spinor product

rαūf rβuk = rαuf+ γ0 rβuk =

=(8.15a)
(
rαuf ∗1

rαuf ∗2
rαuf ∗3

rαuf ∗4

)
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0



rβuk1
rβuk2
rβuk3
rβuk4


= rαuf∗3

rβuk1 + rαuf∗4
rβuk2 + rαuf∗1

rβuk3 + rαuf∗2
rβuk4 . (A.149)

In particular, one finds

1ūf 1uk = Af− A
k
+ −Bf∗ Bk +Af+ Ak− −Bf∗ Bk (A.150a)

1ūf 2uk = Af− B
k∗ −Bf∗ Ak− −A

f
+ Bk∗ +Bf∗ Ak+ (A.150b)

2ūf 1uk = −Bf Ak+ +Af+ Bk +Bf Ak− −A
f
− B

k (A.150c)
2ūf 2uk = −Bf Bk∗ +Af+ Ak− −Bf Bk∗ +Af− A

k
+ (A.150d)

1ūf 1vk = Af− A
k
+ −Bf∗ Bk −A

f
+ Ak− +Bf∗ Bk (A.150e)
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1ūf 2vk = Af− B
k∗ −Bf∗ Ak− +Af+ Bk∗ −Bf∗ Ak+ (A.150f)

2ūf 1vk = −Bf Ak+ +Af+ Bk −Bf Ak− +Af− B
k (A.150g)

2ūf 2vk = −Bf Bk∗ +Af+ Ak− +Bf Bk∗ −Af− Ak+ (A.150h)
1̄vf 1uk = −Af− Ak+ +Bf∗ Bk +Af+ Ak− −Bf∗ Bk (A.150i)
1̄vf 2uk = −Af− Bk∗ +Bf∗ Ak− −A

f
+ Bk∗ +Bf∗ Ak+ (A.150j)

2̄vf 1uk = Bf Ak+ −A
f
+ Bk +Bf Ak− −A

f
− B

k (A.150k)
2̄vf 2uk = Bf Bk∗ −Af+ Ak− −Bf Bk∗ +Af− A

k
+ (A.150l)

1̄vf 1vk = −Af− Ak+ +Bf∗ Bk −Af+ Ak− +Bf∗ Bk (A.150m)
1̄vf 2vk = −Af− Bk∗ +Bf∗ Ak− +Af+ Bk∗ −Bf∗ Ak+ (A.150n)
2̄vf 1vk = Bf Ak+ −A

f
+ Bk −Bf Ak− +Af− B

k (A.150o)
2̄vf 2vk = Bf Bk∗ −Af+ Ak− +Bf Bk∗ −Af− Ak+ . (A.150p)

UsingBkAk−
Ak+

 ≡ √
1

2(E +mc2)

 c~k1 + ic~k2
E +mc2 − c~k3
E +mc2 + c~k3

 |c~k|�mc2

≈

 0√
mc2
√
mc2

 ,
(A.151)

one gets in the non-relativistic limit the simple expressions

1uf ≈


√
mc2

0√
mc2

0

 2uf ≈


0√
mc2

0√
mc2

 (A.152a)

1vf ≈


√
mc2

0
−
√
mc2

0

 2vf ≈


0√
mc2

0
−
√
mc2

 (A.152b)

if |c~f | � mc2 .
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From these expressions, the following approximations may be concluded in
the non-relativistic limit:

rūf suk ≈ 2mc2 δrs (A.153a)
rūf svk ≈ 0 (A.153b)
rv̄f suk ≈ 0 (A.153c)
rv̄f svk ≈ −2mc2 δrs (A.153d)

rūf γ0 suk ≈ 2mc2 δrs (A.153e)
rūfγ0 svk ≈ 0 (A.153f)
rv̄f γ0 suk ≈ 0 (A.153g)
rv̄f γ0 svk ≈ 2mc2 δrs (A.153h)
rūf γ1 suk ≈ 0 (A.153i)
rūf γ1 svk ≈ −2mc2(1− δrs) (A.153j)
rv̄f γ1 suk ≈ −2mc2(1− δrs) (A.153k)
rv̄f γ1 svk ≈ 0 (A.153l)
rūf γ2 suk ≈ 0 (A.153m)
rūf γ2 svk ≈ i2mc2(1− δrs)(δr1 − δr2) (A.153n)
rv̄f γ2 suk ≈ i2mc2(1− δrs)(δr1 − δr2) (A.153o)
rv̄f γ2 svk ≈ 0 (A.153p)
rūf γ3 suk ≈ 0 (A.153q)
rūf γ3 svk ≈ 2mc2δrs(δr2 − δr1) (A.153r)
rv̄f γ3 suk ≈ 2mc2δrs(δr2 − δr1) (A.153s)
rv̄f γ3 svk ≈ 0 (A.153t)

if |c~f | � mc2 and |c~k| � mc2

These expressions can easily be proved due to insertion of (A.152) and
(8.15).
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A.22 Derivation of Equation (24.33)

In the center-of-mass system (k4 = −k3)

E2
CM =

(√
~2c2k2

3 +m2
3c

4 +
√
~2c2k2

3 +m2
4c

4
)2

E2
CM − 2~2c2k2

3 − (m2
3 +m2

4)c4 =

= 2
√
~4c4k4

3 + ~2c6k2
3(m2

3 +m2
4) +m2

3m
2
4c

8 .

Both sides are squared once more:

4~4c4k4
3 +

(
− 4E2

CM~
2c2 + 4~2c6(m2

3 +m2
4)
)
k2

3 +

+ E4
CM − 2E2

CM(m2
3 +m2

4)c4 + (m2
3 +m2

4)2c8 =
= 4~4c4k4

3 + 4~2c6(m2
3 +m2

4)k2
3 + 4m2

3m
2
4c

8

k2
3 = 4m2

3m
2
4c

8 − E4
CM + 2E2

CM(m2
3 +m2

4)c4 − (m2
3 +m2

4)2c8

−4E2
CM~

2c2

= E4
CM − 2E2

CM(m2
3 +m2

4)c4 + (m2
3 −m2

4)2c8

4E2
CM~

2c2

This results into

|k3| =
S34

2ECM~c
with (A.154)

S34 ≡
√(

E2
CM − (m3 +m4)2c4)(E2

CM − (m3 −m4)2c4) .
A.23 Gauß’ Integral Formula

We state the formula for Gauß’ integral with real exponent and with n-
dimensional vectors without proof:

x ≡ {x1, . . . , xn} , b ≡ {b1, . . . , bn} , a > 0 , xj , bj , a ∈ R
+∞∫
−∞

dnx exp
{
− ax2 + bx

}
=
(π
a

)n/2
exp

{ b2
4a
}

(A.155a)
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The integral’s convergence is guaranteed by the condition a > 0. Again
without proof, we state that this formula is valid as well if both xj and a
are imaginary:

xj → ixj , bx→ ibx , a→ ia , xj , bj , a ∈ R

Inserting these substitutions, the integral-formula becomes

x ≡ {x1, . . . , xn} , b ≡ {b1, . . . , bn} , xj , bj , a ∈ R
+∞∫
−∞

idnx exp
{
iax2 + ibx

}
=
( π
ia

)n/2
exp

{ b2
4ia

}
+∞∫
−∞

dnx exp
{
iax2 + ibx

}
= (−i)1+n/2

(π
a

)n/2
exp

{−ib2
4a

}
. (A.155b)

The restriction a > 0 would be meaningless, if the exponential function’s
argument is purely imaginary. It may be skipped, because the integral’s
convergence is secured by the fact, that the exponential function is oscillating
with increasing speed for increasing |x|.

A.24 Derivation of (26.12)

For the computation of FαβP = (26.5), several tricky manipulations1 will
be applied. As the N + 1 terms all have the same form, we perform the
manipulations explicitly only for one term. It is understood, that the same
manipulations are applied to all N + 1 terms.
Remember that the factors under the trace may be cyclically permuted.

Comparing the trace in (26.5) with the trace in (24.61), one therefore may
conclude:

1 The quite original method for the computation of vacuum polarization, which is
described in the sequel, can be found in the book of Greiner and Reinhardt [6, section
5.2].
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Sp
{(
γσ(kγ + k)σ +m c

~

)
γβ
(
γτkτ +m c

~

)
γα
}

=

= 4
(
(kγ + k)βkα − (kγ + k)kgβα + (kγ + k)αkβ + (m c

~)
2gβα

)
= −4

(d
dr1β

d
dr2α

− d
dr1

d
dr2

gβα + d
dr1α

d
dr2β

− (m c
~)

2gβα
)

exp{ir1(kγ + k) + ir2k}
∣∣∣∣
r1=r2=0

(A.156)

The denominators of the integrands in (26.5) are modified using

∞∫
0

ds exp{is(K + iε)} = exp{isK − sε}
i(K + iε)

∣∣∣∣∞
0

=

= 0− 1
i(K + iε) = i

K + iε
with K, ε ∈ R and ε > 0 .

This results into

i(
(kγ + k)2 −m2 c2

~2 + iε′
)(
k2 −m2 c2

~2 + iε′
) =

∞∫
0

ds1

∞∫
0

ds2

· exp
{
is1
(
(kγ + k)2 −m2 c2

~2

)
+ is2

(
k2 −m2 c2

~2

)}
. (A.157)

The small terms iε′ have been inserted before, to avoid the poles at (kγ +
k)2 = m2c2/~2 and at k2 = m2c2/~2. In the exponential function they are
not needed any more. The dimensions of the four new inserted parameters
are

[rj ] = length [sj ] = length2 . (A.158)

After these manipulations, the first term in (26.5) is looking like this:
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− i 4q2

~2

∞∫
0

ds1

∞∫
0

ds2
1
Ω
∑
k

+∞∫
−∞

dk0

2π

·
(d

dr1β

d
dr2α

− d
dr1

d
dr2

gβα + d
dr1α

d
dr2β

− (m c
~)

2gβα
)

· exp
{
i(s1 + s2)k2 + i(r1 + r2 + s12kγ)k

}∣∣∣∣
r1=r2=0

· exp
{
i(r1kγ + s1k

2
γ)
}∣∣∣∣
r1=r2=0

(A.159)

Only the first exponential function does depend on k. The sum and the
integral over k can be computed — respecting (7.5) — by means of the
formula for the Gauß’ integral with imaginary exponent and 4-dimensional
vectors, which is printed in appendix A.23:

1
Ω
∑
k

+∞∫
−∞

dk0

2π exp
{
i(s1 + s2)k2 + i(r1 + r2 + s12kγ)k

}
(A.155b)= −i

16π2(s1 + s2)2 exp
{−i(r1 + r2 + s12kγ)2

4(s1 + s2)
}
. (A.160)

This result is inserted into (A.159):

(A.159) =
∞∫
0

ds1

∞∫
0

ds2
−q2

4π2~2(s1 + s2)2

·
(d

dr1β

d
dr2α

− d
dr1

d
dr2

gβα + d
dr1α

d
dr2β

− (m c
~)

2gβα
)

· exp
{−i(r2

1 + r2
2 + 4s2

1k
2
γ + 2r1r2 + 4r1s1kγ + 4r2s1kγ)

4(s1 + s2) +

+ i(r1kγ + s1k
2
γ)− i(s1 + s2)m2 c2

~2

}∣∣∣∣
r1=r2=0

(A.161)

Now the derivatives of the exponential function must be computed.



740 Appendix

d
dr1β

d
dr2α

exp
{
. . .
}∣∣∣∣
r1=r2=0

=

= d
dr1β

−i(2rα2 + 2rα1 + 4s1k
α
γ )

4(s1 + s2) exp
{
. . .
}∣∣∣∣
r1=r2=0

=
( −i2gαβ

4(s1 + s2) −
i(2rα2 + 2rα1 + 4s1k

α
γ )

4(s1 + s2) ·

·
(−i(2rβ1 + 2rβ2 + 4s1k

β
γ

4(s1 + s2) + ikβγ

))
exp

{
. . .
}∣∣∣∣
r1=r2=0

=
( −igαβ

2(s1 + s2) +
s1s2k

α
γ k

β
γ

(s1 + s2)2

)
exp

{ is1s2k
2
γ

s1 + s2
− i(s1 + s2)m2 c2

~2

}
(A.162)

In the third term of the derivative in (A.159) there are just the indices α
and β exchanged. This does not change the derivative’s value. The second
term of the derivative in (A.159) can be found by multiplication of (A.162)
with

∑
α

∑
β gαβ:

d
dr1

d
dr2

exp
{
. . .
}∣∣∣∣
r1=r2=0

=
( −2i
s1 + s2

+
s1s2k

2
γ

(s1 + s2)2

)
exp

{
. . .
}

Thus one gets

(A.159) =
∞∫
0

ds1

∞∫
0

ds2
−q2

4π2~2(s1 + s2)2

(2s1s2(kαγ kβγ − k2
γg
αβ)

(s1 + s2)2 +

+ igαβ

s1 + s2
−
s1s2(1− 2)k2

γg
αβ

(s1 + s2)2 − (m c
~)

2gαβ
)

· exp
{ is1s2k

2
γ

s1 + s2
− i(s1 + s2)m2 c2

~2

}
. (A.163)

The both green colored terms, which add to zero, have been inserted in
addition. Note that the the divergence, which in the original integral (26.5)
turned up for k → ±∞, now due to the manipulations has been moved to
s1, s2 → 0. There is no divergence at s1, s2 →∞, because the argument of
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the exponential function is imaginary.

We demonstrated the conversion at the example of the first term of (26.5).
But we also have emphasized, that the same manipulations have to be done
with all of the N + 1 terms. To achieve a compact notation, we define

C0 ≡ 1 M0 ≡ m s ≡ s1 + s2 . (A.164)

Using (26.6), one gets

N∑
j=0

Cj = 0 . (A.165)

Now (26.5) can be written in the form

FαβP
(26.5)= lim

Mj→∞

∞∫
0

ds1

∞∫
0

ds2
−q2

4π2~2s2

N∑
j=0

Cj

(
2s1s2(kαγ kβγ − k2

γg
αβ)

s2 + gαβ
( i
s

+
s1s2k

2
γ

s2 − (Mj
c
~)

2
))

· exp
{ is1s2k

2
γ

s
− isM2

j
c2

~2

}
. (A.166)

Note, that limMj→∞ refers to j ≥ 1 only, but not to M0 = m. Now we want
to demonstrate, that only the first term in the green bracket survives, and
that the integral over the rest is zero. Thus we assert

∞∫
0

ds1

∞∫
0

ds2
1
s2

N∑
j=0

Cj
( i
s

+
s1s2k

2
γ

s2 − (Mj
c
~)

2
)

· exp
{ is1s2k

2
γ

s
− isM2

j
c2

~2

} ?= 0 . (A.167)

To prove this assertion, we again write this expression with a derivation-
parameter r:
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(A.167) =
∞∫
0

ds1

∞∫
0

ds2
(−i)
s3

d
dr

1
r

N∑
j=0

Cj

· exp
{
ir
(s1s2k

2
γ

s
− sM2

j
c2

~2

)}∣∣∣∣
r=1

=
∞∫
0

ds1

∞∫
0

ds2
(−i)
s3

N∑
j=0

Cj
(
i
s1s2k

2
γ

s
− isM2

j
c2

~2 − 1
)

· exp
{
i
(s1s2k

2
γ

s
− sM2

j
c2

~2

)}
It is important for the next step of the proof, that the derivative with
respect to r may be factored out from the integrals over s1 and s2. This is
only correct if the integrals converge, which at first sight is not obvious for
s1, s2 → 0. There could be a divergence, only if both integration variables
would approach zero at the same time. In that case, the integrand

lim
s1,s2→0

N∑
j=0

Cj
(
i

s1s2k
2
γ

(s1 + s2)4 −
i

(s1 + s2)2M2
j
c2

~2

− 1
(s1 + s2)3

)

· exp
{
i
( s1s2k

2
γ

s1 + s2
− (s1 + s2)M2

j
c2

~2

)}
=

= lim
s1,s2→0

N∑
j=0

Cj
1

(s1 + s2)3 exp{0} , (A.168)

would become independent of Mj , because the exponential function con-
verges to exp{0} = 1, while the term (s1 + s2)-3 is growing faster than
the both others in the same bracket. Therefore the sum over j is zero for
s1, s2 → 0 because of (A.165), and the integral does converge.
With the substitution si → s̃i ≡ rsi, the expression therefore can be

written as follows:
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(A.167) = d
dr

∞∫
0

ds̃1

∞∫
0

ds̃2
(−i)
s̃3

N∑
j=0

Cj

· exp
{
i
( s̃1s̃2k

2
γ

s̃
− s̃M2

j
c2

~2 −
s̃

i
ε′
)}∣∣∣∣

r=1
= 0 (A.169)

As the integral does not depend on r, the derivative is zero. This proves
(A.167), and therefore

FαβP =(26.5) lim
Mj→∞

(kαγ kβγ − k2
γg
αβ) Π(kγ) (A.170a)

Π(kγ) ≡
∞∫
0

ds1

∞∫
0

ds2
−q2s1s2
2π2~2s4

N∑
j=0

Cj exp
{ is1s2k

2
γ

s
− isM2

j
c2

~2

}
. (A.170b)

Π(kγ) is called polarization function, and FαβP is called polarization tensor.
Now a factor

1 =
∞∫
0

ds δ(s− s1 − s2)

is inserted into the equation. Due to this factor, from now on s is to be
considered an independent variable, and the definition s ≡ s1 + s2 from
(A.164) isn’t valid any more. Subsequently, the substitution si → sis is
applied. The variable s — being independent of the si — is not touched by
that substitution:

Π(kγ) =
∞∫
0

ds1

∞∫
0

ds2

∞∫
0

ds δ(s− s1s− s2s)
−q2s1s2
2π2~2

N∑
j=0

Cj

· exp
{
is1s2sk

2
γ − isM2

j
c2

~2

}
(A.171)

Note, that the sj have become dimension-less due to this substitution. In
contrast, the dimension of s still is [s] = length2. Eventually s is factored
out of the delta-function:



744 Appendix

Π(kγ) =
1∫

0

ds1

1∫
0

ds2 δ(1− s1 − s2) −q
2s1s2

2π2~2
·B · V (A.172a)

V ≡
{

1 if s1s2k
2
γ < m2c2/~2

0 if s1s2k
2
γ ≥ m2c2/~2

(A.172b)

B ≡
N∑
j=0

Cj

∞∫
0

ds
s

exp
{
is1s2sk

2
γ − isM2

j
c2

~2

}
. (A.172c)

This expression is zero for s1 + s2 > 1 due to the delta-function. Therefore
the upper limit of the integrals over s1 and s2 could be changed to 1. Only
the integral over s still is running to +∞. Now it becomes visible, that
Π(kγ) (and therefore also FαβP = (A.170)) would diverge at s→ 0 without
regularization due to the counter-terms “only” logarithmically, but against
the first appearance of (26.4) not quadratically.

The function V has been inserted for the following reason: Our computa-
tion is valid for the modification of the free photon propagator (k2

γ = 0), as
well as for the modification of space-like virtual photons in t- or u-channel
scattering (k2

γ < 0), as well as for the modification of time-like virtual
photons in s-channel scattering (k2

γ > m2c2/~2). At k2
γ ≥ 4m2c2/~2, the

photon’s energy is sufficient for the creation of two real particles. That
opens a competing channel, which extracts probability amplitude from the
photon’s self-energy graph. The result of this extraction is, that some terms
in the formulas, which are real at k2

γ < 4m2c2/~2, become imaginary.
As these imaginary terms (which sometimes mutate to negative arguments

of logarithms) don’t contribute to the probability amplitudes which we really
want to compute, they are blanked out due to the function V . The product
s1s2 can be maximum 1/4 due to the delta-function. Because of this factor,
the boundary in (A.172b) has been set to m2c2/~2, but not to 4m2c2/~2.
We define two dimension-less real parameters

0 < ε ∈ R , ε , ε′ , [ε] = [Aj ] = 1

Aj ≡
(
s1s2

k2
γ~

2

m2c2 −
M2
j

m2

)
, (A.173)
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and substitute s by the dimension-less parameters rj :

s→ rj = −sAj
m2c2

~2

Thus B = (A.172c) can be written as

B = lim
ε→0

N∑
j=0

Cj

∞∫
ε~2/(mc)2

ds
s

exp
{
is1s2sk

2
γ − isM2

j
c2

~2︸                       ︷︷                       ︸
isAjm2c2/~2

}
=

= lim
R→∞

lim
ε→0

N∑
j=0

Cj

R∫
−εAj

drj
rj

exp{−irj} . (A.174)

Due to the function V , there is a contribution to Π(kγ) only if the lower
integration limit is > 0. For the evaluation of B, we compute the contour-
integral

R
Im(z)

Re(z)
ε

ca

ci
I ≡ lim

R→∞
lim
ε→0

∮
�

dz
z

exp{−iz} = 0 ,

(A.175)

over the sketched path in the complex plane. The integral’s segment on the
real axis is B = (A.174). According to Cauchy’s integral theorem2, the closed
contour-integral is zero, because the integrand is free of singularities within
the red drawn contour. The integration variable is in polar coordinates
(ρ, ϕ)

z = ρ exp{iϕ} = ρ(cosϕ+ i sinϕ)
dz
z

= d (ρ exp{iϕ})
ρ exp{iϕ} = d ln(exp{iϕ}) = idϕ .

2 In [37], a short explanation, which is tailored to the needs of physicists, of this important
mathematical tool can be found.
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In the limit R→∞ the outer quarter circle ca does not contribute to the
value of I:

Ica = lim
R→∞

i

3π/4∫
2π

dϕ exp{−iR cosϕ} exp{R sinϕ} = 0 (A.176)

With the exception of the point ϕ = 2π, whose measure is zero, the argument
of the second exponential function is negative and real. This factor goes to
zero exponentially with R, while the first exponential function does oscillate
for increasing R between -1 and 1. Now we consider the path integral over
the inner quarter circle:

Ici = lim
η→0

i

2π∫
3π/4

dϕ exp{−iη(cosϕ+ i sinϕ)} = iϕ
∣∣∣2π
3π/4

= i
π

4

The exponential function is always 1 for η → 0. Because of (A.175) we
therefore have

B =(A.174) lim
R→∞

lim
ε→0

N∑
j=0

Cj
(
− i π4 −

+iεAj∫
−iR

d(irj)
irj

exp{−irj}
)

= lim
R→∞

lim
ε→0

N∑
j=0

Cj
(
− i π4 −

−εAj∫
+R

dr
r

exp{−r}
)
. (A.177)

In the last step, irj → r has been substituted. The integration parameter
r is a real number, which does not depend on Mj . As the first term does
not depend on Mj , it vanishes because of (A.165). In the second term, we
exchange the integration boundaries, take the limit R→∞, and integrate
by parts:
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B = lim
ε→0

N∑
j=0

Cj
(

ln(r) exp{−r}
∣∣∣∞
−εAj

−
∞∫

−εAj

d ln(r) exp{−r}
)

= V lim
ε→0

N∑
j=0

Cj

(
0−

(
ln(ε) + ln(−Aj)

)
exp{+εAj}

−
∞∫

−εAj

d ln(r) exp{−r}
)
. (A.178)

The case −Aj ≤ 0 can not be excluded. The function V , which has been
defined in (A.172), makes sure that B in this case will not contribute to
Π(kγ). Thus the logarithm will not explode. The terms in

N∑
j=0

Cj lim
ε→0

(
− ln(ε) exp{+εAj} −

∞∫
−εAj

d ln(r) exp{−r}
)

= 0

are due to

lim
ε→0

(−εAj) = 0 , lim
ε→0

exp{εAj} = 1

not depending on Mj . Therefore, and because of (A.165), this sum is zero
as well. Thus only one term remains:

B = −
N∑
j=0

Cj ln(−Aj) lim
ε→0

exp{+εAj}︸                  ︷︷                  ︸
1

= −
N∑
j=0

Cj ln
(
(−s1s2k

2
γ +M2

j
c2

~2 ) ~
2

m2c2

)
. (A.179)

Compare this to (A.172c)! Starting from a logarithmically divergent integral,
we have arrived due to Pauli-Villars-regularization at this finite expression.
In the long course of the derivation, we have repeatedly used
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N∑
j=0

Cj =(A.165) 0 (A.180a)

C0 =(A.164) 1 M0
(A.164)= m . (A.180b)

We never needed to specify the exact number N of counterterms, and
nowhere N > 1 was needed. One single counterterm is sufficient. Thus for
simplicity we now fix

N = 1 C1 = −1 M ≡M1 . (A.180c)

Furthermore we choose M sufficiently large, such that

M2 � −s1s2k
2
γ
~2

c2 ≥ 0 .

Thus we get

B = − ln
(
1−

s1s2k
2
γ~

2

m2c2

)
+ ln

(M2

m2

)
. (A.181)

This is inserted into the polarization function, and the variable s2 is elimi-
nated due to integration over the delta function:

FαβP =(A.170) (kαγ kβγ − k2
γg
αβ) Π(kγ) (A.182a)

Π(kγ) =(A.172) lim
M→∞

1∫
0

ds1
−q2s1(1− s1)

2π2~2
· V ·

·
(
− ln

(
1−

s1(1− s1)k2
γ~

2

m2c2

)
+ ln

(M2

m2

))
(A.182b)

V =
{

1 if s1(1− s1)k2
γ < m2c2/~2

0 if s1(1− s1)k2
γ ≥ m2c2/~2

(A.182c)

A.25 Proof of (27.33) resp. (28.19)

F̃ ′στ =(27.31b) D′σ W̃ ′τ −D′τ W̃ ′σ
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=(27.29b) D′σ
(
UW̃τU

† + i~

g
(dτU)U †

)
−

−D′τ
(
UW̃σU

† + i~

g
(dσU)U †

)
F̃ ′στ =(27.23)

U Dσ W̃τU
† − U Dτ W̃σU

†+

+
(
dσ + i

~
g
[
UW̃σU

† + i~

g
(dσU)U †

]) i~
g

(dτU)U †+

−
(
dτ + i

~
g
[
UW̃τU

† + i~

g
(dτU)U †

]) i~
g

(dσU)U †

Using dσdτU = dτdσU , one gets

F̃ ′στ
(27.31b)= UF̃στU

† + UW̃τdσU † − UW̃σdτU †+

+ i~

g
(dτU)dσU † − UW̃σ U

†(dτU)U †︸            ︷︷            ︸
−dτU †

− i~
g

(dσU)U †(dτU)U †︸            ︷︷            ︸
−dτU †

−

− i~

g
(dσU)dτU † + UW̃τ U

†(dσU)U †︸            ︷︷            ︸
−dσU †

+ i~

g
(dτU)U †(dσU)U †︸            ︷︷            ︸

−dσU †

= UF̃στU
† . (A.183)

Here the relation

dσUU † = 0 = (dσU)U † + UdσU † =⇒
=⇒ U †(dσU)U † = −dσU † (A.184)

was used, and mutually compensating terms have been marked by colors.

A.26 Derivation of (19.45)

We write the S-matrix in the form
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Sf1...fnk1...km =(19.43a) 〈taf1 . . .fn | tek1 . . .km〉

= 〈0| af1a . . . afnaa
†
k1e

. . . a†kme |0〉 (A.185)

with creation- and annihilation-operators, which are related to the times te
and ta. The Fourier-operators, which are (and will remain) time-indepen-
dent, here get a time-index for the following reason: We are looking for a
formulation of the S-matrix, which is not based on the Fourier-operators,
but on the field-operators ψ(W ) of the interacting particles3. These field-
operators are solutions of equation (19.4). We do not know those solutions,
and they can not be expanded in a series with respect to the Fourier-opera-
tors. But that expansion is possible for the field-operators in the interaction
picture, see (19.11). Therefore we try to set up a relation between the
Fourier-operators and the field-operators ψ(W ) via detour over the field-
operators

ψ(x) (19.11)=
∑
k

√
1

2~ωkΩ
(
ak exp{−ikx} + a†k exp{+ikx}

)
(A.186)

in the interaction picture. We assert, that these field-operators can be solved
with respect to the Fourier-operators in the form

ak = ic

√
~

2ωkΩ

∫
Ω

d3x exp{ikx}←→d0ψ(x) (A.187a)

a†k = −ic
√
~

2ωkΩ

∫
Ω

d3x exp{−ikx}←→d0ψ(x) (A.187b)

with

F
←→dµG ≡ FdµG− (dµF )G . (A.188)

As ψ† = ψ for the uncharged Klein-Gordon field, (A.187b) is the adjoint
equation of (A.187a). Therefore (A.187b) is correct, if (A.187a) is correct.

3 Remember the re-naming (19.21) of indices!
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(A.187a) can be checked due to insertion of (A.186):

ak = ic

√
~

2ωkΩ

∫
Ω

d3x exp{ikx}
∑
f

√
1

2~ωfΩ ·

·
(
− if0af exp{−ifx} + if0a†f exp{+ifx}

− ik0(af exp{−ifx} + a†f exp{+ifx})
)

= − c

2Ω

∫
Ω

d3x
∑
f

√
1

ωk ωf

(
− (f0 + k0)af exp{i(k − f)x}+

+ (f0 − k0)a†f exp{+i(k + f)x}
)

(A.189)

Because of

1
Ω

∫
Ω

d3x exp{−i(k − f)x} (7.12)= δkf (A.190)

we get

ak = c

2
∑
f

√
1

ωk ωf

(
(f0 + k0)af exp{i(k0 − f0)x0}δkf

− (f0 − k0)a†f exp{+i(k0 + f0)x0}δk,-f
)
. (A.191)

The second line is zero because of (7.18), while the first term is identical to
the equation’s left side because of k0 = ωk/c. This proves (A.187a).
Using the abbreviation

Nk ≡
√

2~ωkΩ , (A.192)

the creation-operators of in- and outgoing particles are
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a†ke = − i~c

Nk

∫
Ω

d3x exp{−ikx}←→d0ψ(te,x) (A.193a)

a†ka = − i~c

Nk

∫
Ω

d3x exp{−ikx}←→d0ψ(ta,x) . (A.193b)

The adjoints of these operators are the annihilation-operators ake of an
incoming and aka of an outgoing particle. These equations are valid at time
te resp. ta, but not during the interaction time te < t < ta. Only at times
t ≤ te and t ≥ ta, the field-operators ψ(W ) of the particles are identical to
the field-operators ψ in the interaction picture, and can be expanded with
respect to the Fourier-operators, as done in (A.186).
Using the time-order operator (15.44), we try to write the S-Matrix as

follows:

Sfk = 〈0| afa a†ke |0〉
??= 〈0|T (afa − afe)(a†ke − a

†
ka) |0〉 (A.194)

To check the correctness of this equation, we compute

〈0|T (afa − afe)(a†ke − a
†
ka) |0〉 =

= 〈0|T (afaa†ke − afaa
†
ka − afea

†
ke + afea

†
ka) |0〉

= 〈0| afaa†ke |0〉 − 〈0| afaa
†
ka |0〉 − 〈0| afea

†
ke |0〉+ 〈0| a†kaafe |0〉 .

The last three terms should be zero, as is obvious by comparison with the
left side of (A.194). If f i , kj for all i = 1 . . . n and for all j = 1 . . .m, then
these terms indeed are zero because of a|0〉 = 〈0|a† = 0. But in case of one
ore several f i = kj (which is to be expected, if only self-interactions take
place), only the last term is zero. The second term then is the probability
amplitude, that one or several outgoing particles with wavenumbers kj
are created and annihilated again. The third term then is the probability
amplitude, that one or several incident particles are created and annihilated
again. These two probability amplitudes are different from zero, though they
should be zero. Therefore (A.194) is not yet correct and needs modification.

The deficiencies of (A.194) can be remedied by the definition of time-de-
pendent vacua, onto which the different creation- and annihilation-operators
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are acting differently:

|0e〉≡ |0〉
∣∣∣
t≤te

〈0a| ≡ 〈0|
∣∣∣
t≥ta

a†ke|0e〉≡ |k〉 〈0a|ake≡ 0
a†ka|0e〉≡ 0 〈0a|aka≡〈k|

(A.195)

Using these definitions,

Sfk = 〈0a| afa a†ke |0e〉 = 〈0a|T (afa − afe)(a†ke − a
†
ka) |0e〉

Sfk = 〈0a| af1a . . . afna a
†
k1e

. . . a†kme |0e〉 =
= 〈0a|T (af1a . . . afna − af1e . . . afme) ·

· (a†f1e
. . . a†fme − a

†
f1a

. . . a†fna) |0e〉 (A.196)

is a correct equation.
The differences of the Fourier-operators are inserted into the S-matrix,

because this expression can be written as a function of ψ(W )(x):

a†ke − a
†
ka = +

ta∫
te

dx0 d0
i~c

Nk

∫
Ω

d3x exp{−ikx}←→d0ψ(W )(x)

ψ(W )(t,x) is known only for t ≤ te and for t ≥ ta. At those times
ψ(W )(t,x) = ψ(t,x). But that knowledge is sufficient for the formula-
tion of this artful integral over ψ(W )(x) in the time interval te ≤ t ≤ ta. We
apply another transformation:
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a†ke − a
†
ka = i~c

Nk

ta∫
te

∫
Ω

d4x d0
(

exp{−ikx}d0ψ(W )(x) +

+ ik0 exp{−ikx}ψ(W )(x)
)

= i~c

Nk

ta∫
te

∫
Ω

d4x
(

− ik0 exp{−ikx}d0ψ(W )(x) + exp{−ikx}d0d0ψ(W )(x) +

+ (k0)2 exp{−ikx}ψ(W )(x) + ik0 exp{−ikx}d0ψ(W )(x)
)

(A.197)

Two terms compensate mutually. Furthermore we consider

k0k0 = kjkj + m2c2

~2

=⇒ (k0)2 exp{−ikx} =
(m2c2

~2
−∇2

)
exp{−ikx} . (A.198)

The amplitude of ψ(W )(x) certainly is zero at the boundaries of the normal-
ization volume Ω during the integration time interval te ≤ t ≤ ta. Therefore
one term in the third summand of (A.197) can be reshaped by integrating
it two-times partially:

−
∫
Ω

d3xψ(W )(x)∇2 exp{−ikx} =

= −ψ(W )(x)∇ exp{−ikx}
∣∣∣∣
Ω︸                                 ︷︷                                 ︸

0

+
∫
Ω

d3x
(
∇ψ(W )(x)

)
∇ exp{−ikx}

=
(
∇ψ(W )(x)

)
exp{−ikx}

∣∣∣∣
Ω︸                                  ︷︷                                  ︸

0

−
∫
Ω

d3x
(
∇2ψ(W )(x)

)
exp{−ikx}

The mark
∣∣∣
Ω
is indicating, that the value at the boundary of the normaliza-

tion volume shall be inserted. Thus one finds
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a†ke − a
†
ka = i~c

Nk

ta∫
te

∫
Ω

d4x
(

exp{−ikx}d0d0ψ(W )(x)

− exp{−ikx}∇2ψ(W )(x) + exp{−ikx}m
2c2

~2
ψ(W )(x)

)
= −i~c

Nk

ta∫
te

∫
Ω

d4x exp{−ikx}
(
− d

dxµ
d
dxµ

− m2c2

~2

)
ψ(W )(x) .

Because of −(a†ke−a
†
ka)†

k→f= afa−afe, one finds the difference afa−afe
by taking the negative adjoint of a†ke − a

†
ka, and replacing everywhere k by

f :

afa − afe = −i~c
Nf

ta∫
te

∫
Ω

d4y exp{+ify} ·

·
(
− d

dyµ
d
dyµ
− m2c2

~2

)
ψ(W )(y) (A.199)

Thus the matrix element becomes

Sfk = 〈f |S |k〉 (A.196)=

= (−i~c)
Nk

(−i~c)
Nf

ta∫
te

∫
Ω

d4y exp{+ify}
ta∫
te

∫
Ω

d4x exp{−ikx}

·
(
− d

dxµ
d
dxµ

− m2c2

~2

)(
− d

dyµ
d
dyµ
− m2c2

~2

)
G(y, x)

with G(y, x) ≡ 〈0|Tψ(W )(y)ψ(W )(x) |0〉 . (A.200)

The function G(y, x) (A.196)= G(y1, . . . , yn, x1, . . . , xm) is called a multi-point
Greens-function. If G(y, x) would be a solution of the free Klein-Gordon-
equation, then this equation would be zero. But G(y, x) is a solution of the
inhomogeneous equation (12.4), and therefore (A.200) is different from zero.
The essential trick now is, not to apply the differential operators immediately
onto G(y, x), but instead first to perform a Fourier-transformation. That
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results into(
− d

dxµ
d
dxµ

− m2c2

~2

)(
− d

dyµ
d
dyµ
− m2c2

~2

)
G(y, x) =

=(7.15)
(
− d

dxµ
d
dxµ

− m2c2

~2

)(
− d

dyµ
d
dyµ
− m2c2

~2

)

· 1
Ω
∑
k

+∞∫
−∞

dk0

2π
1
Ω
∑
f

+∞∫
−∞

df0

2π G̃(k, f) exp{−i(kx+ fy)} =

=
(

+ k2 − m2c2

~2

)(
+ f2 − m2c2

~2

)
G(y, x)

=(12.7) i

~c
G̃-1(k) i

~c
G̃-1(f)G(y, x) , 0 . (A.201)

Now we display explicitly again, that k and f are products, and insert
Nk = (A.192):

Sf1...fnk1...km = 〈f1 . . .fn|S |k1 . . .km〉 =

=
n∏
j=1

G̃-1(fj)√
2~ωfjΩ

ta∫
te

∫
Ω

d4yj exp{+ifjyj} ·

·
m∏
l=1

G̃-1(kl)√
2~ωklΩ

ta∫
te

∫
Ω

d4xl exp{−iklxl} ·

· 〈0|Tψ(W )(y1) . . . ψ(W )(yn)ψ(W )(x1) . . . ψ(W )(xm) |0〉 (A.202)

Note, that the integrals over x and y are including the matrix element in
the last line. Due to the time-order operator T , the operators contained in
ψ(W )(xj) in case of y0 > x0 are acting towards the right side. The creation-
operators a†kj create particles | 〉, while the annihilation-operators akj result
into terms of value zero. The operators af i contained within ψ(W )(yi) are
acting as creation-operators towards the left side, and create particles 〈 |.
The operators a†f i are acting as annihilation-operators towards the left side,
resulting into terms of value zero. For x0 < y0, the field-operators are
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permuted. In this case, the operators a†f i are creating incoming particles
| 〉, and the operators akj are creating outgoing particles 〈 |. In any case,
incoming particles are created in the state | 〉, and outgoing particles are
created in the state 〈 |. Thus the discrimination between |0e〉 and |0a〉 isn’t
needed any more.

A.27 Some spinor products

We want to compute products of the spinors

1uk = N


A+
B
A−
−B

 , 2uk = N


B∗

A−
−B∗
A+

 , 1vk = N


A+
B
−A−
B



2vk = N


B∗

A−
B∗

−A+

 ,

1ūk = N
(
A− −B∗ A+ B∗

)
2ūk = N

(
−B A+ B A−

)
1̄vk = N

(
−A− B∗ A+ B∗

)
2̄vk = N

(
B −A+ B A−

) (A.203a)

According to (A.65), the components are

N ≡
√

1
2(~ωk +mc2) (A.203b)

A+ ≡ ~ωk +mc2 + c~k3 (A.203c)
B ≡ c~k1 + ic~k2 (A.203d)
A− ≡ ~ωk +mc2 − c~k3 . (A.203e)

Upfront we compute the products Xγρ Y with

X ≡
(
X1 X2 X3 X4

)
, Y ≡


Y1
Y2
Y3
Y4

 , γρ = (8.15) . (A.204a)
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Xγ0 Y = X3Y1 +X4Y2 +X1Y3 +X2Y4 (A.204b)
Xγ1 Y = −X4Y1 −X3Y2 +X2Y3 +X1Y4 (A.204c)
Xγ2 Y = i(−X4Y1 +X3Y2 +X2Y3 −X1Y4) (A.204d)
Xγ3 Y = −X3Y1 +X4Y2 +X1Y3 −X2Y4 (A.204e)

Combining (A.203) and (A.204), we get

1ūkγ0 1uk = N2(A2
+ + |B|2 +A2

− + |B|2) = 2~ωk = 2c~k0

1ūkγ1 1uk = N2(−B∗A+ −A+B −B∗A− −A−B) = 2c~k1

1ūkγ2 1uk = iN2(−B∗A+ +A+B −B∗A− +A−B) = 2c~k2

1ūkγ3 1uk = N2(−A2
+ + |B|2 +A2

− − |B|2) = 2c~k3

1ūkγ0 2uk = N2(A+B
∗ +B∗A− −A−B∗ −B∗A+) = 0

1ūkγ1 2uk = N2(−B∗B∗ −A+A− +B∗B∗ +A−A+) = 0
1ūkγ2 2uk = iN2(−B∗B∗ +A+A− +B∗B∗ −A−A+) = 0
1ūkγ3 2uk = N2(−A+B

∗ +B∗A− −A−B∗ +B∗A+) = 0
1ūkγ0 1vk = N2(A+A+ +B∗B −A−A− −B∗B)
1ūkγ1 1vk = N2(−B∗A+ −A+B +B∗A− +A−B)
1ūkγ2 1vk = iN2(−B∗A+ +A+B +B∗A− −A−B)
1ūkγ3 1vk = N2(−A+A+ +B∗B −A−A− +B∗B)
1ūkγ0 2vk = N2(A+B

∗ +B∗A− +A−B
∗ +B∗A+)

1ūkγ1 2vk = N2(−B∗B∗ −A+A− −B∗B∗ −A−A+)
1ūkγ2 2vk = iN2(−B∗B∗ +A+A− −B∗B∗ +A−A+)
1ūkγ3 2vk = N2(−A+B

∗ +B∗A− +A−B
∗ −B∗A+)

2ūkγ0 1uk = N2(BA+ +A−B −BA− −A+B) = 0
2ūkγ1 1uk = N2(−A−A+ −BB +A+A− +BB) = 0
2ūkγ2 1uk = iN2(−A−A+ +BB +A+A− −BB) = 0
2ūkγ3 1uk = N2(−BA+ +A−B −BA− +A+B) = 0
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2ūkγ0 2uk = N2(|B|2 +A2

− + |B|2 +A2
+) = 2~ωk = 2c~k0

2ūkγ1 2uk = N2(−A−B∗ −BA− −A+B
∗ −BA+) = 2c~k1

2ūkγ2 2uk = iN2(−A−B∗ +BA− −A+B
∗ +BA+) = 2c~k2

2ūkγ3 2uk = N2(−|B|2 +A2
− + |B|2 −A2

+) = 2c~k3

2ūkγ0 1vk = N2(BA+ +A−B +BA− +A+B)
2ūkγ1 1vk = N2(−A−A+ −BB −A+A− −BB)
2ūkγ2 1vk = iN2(−A−A+ +BB −A+A− +BB)
2ūkγ3 1vk = N2(−BA+ +A−B +BA− −A+B)
2ūkγ0 2vk = N2(BB∗ +A−A− −BB∗ −A+A+)
2ūkγ1 2vk = N2(−A−B∗ −BA− +A−B

∗ −BA+)
2ūkγ2 2vk = iN2(−A−B∗ +BA− +A+B

∗ −BA+)
2ūkγ3 2vk = N2(−BB∗ +A−A− −BB∗ +A+A+)
1v̄ kγ0 1uk = N2(A+A+ +B∗B −A−A− −B∗B)
1v̄ kγ1 1uk = N2(−B∗A+ −A+B +B∗A− +A−B)
1v̄ kγ2 1uk = iN2(−B∗A+ +A+B +B∗A− −A−B)
1v̄ kγ3 1uk = N2(−A+A+ +B∗B −A−A− +B∗B)
1v̄ kγ0 2uk = N2(A+B

∗ +B∗A− +A−B
∗ +B∗A+)

1v̄ kγ1 2uk = N2(−B∗B∗ −A+A− −B∗B∗ −A−A+)
1v̄ kγ2 2uk = iN2(−B∗B∗ +A+A− −B∗B∗ +A−A+)
1v̄ kγ3 2uk = N2(−A+B

∗ +B∗A− +A−B
∗ −B∗A+)

1v̄ kγ0 1vk = N2(A2
+ + |B|2 +A2

− + |B|2) = 2~ωk = 2c~k0

1v̄ kγ1 1vk = N2(−B∗A+ −A+B −B∗A− −A−B) = 2c~k1

1v̄ kγ2 1vk = iN2(−B∗A+ +A+B −B∗A− +A−B) = 2c~k2

1v̄ kγ3 1vk = N2(−A2
+ + |B|2 +A2

− − |B|2) = 2c~k3

1v̄ kγ0 2vk = N2(A+B
∗ +B∗A− −A−B∗ −B∗A+) = 0

1v̄ kγ1 2vk = N2(−B∗B∗ −A+A− +B∗B∗ +A−A+) = 0
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1v̄ kγ2 2vk = iN2(−B∗B∗ +A+A− +B∗B∗ −A−A+) = 0
1v̄ kγ3 2vk = N2(−A+B

∗ +B∗A− −A−B∗ +B∗A+) = 0
2v̄ kγ0 1uk = N2(BA+ +A−B +BA− +A+B)
2v̄ kγ1 1uk = N2(−A−A+ −BB −A+A− −BB)
2v̄ kγ2 1uk = iN2(−A−A+ +BB −A+A− +BB)
2v̄ kγ3 1uk = N2(−BA+ +A−B +BA− −A+B)
2v̄ kγ0 2uk = N2(BB∗ +A−A− −BB∗ −A+A+)
2v̄ kγ1 2uk = N2(−A−B∗ −BA− +A+B

∗ +BA+)
2v̄ kγ2 2uk = iN2(−A−B∗ +BA− +A+B

∗ −BA+)
2v̄ kγ3 2uk = N2(−BB∗ +A−A− −BB∗ +A+A+)
2v̄ kγ0 1vk = N2(BA+ +A−B −BA− −A+B) = 0
2v̄ kγ1 1vk = N2(−A−A+ −BB +A+A− +BB) = 0
2v̄ kγ2 1vk = iN2(−A−A+ +BB +A+A− −BB) = 0
2v̄ kγ3 1vk = N2(−BA+ +A−B −BA− +A+B) = 0
2v̄ kγ0 2vk = N2(|B|2 +A2

− + |B|2 +A2
+) = 2~ωk = 2c~k0

2v̄ kγ1 2vk = N2(−A−B∗ −BA− −A+B
∗ −BA+) = 2c~k1

2v̄ kγ2 2vk = iN2(−A−B∗ +BA− −A+B
∗ +BA+) = 2c~k2

2v̄ kγ3 2vk = N2(−|B|2 +A2
− + |B|2 −A2

+) = 2c~k3 .

Obviously the general result is:

rūkγρ suk = rv̄ kγρ svk = 2c~kρδrs (A.205a)
rūkγρ svk , 0 , rv̄ kγρ suk , 0 (A.205b)
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A.28 Some Integrals

[64, integral 187] :
∫

dxx2
√
x2 + a2 = (A.206)

= x(x2 + a2)3/2

4 − a2

8
[
x
√
x2 + a2 + a2 ln(x+

√
x2 + a2 )

]

[64, integral 194] :
∫

dx x2
√
x2 + a2

=

= x

2
√
x2 + a2 − a2

2 ln
(
x+

√
x2 + a2

)
(A.207)
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