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Zero-Point Energy and Casimir-Effect
The essential arguments for and against the assumption

of a physically effective zero-point energy

Gerold Gründler 1

Overview

Since the invention of zero-point energy in 1911, there is some
dispute whether it is really detectable in experiments, or merely
a strange artifact of the theory. The discussion is traced in a
historical perspective, and the essential arguments are sketched,
which have been cited in support or in refusal of the assumption
of zero-point energy. The article in particular is focused on the
Casimir-effect, which often is considered to be the most convincing
evidence for the measurable existence of zero-point energy.
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2 Zero-Point Energy and Casimir-Effect

1. Planck invents the zero-point energy

By interpolation, Planck found in 1900 the formula [1]

energy
volume · frequency interval = 8πhν3/c3

e
hν
kBT − 1

(1)

for the energy per volume in the frequency interval (ν, ν + dν)
of an electromagnetic field, which is at the temperature T in
thermodynamical equilibrium with matter. c is the speed of light,
kB = 1.38 · 10−23J/K is the Boltzmann constant, and h = 6.63 ·
10−34Js is Planck’s quantum of action, which here was first time
introduced into physics.

Maxwell-Boltzmann statistics assume, that the energy per degree
of freedom in thermodynamic equilibrium is 1

2kBT . In contrast,
from Planck’s radiation law (1) follows (see e.g. [2])

energy
degree of freedom = hν/2

e
hν
kBT − 1

. (2)

Thus the energy per degree of freedom does not only depend on
temperature — as assumed by classical thermodynamics — , but
also on frequency. As the exponential function in the denominator
increases much faster with increasing frequency than the linear
factor in the numerator, degrees of freedom with high frequency
get less energy than degrees of freedom with low frequency. Only
in the limit hν

kBT
� 1, the energy per degree of freedom is

hν/2

e
hν
kBT − 1

= hν/2
1 + hν

kBT
+ 1

2( hν
kBT

)2 + . . .− 1
= kBT/2

1 + 1
2
hν
kBT

+ . . .
=

≈ 1
2
(
kBT −

hν

2
)
≈ 1

2kBT if hν

kBT
� 1 . (3)
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Planck imagined the walls of the furnace, with which the elec-
tromagnetic radiation field is in thermodynamic equilibrium, to
consist of a huge amount of one-dimensional Hertz dipoles. As
a one-dimensional oscillator has two degrees of freedom (kinetic
and potential energy must be considered as one degree of freedom
each), the mean energy U of an oscillator with eigenfrequency ν at
temperature T is

U = hν

e
hν
kBT − 1

. (4a)

One decade later, by February-03-1911, Planck presented the
Physikalische Gesellschaft2 in Berlin with the hypothesis [3], that
the oscillating dipoles might have in addition to the energy (4a) a
further energy of average value hν/2, which should be independent
of temperature:

U = hν

e
hν
kBT − 1

+ hν

2 (4b)

While the first term vanishes in the limit T → 0, because the
exponential function diverges, the second term is describing a zero-
point energy of average value hν/2, which does not disappear even
at absolute temperature zero. Note, that the value hν/2, same as
the value U , is the mean value of a large ensemble of oscillators. A
single oscillator should have, according to Planck’s new hypothesis,
the energy

Û = n · hν +R with 0 ≤ R < hν , n = 0, 1, 2, . . . (5)

Planck was guided to this hypothesis by the wish, to keep
Maxwell’s electrodynamics without changes. This does include
2 Physical Society
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in particular the assumption, that the energy is continuously dis-
tributed in the electromagnetic radiation field, but not lumped into
quanta (which later-on were named photons). Under this assump-
tion, a material oscillator cannot extract out of the radiation field
within infinitely short time (in form of a “quantum jump”) the
energy hν. Instead the accumulation of radiation energy within
the material oscillator must be a continuous process. Therefore
Planck assigned to each oscillator at any time an amount of energy
as specified in (5). Only the emission of energy from the material
oscillator to the radiation field should take place in packets of size
hν. Planck demonstrated, that this assumption is sufficient for
the derivation of the radiation law (1). If the temperature was
lowered to T = 0, then — according to Planck’s new theory — the
oscillator could only emit it’s n energy quanta of size hν, but the
residual vibration energy of 0 ≤ R < hν remained even at T = 0
within the oscillator.

Planck of course was aware of the strong arguments for the
quantized nature of electromagnetic radiation, which had been
pointed out by Einstein [4] already in 1905. In his speech, Planck
in particular mentioned the properties of cathode rays (light-electric
effect) as a profound argument, which casted doubt on the complete
correctness of Maxwell’s theory. But at that time he would rather
shift such problems aside than consider seriously fundamental
modifications of electrodynamics.

While such concerns are obsolete by today, Planck’s February-
03-1911 presentation is still worth mentioning, because on that
day first time, long before the discovery of quantum mechanics,
the possibility of a zero-point energy of oscillators was clearly
formulated, and because Planck demonstrated that his radiation
law is compatible with the zero-point energy which indeed was
postulated 15 years later by quantum mechanics.

In the following years, most physicists by and by abandoned
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their resistance to the electromagnetic field’s quantization, and
thus the motive, which had led Planck to the idea of the zero-point
energy of material oscillators, is irrelevant by now. The zero-point
energy did not disappear from the scene, however, but became an
integral part of quantum physics. Why? In the next section, the
main arguments will be illustrated.

2. Arguments in support of zero-point energy

In the presentation of his new hypothesis (5) in February 1911,
Planck clearly stated that it would not be easy to confirm or
disprove the existence of zero-point energy by experiments. The
older formula (4a) had been tested successfully in the previous years
due to the measurement of the specific heat of material systems.
But the additional term in (4b) has no impact on those results,
because it vanishes in the derivative dU/ dT . As an indication
for a finite zero-point energy, Planck could at least refer to the
fact that the decay rate of radioactive matter is not significantly
reduced, if it is cooled down to arbitrarily low temperature.

In the first days of 1913, Einstein and Stern published two
further arguments [5] for the existence of zero-point energy. Firstly
they pointed out, that the last step in the approximation (3) is
overly imprecise. If the exponential function in the denominator of
Planck’s radiation law is expanded in a series of powers of hν/(kBT ),
then this expansion should be continued to the quadratic term.
From the expression (4b) for the energy of an oscillator then follows
in the case hν � kBT this approximation:

U
(4b)
≈ hν

hν
kBT

(
1 + hν

2kBT

) + hν

2 ≈

≈
(
kBT −

hν

2
)

+ hν

2 = kBT if hν

kBT
� 1 (6)
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This result conforms at high temperature with the expectation of
classical physics, but deviates from classical physics at T → 0 by
the amount of hν/2. On the other hand, formula (4a) with no zero-
point energy gives at T → 0 the result expected by classical physics,
but predicts at high temperature a result, which is deviating by the
amount of −hν/2 from the value predicted by classical physics. As
the classical theory was derived in the 19. century from observations
made at high Temperature, while the research in the range T → 0
in 1913 was still in it’s infancy (Helium — boiling point 4.2K —
was first time successfully liquefied by Kamerlingh Onnes only in
1908), Einsteins and Stern concluded, that most likely that one of
the two formulae should be correct, which complies with classical
physics at high temperature, i.e. (4b) with the zero-point energy
hν/2.

The second argument, presented by Einstein and Stern in the
same publication, makes reference to the measurement results of
Arnold Eucken [6], who had explored the specific heat of hydrogen.
Eucken’s data could be readily explained by the specific heat as
computed from (4b), but differed significantly from the specific
heat as computed from (4a). From today’s point of view, this
second argument is not completely correct in the form, in which it
was used by Einstein and Stern in 1913. Apparently Einstein and
Stern assumed a finite zero-point energy not only for the vibration,
but also for the rotation of the hydrogen molecule. According
to quantum mechanics, which was detected in 1925, the angular
momentum L of rotating molecules is quantized, and L2 can assume
only the values

L2 = ~2J(J + 1) with J = 0, 1, 2, 3, . . . (7)
Thus the possible rotation energy of a molecule is

Erot = ~2

2I J(J + 1) with J = 0, 1, 2, 3, . . . , (8)
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Here I is the molecule’s moment of inertia. In case of J = 0, the
molecule’s energy of rotation is zero. A zero-point energy of finite
value hν/2 exists only for the vibration, but not for the rotation
of the hydrogen molecule.

Convincing arguments for the existence of zero-point energy
resulted in the following years from the precise analysis of the
vibration-spectra of molecules. The observed ware numbers ∼ν of
absorption could be accurately fitted by formulae of the type

∼
ν = 1

λ
= A+

(
B1n

′ −B2(n′)2
)
−
(
C1n

′′ − C2(n′′)2
)

with n′ = 1
2 ,

3
2 ,

5
2 ,

7
2 , . . . and n

′′ = 1
2 ,

3
2 ,

5
2 ,

7
2 , . . . (9)

with empirically determined constants A,B1, B2, C1, C2. A is in-
terpreted as the wave number of electronic excitation. n′ is the
quantum number of vibration in the excited state, and n′′ is the
quantum number of vibration in the ground state. If the molecules
would be harmonic oscillators, then only the integer differences
n′−n′′ could be extracted from the spectra of vibration, but not the
absolute values of n′ and n′′. As in reality the vibration-potentials
of molecules are not harmonic, but have a measurable unharmonic
distortion, the coefficients B2 and C2 of the non-linear terms are
different from zero, and it becomes possible to find out the absolute
values of n′ and n′′ due to analysis of the absorption spectra.

Mulliken, who proved the correctness of the halfinteger quantum
numbers (9) by means of the vibration-rotation-spectrum of boron-
oxide [7], commented: “This result cannot be accomplished by any
other assignment of minimum values of n′ and n′′, if we restrict
ourselves to the possibilities 0,+1/2,+1 . Since half-integral values
of n′ and n′′ with a minimum value +1/2 are by far more probable
than a large electronic isotope effect or other serious failure in the
theory, they may be quite definitely accepted — unless one wishes
to entertain the possibility of fractional values other than 1/2 .”
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Further experimental evidence for the physical existence of
zero-point energy came in the following years for example from the
scattering of X-rays or neutrons by crystals at very low temperature
(the reduced intensity of the structures makes directly visible, that
the crystal atoms don’t rest without motion at one point), as well as
from the fact, that 4He at normal pressure does not crystallize even
at lowest temperature (the zero-point energy of the Helium atoms
in a crystal would exceed the binding energy between the atoms
due to van der Waals interaction, which causes crystallization of
the heavier rare gases at low temperatures).

When Heisenberg [8] in summer 1925 invented quantum mechan-
ics, harmonic and unharmonic oscillators were the first systems, to
which he applied his new formalism. In Equation (23) of his paper,
he found

W =
(
n+ 1

2
) hω0

2π (10)

with n = 0, 1, 2, 3, . . . as energy of a harmonic oscillator in it’s nth
quantum state. Thus the zero-point energy hω0/(4π) = hν/2 of
harmonic oscillators was firmly established by mid of the twentieth
both in experimental and in theoretical physics — however only
with regard to systems with a finite number of vibrational degrees
of freedom, like for example molecules or solids (which may be
considered as huge, but on no account infinitely large molecules).
In contrast, there were (and still are) severe arguments against the
assumption, that continuous fields, like for example the electro-
magnetic field (whose’s quanta are the photons) or the electron/
positron field (whose’s quanta are the electrons and positrons)
should have a zero-point energy. We will occupy ourselves with
these counter-arguments in the next section.
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3. Collision with GRT

The canonical quantization of continuous fields regularly leads to an
infinitely large zero-point energy. This happens, because each single
one of the infinitely many oscillation modes, which are in principle
accessible to the continuous field, is represented in quantum field
theory by a harmonic oscillator, which according to (10) has the
zero-point energy ±hν/2. The plus sign is valid for boson fields, the
minus sign for fermion fields. See for example [9, chapters 14 - 17]
or any other textbook on quantum field theory.

As an example, let’s consider an evacuated volume of size
V = X · Y · Z with material walls. At temperature T , there
is an electromagnetic field inside this volume, which is in thermal
equilibrium with the walls. The oscillation modes of the radiation
field, which are geometrically possible (that is to say the standing
waves), have the wave numbers

klmn = 2πνlmn
c

=
√( lπ

X

)2
+
(mπ
Y

)2
+
(nπ
Z

)2
(11a)

with l,m, n = 0, 1, 2, 3, . . . , but maximum one
index per mode can be zero.

k is the wave number, and ν is the frequency of the radiation
modes. At temperature T = 0, there are exclusively zero-point
oscillations in the volume, which’s energy is hνlmn/2 respectively.
The total zero-point energy U0 within the volume V is

U0 = 2
∞∑

l,m,n=0

′~cklmn
2 =

∞∑
l,m,n=0

′~c

√( lπ
X

)2
+
(mπ
Y

)2
+
(nπ
Z

)2
=∞ .

(11b)

The factor 2 is caused by the electromagnetic field’s two polarization
degrees of freedom. The prime′ is a reminder, that radiation modes



10 Zero-Point Energy and Casimir-Effect

with one index zero only exist with one polarization, and therefore
get a factor 1/2 in (11b). As there are infinitely many oscillation
modes, the zero-point energy is infinitely large.

The explorers of the young quantum mechanics were from the
outset very well aware of the vexing fact, that the zero-point energy
of quantum fields diverges. In November 1925, Born, Heisenberg,
and Jordan submitted a paper [10] for publication to the Zeitschrift
für Physik, in which they evaluated the quantization of a one-di-
mensional scalar field. In their equation (36′), they found the zero-
point energy C = 1

2h
∑
k νk , and commented: Die Nullpunktsener-

gie „wäre insbesondere im Grenzfall unendlich vieler Freiheitsgrade
unendlich groß.“ 3 The wording “would be infinitely large . . . in the
limit” reveals, that the authors had substantial doubts whether
this result should be taken seriously, or whether it might be merely
a strange artifact of the theory. There is no further comment in
their paper on this disturbing issue.

In contrast, Jordan and Pauli two years later made very clear
remarks regarding the diverging zero-point energy, when they pub-
lished a paper [11] on the relativistically invariant quantization of
the electromagnetic field: „Verschiedene Erwägungen scheinen uns
dafür zu sprechen, daß im Gegensatz zu den Eigenschwingungen im
Kristallgitter (wo sowohl theoretische als auch empirische Gründe
für das Vorhandensein einer Nullpunktsenergie sprechen) bei den
Eigenschwingungen der Strahlung jener „Nullpunktsenergie“ hν/2
pro Freiheitsgrad keine physikalische Realität zukommt. Da man
es nämlich bei dieser mit streng harmonischen Oszillatoren zu tun
hat und da jene „Nullpunktsstrahlung“ weder absorbiert noch zer-
streut oder reflektiert werden kann, scheint sie sich, einschließlich
ihrer Energie oder Masse, jeder Möglichkeit eines Nachweises zu
entziehen. Es ist deshalb wohl die einfachere und befriedigendere
3 the zero-point energy “would be infinitely large in particular in the limit of
infinitely many degrees of freedom.”
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Auffassung, daß beim elektromagnetischen Felde jene Nullpunktss-
trahlung überhaupt nicht existiert.“ 4 [11, page 154]

Pauli rephrased the next-to-last sentence even more pronounced
in his article [12] on wave mechanics in the Handbuch der Physik:
Die Nullpunktsenergie ist „prinzipiell unbeobachtbar, da sie weder
emittiert, absorbiert oder gestreut wird, also nicht in Wände einge-
schlossen werden kann, und da sie, wie aus der Erfahrung evident
ist, auch kein Gravitationsfeld erzeugt.“ 5 [12, page 250]

When Pauli wrote this sentence, a subtle point slipped his
attention: While zero-point energy indeed “cannot be enclosed in
walls”, it still can be pushed out of certain volumina by walls, and
thus may become observable. That is the Casimir-effect, which
will be discussed thoroughly in the next sections. But prior to
that we will occupy ourselved with Pauli’s further argument, that
zero-point energy, “as is evident from experience, also does not
produce a gravitational field.” This is a most important and severe
argument, which is making reference to a discrepancy between
QFT=quantum field theory and GRT=general relativity theory:

In 1915, Einstein had published the basic equations of general
relativity theory [13,14]. The field equation of GRT describes, how
4 “It seems to us, that several considerations are indicating, that — in contrast
to the eigen-oscillations in the crystal grid (where both theoretical and
empirical reasons are indicating the existence of a zero-point energy) —
no reality can be assigned to that “zero-point energy” hν/2 per degree of
freedom in case of the eigen-oscillations of the radiation. As one is dealing
with regard to the latter with strictly harmonic oscillators, and as that “zero-
point radiation” can neither be absorbed nor scattered nor reflected, it seems
to elude, including it’s energy or mass, any method of detection. Therefore
it may be the simplest and most satisfactory conception, that in case of the
electromagnetic field that zero-point radiation does not exist at all.”

5 The zero-point energy is “under no circumstances observable, as it is not
emitted nor absorbed nor scattered, and thus cannot be enclosed in walls,
and because it, as is evident from experience, also does not produce a
gravitational field.”
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the geometry of four-dimensional space-time is deformed due to
it’s energy content. The larger the energy density is within a
certain volume of space-time, the more space-time is curved in
that volume. As the volume V of equation (11b) is containing the
infinitely large energy of zero-point oscillations, the energy density
— and therefore the curvature of space-time in this volume — is
infinitely large.

This obviously is absurd. Searching for the cause of the wrong
result, one might consider a possible limitation of quantum electro-
dynamics. QED might be merely the low-energy limit of a more
general, yet unknown theory. Given that case, it might be correct
not to extend the summation in (11b) to infinitely large wave
numbers, but only up to a maximum wave number K, whose’s
value is not yet known by today. The only information we have
regarding K is, that this wave number must be larger than those
wave numbers, for which quantum electrodynamics until now (2013)
has been checked and confirmed, i.e. that K > 1018m-1 must hold.
This information is inserted into (11b):

U0
V

>
∑

|kl,m,n| ≤K
~cklmn ≈ 4 · 1047Jm-3 with K = 1018m−1 (12)

This is the minimum zero-point energy of the electromagnetic field,
which is a boson field with two polarization degrees of freedom.
The elementary fermion fields (negative zero-point energy) known
by today in total have 90 degrees of freedom. The elementary
boson fields (positive zero-point energy) in total have about 30
degrees of freedom, depending on our assumptions on the number
of Higgs-fields. For the following estimate we will assume, that the
total zero-point energy of all fields is about −30 times as large as
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(12), i.e. approximately

U0
V

< −1.2 · 1049Jm-3 with K = 1018m−1 . (13a)

When astronomers interpret their observations by means of general
relativity theory, then they conclude from the smallness of the mean
curvature (which even might be exactly zero) of the intergalactic
space, that the energy density of the vacuum cannot significantly
exceed 10-9 Jm-3, with the most likely value being

Uvacuum
V

≈ 6.8 · 10-10 Jm-3 . (13b)

From the both equations (13) we get the ratio

theory
observation = (13a)

(13b) < −2 · 1058 . (14)

Really an astronomic discrepancy! Still there is a loophole in
GRT, by which zero-point energy can be saved: The cosmological
constant [15]. The cosmological constant is an additive term in
the field equation of GRT, which may be chosen arbitrarily. The
discrepancy between theory and observation is purged away, once
the cosmological constant is chosen to be proportional to (U0/V −
6.8 · 10-10Jm-3).

But nobody is feeling well with this crude “solution” of the
problem. To introduce arbitrarily and without physical justification
a constant, which must be adjusted with a precision of more than
58 decimal digits would be a brute intervention, which is without
parallel in modern physics. The baffling fine-tuning up to more
than 58 decimal digits was dubbed the “problem of the cosmological
constant” in the literature. A well-known review of this issue was
published in 1989 by Weinberg [16]. For a recent review, see [17].
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It’s not surprising that Pauli, though he for sure was aware6 of
the loophole of the cosmological constant, did not exercise that
option, but stated without further discussion that zero-point energy,
“as is evident from experience, also does not produce a gravitational
field.”

Not all scientists perceived the infinitely large zero-point energy
as a problem. For Walther Nernst, it was instead a most welcome
idea. Nernst wasn’t ready to accept, that the world was inexorably
approaching the “heat death”. This was the fate, which Boltzmann
had prophesied to the universe, because — according to the second
law of thermodynamics — the entropy of a closed systems does
steadily increase. Therefore all chemical processes will eventually
come to an end, and the world thus will reach a death state.

Things are different for open systems. In particular the huge
afflux of solar energy secures, that the biological processes of life,
which are characterized by a decrease of entropy, can take place
on earth. But as the energy of the sun is finite, it can only retard
the earth’s heat death, but cannot impede it forever.

That could be achieved only by an infinitely large energy source.
Exactly this infinitely large, inexhaustible reservoir of energy, for
which Nernst was looking to fight the heat death of the universe,
had Planck provided to him in the form of zero-point energy!
Zero-point energy is the basic constituent of a cosmological model
without heat death, which Nernst presented by January-18-1916
to the amazed Physikalische Gesellschaft7 in Berlin [18]. Nernst’s
model was assessed quite sceptically by most of his colleagues, and
got only few support. By today, it is reduced to a feeble existence
in esoteric circles. In an article by Kragh [19], a brief account of

6 Pauli was a renowned expert of general relativity theory. His article on GRT,
which he had written at the age of 19 years for the Handbuch der Physik,
had been emphatically praised by Einstein.

7 physical society
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the reception history of Nernst’s cosmology can be found, and
furthermore plenty of worth reading informations on the evolution
of the idea of “zero-point energy”.

4. The Casimir-Effect

In the previous section, Pauli was cited with the words, that zero-
point energy is — besides other reasons — not detectable, because
it “cannot be enclosed in walls”. But by May-29-1948 Hendrik
Casimir gave a presentation [20] to the Koninklijke Nederlandse
Akademie van Wetenschappen, in which he exposed the stupefying
idea, to block the zero-point energy (more precisely: small parts of
zero-point energy) out of certain volumina by means of walls, and
thus make it observable after all.

To explain the basic idea behind Casimir’s proposal, let’s con-
sider the rectangular resonator with electrically conductive walls,
which is sketched in figure 1. It’s size is X × Y × Z. In the res-
onator’s interior there is a plate of thickness P , which as well is
electrically conductive. The plate is aligned parallel to the res-
onator’s XY outer walls, and is free to move along the resonator’s
Z-axis. The plate is dividing the resonator in two resonators of

Y

X

Z

D

P

Fig. 1 : Resonator with movable intermediate wall
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sizes X×Y ×D and X×Y × (Z−D−P ). Zero-point oscillations,
whose’s half wavelength in Z-direction is larger than D, but smaller
than Z − D − P , can according to equation (11) develop in the
right cavity, but not in the left one. If the mobile plate is slightly
moved in Z-direction, then the spectrum of zero-point oscillations
of both cavities will change, and consequently their content of zero-
point energy U0. Therefore onto the mobile plate a force

FCasimir = −dU0,left cavity
dD + dU0,right cavity

dD (15)

to the right is exerted. The detailed quantitative evaluation in the
sequel will show, that the Casimir-force FCasimir is negative, and
therefore the movable plate is pulled to the left, i.e. to the nearer
outer wall. As the derivation is only sketched quite shortly in the
printed text of Casimir’s presentation, it proved helpful to consult
the elaborate delineation in [21, chapter 5].

First we compute the electromagnetic field in the left cavity.
At temperature T = 0, it is consisting exclusively of zero-point
oscillations, and the total zero-point energy is

U0
(11b)=

∞∑
l,m,n=0

′~cklmn =
∞∑

l,m,n=0

′~c

√( lπ
D

)2
+
(mπ
X

)2
+
(nπ
Y

)2
=∞ .

(16)

To make the following modifications feasible, we introduce a factor

exp{−klmn/kM} (17)

with a finite wavenumber kM, to enforce the convergence of the
series. Later we will consider the limit kM → ∞, to return to
(16). In his speech, Casimir pointed out that the cut-off term
exp{−klmn/kM} isn’t merely a mathematical trick, but can as well
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be justified physically, because for very high frequencies all metals
become transparent (on pages 25 through 30 we will quantify this
effect). Therefore the walls of the cavity anyway can only influence
radiation of finite frequency.

Furthermore we assume X →∞ and Y →∞. Then the sums
over the discrete numbers m and n may be replaced by integrals.
Only the sum over l will still be considered discrete. In this
approximation, the restrictions, defined at (11b) and indicated
by the prime′, with regard to modes with indices m = 0 and
n = 0 may be neglected. Only the sum over l keeps the prime′
as a reminder, that the term with l = 0 gets a factor 1/2. The
integration variables and their integrals are

kx ≡
mπ

X
, ky ≡

nπ

Y
(18)

1
2X

∞∑
m=0

1
2Y

∞∑
n=0

X,Y→∞−−−−−−→
∞∫

0

dkx
2π

∞∫
0

dky
2π .

Thus one gets

U0 = ~cXY
π2

∞∑
l=0

′
∞∫

0

dkx
∞∫

0

dky

√( lπ
D

)2
+ k2

x + k2
y ·

· exp
{
− 1
kM

√( lπ
D

)2
+ k2

x + k2
y

}
. (19)

As kx and ky only show up in the form k2
r ≡ k2

x + k2
y, it’s advan-

tageous to change to polar coordinates with radial coordinate kr
and angular coordinate φ. As the integration is only over positive
kx and ky (i.e. only over the first quadrant of the kxky-plane), φ is
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to be integrated only over 1/4 circle.

∞∫
0

dkx
∞∫

0

dky =
∞∫

0

dkr
π/2∫
0

kr dφ = π

2

∞∫
0

dkr kr (20)

The term l = 0 can immediately be determined:

C ≡ 1
2
~cXY
π2

π

2

∞∫
0

dkr kr
√
k2
r exp

{
− 1
kM

√
k2
r

}
=

= ~cXY
4π

[(
− kMk

2
r − 2k2

Mkr − 2k3
M

)
exp

{
− kr
kM

}]∞
0

=

= ~cXY k3
M

2π (21)

Therefore

U0 = C + ~cXY
2D

∞∑
l=1

l

∞∫
0

dkr kr

√
1 +

(Dkr
lπ

)2
·

· exp
{
− lπ

DkM

√
1 +

(Dkr
lπ

)2}
. (22)

It will be convenient to define the length

η ≡ π

kM
. (23)

By means of the substitution

u ≡

√(
1 + Dkr

lπ

)2
=⇒

∞∫
0

dkr kr =
( lπ
D

)2
∞∫

1

duu (24)
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we get

U0 = C + π2~cXY
2D3

∞∑
l=1

l3
∞∫

1

duu2 exp
{
− η lu

D

}
. (25)

The third derivative of the exponential function with respect to η
is

d3

dη3 exp
{
− η lu

D

}
= − l

3u3

D3 exp
{
− η lu

D

}
. (26)

Thereby U0 can be written as

U0 = C − π2~cXY
2

∞∫
1

du 1
u

d3

dη3

∞∑
l=1

exp
{
− η lu

D

}
. (27)

As the integral is converging, the sequence of integration and
summation could be changed. Now the sum over l can be computed
by means of the formula

∞∑
j= 0

Aj = 1
1−A if |A| < 1 (28)

for the infinite geometric series:

U0 = C − π2~cXY
2

∞∫
1

du 1
u

d3

dη3

( 1
1− exp{−ηu/D} − 1

)

= C − π2~cXY
2

d2

dη2

∞∫
1

du 1
u

d
dη

( 1
exp{+ηu/D} − 1

)
︸ ︷︷ ︸
−(u/D) exp{ηu/D}
(exp{ηu/D} − 1)2

(29)
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With the further substitution

w ≡ exp{ηu/D} − 1 =⇒
∞∫

1

du =
∞∫

exp{η/D}−1

dw D

η(w + 1)

one gets

U0 = C + π2~cXY
2

d2

dη2
1
η

∞∫
exp{η/D}−1

dw 1
w2

= C − π2~cXY
2

d2

dη2
1
η

[ 1
w

]∞
exp{η/D}−1

= C + π2~cXY
2

d2

dη2
D

η2
η

D

1
exp{η/D} − 1︸ ︷︷ ︸
∞∑
j=0

Bj
j!
( η
D

)j
. (30)

The coefficients Bj in the series expansion are the Bernulli-numbers.
They are defined implicitly by the generating function

A

exp{A} − 1 =
∞∑
j=0

Bj
Aj

j! with A ∈ R, A 6= 0, |A| < 2π, j ∈ N .

From this definition, one gets the Bernulli-numbers

B0 = 1 B1 = −1
2

B2 = 1
6 B3 = 0

B4 = − 1
30 B5 = 0

Bj = −
j−1∑
n=0

j!
n!(j − n)!

Bn
j − n+ 1 for j > 2 . (31)
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Performing the second derivative with respect to η, then returning
to kM

(23)= π/η, and inserting C = (21), one gets

U0 = π2~cXY
2

(
k3

M

π3 + 6Dk4
M

π4 − k3
M

π3 −
1

360D3 +

+
∞∑
j=6

Bj
j!

(j2 − 5j + 6)πj−4

kj−4
M Dj−1

)
. (32)

Until now, we only considered the zero-point energy in the left
cavity of figure 1 . The energy in the right cavity can be found by
inserting everywhere Z −D−P instead of D. Thus the total zero-
point energy in the resonator’s both cavities is

U0,total = π2~cXY
2

(6(Z − P )k4
M

π4 − 1
360 (Z −D − P )3 −

− 1
360D3 +

∞∑
j=6

Bj
j!

(j2 − 5j + 6)
kj−4

M π4−j

( 1
Dj−1 + 1

(Z −D − P )j−1

))
.

(33)

Due to the term ∼ k4
M, the energy is still diverging in the limit

kM →∞. That has (of course) not been changed by the conversions.
The derivative of U0,total with respect to D equals the force,

which is acting onto the movable plate in-between the both cavities:

− dU0,total
dD = −π

2~cXY
2

(
− 1

120 (Z −D − P )4 + 1
120D4 +

+
∞∑
j=6

Bj
j!

(j2 − 5j + 6)
kj−4

M π4−j

(1− j
Dj

+ j − 1
(Z −D − P )j

))
. (34)

Now Casimir restricted his investigation to the case

(Z −D − P )4 � D4 (35a)
and kM →∞ , (35b)
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and got the simple formula:

FCasimir = −dU0,total
dD = − π

2~c
240

XY

D4 (36)

The Casimir-force is pulling the movable wall to the resonator’s
left outer wall. The limit kM →∞ is equivalent to the assumption
of infinitly large conductivity of the metal. Due to this assumption,
the material of the walls does not show up in formula (36) of the
Casimir-force. The Casimir-force is proportional to the area XY of
the movable plate, and inversely proportional to the fourth power
of the distance D inbetween the movable plate and the left outer
wall of the resonator sketched in figure 1 .

In the last sentence of his publication, Casimir remarked: “Al-
though the effect is small, an experimental confirmation seems not
unfeasable”. To confirm this estimation, we compute the value of
the Casimir-force for the parameters

X · Y = 1mm2 , D = 1µm =⇒

=⇒ FCasimir
(36)= −1.3 · 10−9N . (37)

If one wants to achieve a precision of 1%, then with these parame-
ters the measurement error must be smaller than 10 pico-Newton.
Actually in most experiments the area is smaller than 1mm2.
Therefore forces of 1 pN and less must be resolved. The mea-
surement of forces of that size indeed is not impossible, but it is
extremely challenging, and demands extraordinary virtuosity from
the experimentalists. In the simple form as sketched in figure 1 and
computed in (36), the Casimir-force was never measured. Several
modifications are necessary to make the effect accessible to experi-
ments. In the sequel we will go through the modifications one by
one.
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OaO
Y

X

D

ObO D

R

Fig. 2 : Two more realistic resonator geometries

Simplified resonator: As we assumed Z � D for the geometry
displayed in figure 1, the limit Z → ∞ may be taken, i.e. the
resonator’s right outer wall may be removed completely. If in
addition X � D and Y � D is valid, then also the resonator’s side
walls may be removed without significantly changing the Casimir-
force. Thus only the two plates remain, which are sketched in
figure 2 OaO. This is the geometry, which was applied in the first
experimental attempts for the measurement of the Casimir-force.

Modified geometry: It’s extremely difficult to align two macro-
scopic plates parallel, if the gap between them is only D ≈ 1µm
(remember that one plate must be movable). Because of FCasimir ∼
D−4, a very small tilt will already cause a huge measurement error.
Therefore in many experiments a geometry is preferred, which is
displayed in figure 2ObO. One of the plates is replaced by a spherical
surface with radius R. For the sphere-plate geometry, the force
is [22, (3)]

FKP = FPP ·
D

3 ·
2πR
X2 = −π

3~c
360

R

D3 if R� D . (38)
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Finite temperature: Most experiments for the evaluation of
the Casimir-effect are performed at room temperature, while our
derivation of (36) was based on the assumption T = 0. At finite
temperature, formula (16) changes as follows:

U0 = UT= 0
(16)= 2

∞∑
l,m,n=1

~cklmn
2

T 6= 0−−−→

T 6= 0−−−→ UT 6= 0 = 2
∞∑

l,m,n=1
~cklmn

(1
2 + 1

exp{~cklmn/(kBT )} − 1
)

(39)

kB is the Boltzmann-constant. The second summand is repre-
senting the probability of the thermal excitation of an oscillation
mode with wavenumber klmn at temperature T according to Bose-
Einstein statistics.

It’s no surprise, that for a long time no significant influence
of the additional term could be observed in any experiment at
T ≈ 300K, because the Casimir-force is dominated by wavelengths,
which just fit into the resonator with gap width D, but don’t fit
any more if the gap is infinitesimally reduced to D−dD. These are
waves with Z-components n · λZ/2 ≈ D, n = 1, 2, 3, . . . Because at
300K the Planck radiation spectrum has it’s maximum at wave
length 17µm, a significant effect of thermal radiation is to be
expected only at a gap width D of several micrometers. Most of
the older experiments have been performed with much smaller D
(typically 0.5µm . . . 1µm), because the Casimir-force according to
(36) is scaling like D−4, and the experiments were not sufficiently
sensitive to measure a significant force at larger D.

In the year 2010, experimental results were published [23], which
cover the range D = 0.7µm . . . D = 7µm. The experimentalists
are convinced to have verified the impact of the finite temperature.
With regard to the appreciable correction factors, which had to
be applied in data postprocessing, it may be advisable to consider
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these findings with some reservation, and wait for further results.

Finite surface conductivity: In the derivation of (36) we have
assumed, that the penetration depth of the radiation into the res-
onator’s walls is zero, and that 100% of the radiation is reflected.
This assumption has turned out to be an overly rough approxima-
tion. To achieve satisfying accordance of theory and experiments,
one must account for the finite and frequency-dependent reflectivity
of the surfaces of plates and spheres, which are used to measure the
Casimir-force. With this correction, the illusory universality of the
simple formula (36) vanishes: The Casimir-force is not independent
of the resonator’s material.

The model of electrical conductivity of metals, which Drude
published as early as 1900, is in spite of it’s simplicity suitable
for the analysis of the Casimir-effect. In particular for metals,
whose’s atoms have just one valence-electron in the s-shell, i.e. for
the alkali-metals, and for the noble metals copper, silver, and gold,
this model produces surprisingly good results. The mentioned
noble metals are preferred surface materials of the resonators in
the experiments.

The following derivation of those formulas of the Drude-model,
which are important for the Casimir-effect, follows by and large
the delineations in [24, chapter 1] and [25, Kapitel 11.2]. There
are exactly four free parameters in these formulae, which must be
determined experimentally: The effective mass m of the conduction
electrons, the relaxation time τ , the plasma frequency ωP , and the
frequency-dependent relative dielect constant εω.

If a static electric field E0 is applied to a metal, it causes within
the metal the current density

j = −nev = σ0 E0 , (40)

which equals the product of the number n of conduction electrons
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per volume, their charge −e, and their mean velocity v. σ0 is the
metal’s DC-conductivity. On their way through the metal, the
conduction electrons are again and again scattered by the ions,
which are constituting the crystal grid. The mean time interval
between two collisions of the same electron is the relaxation time
τ . The conduction electron is scattered into an arbitrary direction.
Therefore it’s mean velocity immediately after the collision is zero.
Then it is accelerated by the force −eE. If the collision happened
at time t = 0, then the electron’s mean velocity at time τ will be

〈vsingle〉t=τ =
τ∫

0

dt dvsingle

dt = −
τ∫

0

dt eE0
m

= −eE0
m

τ . (41)

The mass m is not the mass of a free electron, but it’s so-called
effective mass, i.e. one of the four free parameters of the Drude-
model. From (41) follows, that the mean velocity of all electrons
is8

v = −eE0
m

τ . (42)

This velocity is inserted into (40):

j = +ne2τ

m
E0 = σ0E0 (43)

8 Intuitively, one would assume v = 〈vsingle〉t=τ/2 in the first moment. A
failure, which also crept into Drude’s publication. To make the correct
value (42) plausible, lets consider the extreme cases of one electron, which
is scattered exactly backwards, and one electron, which is scattered with
almost no deflection into forward direction. If both electrons had the velocity
v before the collision, then the velocity of the backwards scattered electron
immediately after the collision is −v, and after the further time τ it is 0.
The velocity of the forward scattered electron immediately after the collision
is v, and after the further time τ it is v − eE/m = 2v. The mean value of
the both extreme cases is v, in accordance with (42).
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The conductivity σ0 is a constant. Thus the collisions have the
effect, that the conduction electrons are not infinitely accelerated
by the force −eE, but assume the constant, finite mean velocity
v. The effect of the collisions may be modeled as a friction force
−v/τ , which is proportional to the mean electron velocity. This
force is inserted in addition to the force −eE into the equation of
motion of the mean velocity v of the conduction electrons:

dv

dt = −v

τ
− eE0

m

(42)= 0 (44)

If instead of the static field an oscillating field Eω = Ê exp{−iωt}
is applied to the metal, then the mean velocity of the conduction
electrons will be vω = v̂ exp{−iωt}. As vω in contrast to v is
variable, equation (44) isn’t zero any more, but becomes

dvω
dt = −iωvω = −vω

τ
− eEω

m

vω = − eEω

m(−iω + 1/τ) . (45)

The current density and the conductivity then will be

jω =(40) + ne2Eω

m(−iω + 1/τ) = σωEω

σω = ne2τ

m(1− iωτ)
(43)= σ0

1− iωτ . (46)

The conductivity σω, and consequently the metal’s reflectivity,
decreases according to (46) with increasing frequency. The phase
factor i in the damping term iωτ reveals, that this is a dissipative
process. That part of the radiation, which is not reflected, is
converted into heat in the metal.

The DC-conductivity σ0 and the AC-conductivity σω can easily
be measured. Thereby the relaxation time τ can be computed
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from the right side of (46), and then from the middle term of this
equation (as n and e are known) the effective mass m. Thus two
of the four free parameters of the Drude-model are experimentally
determined.

The formulae of the Drude-model, which we derived so far, are
sufficient to describe the conductivity of metals in the frequency
range 0 (DC) up to approximately 1012Hz. At higher frequencies,
i.e. in the range of infrared light up to approximately 4 · 1014Hz,
and even more distinctly in the frequency range of visible light of
approximately (4 . . . 7) · 1014Hz and higher, a change happens. For
the investigation of the material properties in this frequency range
we make use of the Maxwell equations

∇× Eω = −∂Bω

∂t
(47a)

∇×Bω = µ0µωjω + µωεω
c2

∂Eω

∂t
. (47b)

The index ω is indicating, that we still are looking for solutions
with the same time dependence as in (46), i.e. we make the ansatz

Eω = Ê exp{i(k · r − ωt)} . (48)

ε0 is the dielectric constant of the vacuum, εω is the relative
dielectric constant of the metal at the frequency ω = 2πν. µ0
is the magnetic permeability of the vacuum, µω is the relative
permeability of the metal at the frequency ω = 2πν. We here are
interested exclusively in non-magnetic metals, and therefore set
µω = 1. c = (ε0µ0)−1/2 is the speed of light in vacuum. We compute
the rotation of (47a), insert (47b), and insert the expression (46)
for jω:
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∇×∇× Eω = −µ0σω
∂Eω

∂t
− εω
c2
∂2Eω

∂t2
=

=∇(∇ · Eω)︸ ︷︷ ︸
0

−∆Eω (49)

We are assuming that the wavelength of Eω is much larger than the
grid constant of the metal. Therefore the metal will be electrically
neutral on this scale, and ∇(∇ · Eω) may be set to zero. Because
of (48),

∂Eω

∂t
= +i

ω

∂2Eω

∂t2
(50)

holds. Thus one gets the wave equation

∆Eω =
(
εω + iσω

ωε0

)
︸ ︷︷ ︸

complex relative dielectric constant

1
c2
∂2Eω

∂t2
. (51)

Apart from the complex relative dielectric constant, this is a normal
wave-equation. Inserting (48), one finds the dispersion relation

k = ω

c

√
εω + iσω

ωε0
with k =

√
k2 . (52)

The plasma frequency is defined by

ωP ≡

√
ne2

mε0
. (53)

If ω is of same order of magnitude as ωP , then in good approxima-
tion

σω
(46)= ne2τ

−iωτm(1/(−iωτ) + 1) ≈ + ine2

mω

k
(52)= ω

c

√
εω −

ne2

mω2ε0
= ω

c

√
εω −

ω2
P

ω2


if ω is of
same order
of magnitude
as ωP .

(54)
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In case ω < ωP/
√
εω , the wave number k is imaginary, and the

amplitudes of the solutions (48) of the wave equation (51) decrease
exponentially towards zero within the metal. The penetration depth
is finite, but not negligibly small. If in contrast the frequency ω
becomes so large that ω > ωP/

√
εω , then k becomes real, and waves

can propagate within the metal. The metal becomes transparent,
and the reflectivity decreases towards zero.

Only the density n of conduction electrons is considered in the
plasma frequency’s definition ωP = (53), while the core electrons,
which are bound to the ions of the crystal grid, are ignored. That’s
a poor approximation at high frequencies. Also the frequency-
dependent relative dielectric constant εω is strongly influenced by
the core electrons. Therefore it’s better, not to compute these
two parameters by the Drude model, but to determine them ex-
perimentally. They are found due to the frequency-dependent
measurement of the reflection and the absorption of electromag-
netic radiation. The plasma frequencies of the alkali metals are
in the near UV from approximately νP = ωP/2π ≈ 7 · 1014Hz up
to νP ≈ 15 · 1014Hz [24, Table 1.5] close above the visible spec-
trum. The plasma frequency of gold is not much higher, namely
νP ≈ 22 · 1014Hz [26].

Electrostatic patches: Even if a surface is geometrically flat,
it usually is still not a perfect equipotential plane, because it
is made of micro-crystallites with different work functions. The
micro-crystals thus carry different electrostatic charges, resulting
in a “voltage-roughness” of the surface. This effect is reduced
by adsorbed contaminations on the surface. Literature references
regarding this issue can be found in [27]. As it is very difficult
to control the electrostatic forces caused by the patches, and as
these forces furthermore are of same order of magnitude as the
Casimir-force, the electrostatic patches are a serious problem for
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the interpretation and the reliability of the measured data, and
are a persistent source of systematic errors.

In a recent experiment [28] it was first time tried to measure the
patches directly, and to consider their influence in detail, when the
Casimir-force was extracted from the measured data. The criticism
of other authors [29] regarding these results is demonstrating, how
difficult it is to identify and to quantify the systematic errors in
measurements of the Casimir-force.

5. How Casimir discovered the effect

In the next section we will discuss, whether the Casimir-effect is
supplying conclusive evidence for the physical existence of zero-
point energy. The way, on which Casimir arrived at his formula
(36), sheds an indicative light on this question.

In 1930, Fritz London published the very influential article „Zur
Theorie und Systematik der Molekularkräfte“9 [30]. London inves-
tigated atoms and molecules, which are interacting due to van der
Waals-forces, by quantum-mechanical perturbation computation of
second order. He considered the interaction of pairs of molecules,
which don’t have a permanent electrical dipole- or quadrupole-
moment. If one of the molecules gets an instantaneous dipole
moment due to a temporary fluctuation (such fluctuations exist
only in quantum theory, but not in classical theory), then it will
induce a dipole moment in the other molecule as well. London
arrived at the result, that the interaction energy between the two
molecules is ∼ R−6, if their distance R is considerably larger than
the diameter of the molecules according to Bohr’s old model of
atoms. In-between the both molecules an attractive force ∼ R−7

is acting, which London called dispersion force.

9 “On the theory and systematics of molecular forces”
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In 1947, Casimir and Polder were consulted by an experimen-
talist, who was researching the force in-between the molecules of
colloidal films as a function of their distance R. It was assumed that
London’s theory of dispersion forces should fit to this system. But
the observed forces seemed to depend on distance rather ∼ R−8

than ∼ R−7 (which is the value expected by London’s theory). In
the search for a possible error in London’s theory, suspicion soon
concentrated on the fact, that London had computed only the
static interaction between the molecules, and had neglected the
finite propagation velocity of electromagnetic interaction.

This approximation indeed was too rough. The computation by
Casimir and Polder [31], in which they considered the retardation
of the interaction, resulted into the following van der Waals-force
between two atoms without permanent electrical dipole moments
at large distance R:

F = −161~cβ1β2
4πR8 (55)

β1 and β2 are the static polarizabilities of the two atoms.
The result is looking simple, but it’s derivation turned out

to be quite tough and complicated. To approach the solution
systematically, Casimir and Polder therefore firstly investigated
a simpler setup, in which a single polarizable atom is placed in
distance R from a metal plane with infinite conductivity. According
to classical theory, an interaction between the atom and it’s mirror
picture was expected, and this was by and large the case. But
what surprised the theoreticians was the simplicity, with which the
result

F = − 3~cβ
2πR5 (56)

could be computed. β is the atom’s static polarizability. The
derivation of this result is almost identical to that, which Casimir
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later-on used when he analyzed the force between two metal plates.
The only — however physically most important — difference is,
that in this case the atom is providing the electromagnetic field,
while in case of the Casimir-effect (apparently, see the following
section) no electrical charges are involved, and therefore the zero-
point oscillations must contribute the necessary electromagnetic
field.

Casimir got the essential hint, that for the setup with two metal
plates a possible action of zero-point energy should be considered,
when he was chatting in those days with Bohr about his actual
activities. “Bohr mumbled something about zero-point energy”,
remembered Casimir many years later [32]. This tip was sufficient
for Casimir, to compute — after the preparatory work with Polder,
in which he only needed to replace the atom by the movable plate
— within shortest time the Casimir-effect.

6. What is proved by the Casimir-effect?

Six decades after Casimir’s seminal publication, one certainly can
state, that the Casimir-force is definitely existing, that it has
been demonstrated experimentally beyond doubt, and that it is
described approximately correct by (36), at least if the gap width
between the plates is in the range D ≈ 0.2µm . . . 5µm.

But does the existence of the Casimir-force conclusively prove a
measurable effect of the electromagnetic field’s zero-point oscilla-
tions? Remarkably not. Casimir has demonstrated, that formula
(36) can be derived from the assumption of zero-point oscillations,
but he did not prove that this is this only possible interpretation
of the measured results.

The computation of the attractive force between a metal plate
and a polarizable atom, which he had performed in cooperation
with Polder, is already an indication for a better interpretation of
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the observations. The baffling formal similarity of the derivations
of the both formulae (56) and (36) is suggesting the assumption,
that also the cause of the attractive force should be the same in
both cases, i.e. that the Casimir-force should be generated due to
long-range van der Waals-interactions between those atoms, which
are constituting the surfaces of the two metal plates.

Lifshitz [33] derived already in 1956 a theory of the retarded van
der Waals-force between two parallel plates with relative dielectric
constants ε1 and ε3, with the gap between the plates filled by a
material with relative dielectric constant ε2:

ε1

∣∣∣∣ ε2

∣∣∣∣ ε3 (57a)

Casimir’s setup would be represented in this notation by

ε1 →∞
∣∣∣∣ ε2 → 1

∣∣∣∣ ε3 →∞ . (57b)

Few years later, Dzyaloshinskii, Lifshitz, and Pitaevskii [34] im-
proved this theory, and corroborated it by the methods of quantum
electrodynamics. Schwinger, DeRaad, and Milton [35] in 1978 re-
produced the result of Lifshitz et al. with a more elegant (but not
simpler) mathematical method. While the derivation is quite com-
plicated, the result is looking relatively simple. Consider a setup
with three plates of size X × Y with relative dielectric constants
ε1, ε2, ε3 according to (57a). If the thickness D of the middle plate
is sufficiently small versus X and Y , such that edge effects are
negligible, then according to Lifshitz’s theory the following force is
acting between the outer plates:
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FLifshitz = − ~cXY
2π2

∞∫
0

dξ
∞∫

0

dk κ2k ·

·
((κ2 + κ1

κ2 − κ1
· κ2 + κ3
κ2 − κ3

· exp{2κ2D} − 1
)−1

+

+
(κ′2 + κ′1
κ′2 − κ′1

· κ
′
2 + κ′3
κ′2 − κ′3

· exp{2κ2D} − 1
)−1)

κ2
j = k2 + εjξ

2 , κ′j = κj
εj

, k, ξ ∈ R , [k] = [ξ] = m−1

(58)

The integration variables ξ and k both have the dimensions of wave
numbers. Note, that κ2 is unprimed in both exponential functions.

Let’s first check the result of the Lifshitz-formula for two metal
plates with infinite conductivity, which are separated by a vacuum
gap of width D. Because of

ε1 = ε3 =∞ , ε2 = 1 =⇒ κ1 = κ3 =∞ , κ′1 = κ′3 = 0 , (59)

the formula in this case simplifies appreciably:

FLifshitz = − ~cXY
2π2

∞∫
0

dξ
∞∫

0

dk 2κ2k

exp{2κ2D} − 1 (60)

We define polar coordinates r, φ by

r cosφ ≡ k , r sinφ ≡ ξ .

The integral over the first quadrant of the kξ-plane is

∞∫
0

dk
∞∫

0

dξ =
∞∫

0

dr
π/2∫
0

r dφ . (61)
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Furthermore κ2 =
√
k2 + ξ2 = r is inserted into (60):

FLifshitz = − ~cXY
8π2D3

π/2∫
0

dφ cosφ

︸ ︷︷ ︸
1

∞∫
0

dr 23r3D3

exp{2rD} − 1 (62)

Here the numerator and the denominator have been multiplied by
22D3. With the further substitution

x ≡ 2rD , dr = dx
2D

follows10

FLifshitz = − ~cXY
16π2D4

∞∫
0

dx x3

exp{x} − 1︸ ︷︷ ︸
Γ(4) ζ(4) = 3!π4/90 = π4/15

= − π
2~c

240
XY

D4 , (63)

which is identical to Casimir’s formula (36).
Lifshitz’s theory has been tested and confirmed by several ex-

periments. In this context, the elegant and impressive experiment
of Sabisky and Anderson [37] deserves particular attention. In that
experiment, a scenario was realized, which Dzyaloshinskii, Lifshitz,
and Pitaevskii had already computed in their work cited above:
The evaluated layer-stack consisted of a substrate of CaF or SrF
or BaF (correlates in (57a) with ε1), a film of liquid helium with
thickness of 1 nm up to 25 nm (correlates in (57a) with ε2), and a
cloud of saturated helium gas above (correlates in (57a) with ε3).
The measurements confirmed Lifshitz’s theory with spectacular
precision.

10 The integral over x is listed in [36] with number 3.411.1
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Now the essential point is, that zero-point oscillations are playing
no role at all in Lifshitz’s theory. Instead that theory is computing
the direct interaction, transmitted by an electromagnetic field,
between the polarizable matter of the two outer plates.

Jaffe [38] considered Casimir’s derivation of his result (36) to be
“heuristic”, because it is inconsistent: On the one hand, Casimir
is making use of the zero-point oscillations, which are a result of
quantum field theory. On the other hand, he does not compute
the interaction of these oscillations with the resonator’s walls by
the methods of quantum field theory, but in an idealizing manner:
The assumption of infinite conductivity of the metals has the effect,
that the fine structure constant

α = e2

4πε0~c
≈ 1

137 , (64)

which’s value in quantum electrodynamics is determining the
strength of interaction between the electromagnetic field and elec-
trically charged matter, doesn’t show up any more in formula (36).
Casimir’s assumption

σω
(46)= ne2τ

m(1− iωτ) = σ0
1− iωτ =∞

is because of σω ∼ e2 ∼ α equivalent to the approximation α =∞.
We stated already in the previous section, that this approximation
is overly rough. The finite, frequency-dependent conductivity
σω = (46) must be included into the theory, to reproduce the
measured results. But that is to say, that the Casimir-force is
caused due to the exchange of photons in-between charges in the
two metal plates. The fact, that the frequency-dependence of the
conductivity σω must be considered in the computations of the
Casimir-force does prove, that the photons, which are exerting
forces on the metal plates, do not somehow emerge from a see of
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zero-point oscillations, but are being emitted from the charges in
the opposite plate.

It can be stated like this: If the fine-structure constant α would
be zero, then σω would be zero as well, and the Casimir-effect
would disappear [38]. The fact, that the Casimir-force can show up
only in case α 6= 0 does prove, that it is based on the interaction
between the electromagnetic field and charged matter, and can not
be explained as the effect of a zero-point energy, which is floating
in-between the metal plates without interacting with charges.

With the theory of Lifshitz, there exists an alternative theory to
that one of Casimir, which – without assuming a physically effective
zero-point energy – firstly does reproduce Casimir’s formula in the
limit (57b), secondly does reproduce all experimental observations
with higher accuracy than Casimir’s theory, and thirdly is making
further amazing predictions: For example, Lifshitz’s theory is
predicting repulsive forces for certain geometries of the interacting
macroscopic objects and for certain combinations of the dielectric
constants ε1, ε2, ε3 in (57a). This aspect of Lifshitz’s theory has
been experimentally confirmed as well, see the references in [39]. By
the way, the above mentioned experiment of Sabisky and Anderson
is belonging to the class with repulsive Casimir-force.

IverH.Brevik reported the following anecdote: “. . . in March
1972 [ . . . , after a talk of Hendrik Casimir at the Norwegian Insti-
tute of Technology in Trondheim, I ] asked: ‘Is the Casimir effect
due to the quantum fluctuations of the electromagnetic field, or is
it due to the van der Waals forces between the molecules in the two
media?’ Casimir’s answer began, ‘I have not made up my mind.’ 11
years later I met Casimir again [ . . . and . . . ] put to him the same
question as before. And as far as I can remember, his answer and
explanations were in effect the same as in 1972.” [40, Foreword]

The Casimir-effect does not prove a physical effectiveness of zero-
point oscillations. That makes the fact even more surprising, that
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Casimir’s derivation of (36) led him to a result, which is at least
approximately correct. Should this be interpreted as an indication,
that the assumption of physically effective zero-point oscillations
still might make some sense, which we just don’t yet understand?

Boyer, who wrote in 1970 a review [41] on some systems, for
which experimentally testable results can be derived relatively
easy, if one assumes physically effective zero-point oscillations,
commented this situation as follows: “Often in physics, a problem
may be attacked from several points of view with the same con-
clusion. [. . . ] Here we will show that zero-point energy is a useful
concept in understanding and calculating some forces arising in
quantum electrodynamics, — forces which may often be obtained
alternatively by perturbation and dispersion-theoretic methods.
We believe that the usefulness of a quantity often indicates that it
is worthy a further investigation.” [41, page 479]

7. Are zero-point oscillations physically effective?

One evidently must discriminate between the zero-point oscillations
of material systems with a finite number of degrees of freedom,
and the zero-point oscillations of continuous fields with infinitely
many degrees of freedom.

Things are quite obvious with regard to the first group: There
are plenty of experimental confirmations for the existence of their
zero-point oscillations. These zero-point oscillations don’t cause a
conflict with GRT, because the energy of the finite number of zero-
point oscillations in any case is negligible as compared the the rest
energies of these material systems.

With regard to continuous fields, the situation in the first mo-
ment seems to be of similar clarity: After the Casimir-effect, being
the allegedly strongest argument for the detectability of a physically
effective zero-point energy of the electromagnetic field, has been
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demolished in the previous section, not any experimental evidence
is left, which might indicate it’s existence. Furthermore there is the
extremely strong counter-argument, which has been discussed in
section 3: The tininess of the energy density in intergalactic space,
which is by at least 58 orders of magnitude smaller than one would
expect if the zero-point energies of continuous fields would cause
gravitation. We have mentioned the loophole of the cosmological
constant. But we agree with Pauli, that this option is not worth
to be considered.

Still some doubts are left. The canonical quantization of contin-
uous fields formally is a true copy of the canonical quantization of
finite material systems. Therefore the description of the oscillation
modes of fields conforms mathematical exactly with the description
of the oscillation modes of material systems with a finite number
of degrees of freedom. This approach was successful beyond any
expectation. The precision of the experimentally confirmed pre-
dictions of the quantum field theories, in particular of quantum
electrodynamics, is impressive and convincing.

Why then is there suddenly in this single point a basic differ-
ence? Why are zero-point oscillations, which have been definitely
confirmed experimentally in material systems with finite numbers
of degrees of freedom, in case of elementary quantum fields merely
an artifact of the theory, which somehow (for example due to
“normal order”) must be removed? If this difference really exists,
then at least a plausible explanation would be appreciated.11

11 Note added in 2017: That “plausible explanation” can be found in [42, sec. 5].
In [42, sec. 9] an additional, very important argument against the assumption
of a zero-point energy of elementary fields is outlined.
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